Xem 1-4 trên 4 kết quả Binary level 2
  • Articles in this volume are based on talks given at the Gauss-Dirichlet Conference held on June 20-24, 2005. The conference commemorated the 150th anniversary of the death of C.-F. Gauss and the 200th anniversary of the birth of J.-L. Dirichlet. The volume begins with a definitive summary of the life and work of Dirichlet and continues with thirteen papers by leading experts on research topics of current interest in number theory that were directly influenced by Gauss and Dirichlet.

    pdf266p beobobeo 01-08-2012 28 7   Download

  • Digital electronics is the branch of electronics based on the combination and switching of voltages called logic levels. Any quantity in the outside world, such as temperature, pressure, or voltage, can be symbolized in a digital circuit by a group of logic voltages that, taken together, represent a binary number. Each logic level corresponds to a digit in the binary (base 2) number system. The binary digits, or bits, 0 and 1, are sufficient to write any number, given enough places. The hexadecimal (base 16) number system is also important in digital systems.

    pdf656p kuckucucu 15-05-2012 67 24   Download

  • Faculty of Computer Science and Engineering Department of Computer Science LAB SESSION 3 RECURSION on BINARY TREE 1. OBJECTIVE The objectives of Lab 3 are (1) to introduce an implementation of binary tree in C++ and (2) to practice recursion algorithms to manipulate a tree. 2. FILE-LEVEL SEPARATION of INTERFACE and IMPLEMENTATION Class interface and implementation In Lab 2, we have learnt about the concept of separation between the interface and the implementation of a class. In practice, the separation is implemented as the file-level, i.e.

    pdf3p loc_x_m 23-12-2012 37 3   Download

  • For an equivalent level of security, elliptic curve cryptography uses shorter key sizes and is considered to be an excellent candidate for constrained environments like wireless/mobile communications. In FIPS 186-2, NIST recommends several finite fields to be used in the elliptic curve digital signature algorithm (ECDSA). Of the ten recommended finite fields, five are binary extension fields with degrees ranging from 163 to 571. The fundamental building block of the ECDSA, like any ECC based protocol, is elliptic curve scalar mul- tiplication.

    pdf0p cao_can 02-01-2013 20 2   Download

Đồng bộ tài khoản