Manifolds

The Ricci ﬂow was introduced by Hamilton in 1982 [H1] in order to prove that a compact threemanifold admitting a Riemannian metric of positive Ricci curvature is a spherical space form. In dimension four Hamilton showed that compact fourmanifolds with positive curvature operators are spherical space forms as well [H2]. More generally, the same conclusion holds for compact fourmanifolds with 2positive curvature operators [Che]. Recall that a curvature operator is called 2positive, if the sum of its two smallest eigenvalues is positive. ...
20p dontetvui 17012013 26 7 Download

We prove that knowing the lengths of geodesics joining points of the boundary of a twodimensional, compact, simple Riemannian manifold with boundary, we can determine uniquely the Riemannian metric up to the natural obstruction. 1. Introduction and statement of the results Let (M, g) be a compact Riemannian manifold with boundary ∂M . Let dg (x, y) denote the geodesic distance between x and y. The inverse problem we address in this paper is whether we can determine the Riemannian metric g knowing dg (x, y) for any x ∈ ∂M , y ∈ ∂M . ...
19p noel_noel 17012013 22 3 Download

Classical differential geometry is the approach to geometry that takes full advantage of the introduction of numerical coordinates into a geometric space. This use of coordinates in geometry was the essential insight of Rene Descartes that allowed the invention of analytic geometry and paved the way for modern differential geometry. The basic object in differential geometry (and differential topology) is the smooth manifold. This is a topological space on which a sufficiently nice family of coordinate systems or "charts" is defined.
0p taurus23 26092012 44 8 Download

Đề tài " The space of embedded minimal surfaces of fixed genus in a 3manifold III; Planar domains "
Annals of Mathematics This paper is the third in a series where we describe the space of all embedded minimal surfaces of ﬁxed genus in a ﬁxed (but arbitrary) closed 3manifold. In [CM3]–[CM5] we describe the case where the surfaces are topologically disks on any ﬁxed small scale. Although the focus of this paper, general planar domains, is more in line with [CM6], we will prove a result here (namely, Corollary III.
51p tuanloccuoi 04012013 21 7 Download

Hot Runner Technology has many contents: Introduction, Basic Aspects of Heat Technology, Introduction of Hot Runner Components, Heating of Hot Runner Manifold Blocks, Heating of Hot Runner Nozzles, Measurement and Control of Temperature, Material Behavior under Mechanical Load, Corrosion and Wear, Screw Connections and Material Selection for Elevated Temperatures, Basic Aspects of Plastics Technology, Maintenance and Storage of Hot Runner Molds.
245p chipnhohauinqh 22042014 34 7 Download

This paper is the ﬁrst in a series where we describe the space of all embedded minimal surfaces of ﬁxed genus in a ﬁxed (but arbitrary) closed Riemannian 3manifold. The key for understanding such surfaces is to understand the local structure in a ball and in particular the structure of an embedded minimal disk in a ball in R3 (with the ﬂat metric). This study is undertaken here and completed in [CM6]. These local results are then applied in [CM7] where we describe the general structure of ﬁxed genus surfaces in 3manifolds. There are two local models for...
43p tuanloccuoi 04012013 35 6 Download

In this paper we describe the propagation of C ∞ and Sobolev singularities for the wave equation on C ∞ manifolds with corners M equipped with a Rie2 1 mannian metric g. That is, for X = M × Rt , P = Dt − ∆M , and u ∈ Hloc (X) solving P u = 0 with homogeneous Dirichlet or Neumann boundary conditions, we show that WFb (u) is a union of maximally extended generalized broken bicharacteristics. This result is a C ∞ counterpart of Lebeau’s results for the propagation of analytic singularities on real analytic manifolds with...
65p dontetvui 17012013 31 6 Download

(BQ) Part 1 book "A first course in general relativity" has contents: Special relativity, vector analysis in special relativity, tensor analysis in special relativity, perfect fluids in special relativity, preface to curvature, curved manifolds.
188p bautroibinhyen19 02032017 24 6 Download

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học được đăng trên tạp chí toán học quốc tế đề tài: Semiinvariant warped product submanifolds of cosymplectic manifolds
24p sting03 04022012 22 5 Download

For each k ∈ Z, we construct a uniformly contractible metric on Euclidean space which is not mod k hypereuclidean. We also construct a pair of uniformly contractible Riemannian metrics on Rn , n ≥ 11, so that the resulting manifolds Z and Z are bounded homotopy equivalent by a homotopy equivalence which is not boundedly close to a homeomorphism. We show that for these lf spaces the C ∗ algebra assembly map K∗ (Z) → K∗ (C ∗ (Z)) from locally ﬁnite Khomology to the Ktheory of the bounded propagation algebra is not a monomorphism ...
21p tuanloccuoi 04012013 14 5 Download

Holomorphic disks and topological invariants for closed threemanifolds ´ ´ ´ By Peter Ozsvath and Zoltan Szabo* Abstract The aim of this article is to introduce certain topological invariants for closed, oriented threemanifolds Y , equipped with a Spinc structure. Given a Heegaard splitting of Y = U0 ∪Σ U1 , these theories are variants of the Lagrangian Floer homology for the gfold symmetric product of Σ relative to certain totally real subspaces associated to U0 and U1 . 1. Introduction Let Y be a connected, closed, oriented threemanifold, equipped with a Spin structure s. ...
133p tuanloccuoi 04012013 24 5 Download

The goal of this work is to give a precise numerical description of the K¨hler cone of a compact K¨hler manifold. Our main result states that the a a K¨hler cone depends only on the intersection form of the cohomology ring, the a Hodge structure and the homology classes of analytic cycles: if X is a compact K¨hler manifold, the K¨hler cone K of X is one of the connected components of a a the set P of real (1, 1)cohomology classes {α} which are numerically positive on analytic cycles, i.e. Y αp 0 for every irreducible analytic...
29p tuanloccuoi 04012013 23 5 Download

The space of embedded minimal surfaces of ﬁxed genus in a 3manifold II; Multivalued graphs in disks By Tobias H. Colding and William P. Minicozzi II* 0. Introduction This paper is the second in a series where we give a description of the space of all embedded minimal surfaces of ﬁxed genus in a ﬁxed (but arbitrary) closed 3manifold. The key for understanding such surfaces is to understand the local structure in a ball and in particular the structure of an embedded minimal disk in a ball in R3 . We show here that if the curvature of such a disk...
25p tuanloccuoi 04012013 24 5 Download

We deﬁne and study an algebra Ψ∞ (M0 ) of pseudodiﬀerential opera1,0,V tors canonically associated to a noncompact, Riemannian manifold M0 whose geometry at inﬁnity is described by a Lie algebra of vector ﬁelds V on a compactiﬁcation M of M0 to a compact manifold with corners. We show that the basic properties of the usual algebra of pseudodiﬀerential operators on a compact manifold extend to Ψ∞ (M0 ).
32p noel_noel 17012013 23 5 Download

Tham khảo luận văn  đề án 'research report: "the w  the germ of function defined on the manifold rreticular"', luận văn  báo cáo phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
7p phalinh14 07082011 31 4 Download

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học được đăng trên tạp chí toán học quốc tế đề tài: Automated target tracking and recognition using coupled view and identity manifolds for shape representation
17p sting03 04022012 24 4 Download

Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành hóa học dành cho các bạn yêu hóa học tham khảo đề tài: Research Article A Metric Multidimensional ScalingBased Nonlinear Manifold Learning Approach for Unsupervised Data Reduction
12p dauphong16 20022012 26 4 Download

There are very few examples of Riemannian manifolds with positive sectional curvature known. In fact in dimensions above 24 all known examples are diﬀeomorphic to locally rank one symmetric spaces. We give a partial explanation of this phenomenon by showing that a positively curved, simply connected, compact manifold (M, g) is up to homotopy given by a rank one symmetric space, provided that its isometry group Iso(M, g) is large. More precisely we prove ﬁrst that if dim(Iso(M, g)) ≥ 2 dim(M ) − 6, then M is tangentially homotopically equivalent to a rank one symmetric space or M...
63p noel_noel 17012013 27 4 Download

Let M be a connected compact pseudoRiemannian manifold acted upon topologically transitively and isometrically by a connected noncompact simple Lie group G. If m0 , n0 are the dimensions of the maximal lightlike subspaces tangent to M and G, respectively, where G carries any biinvariant metric, then we have n0 ≤ m0 . We study Gactions that satisfy the condition n0 = m0 .
30p noel_noel 17012013 21 4 Download

Manifoldsystems FIBRO Manifoldsystems • could be used alternative to gas spring hose systems • is known for a very low pressure and force increase during the complete stroke length • high repair and service facilities by long maintenance rate • no hose systems necessary • guarantee of tightness also by numbers of assembling and disassembling of the system • small mounting dimensions • PED 97/23/EC approved and ready to be installed
4p nguyen8 03122009 50 3 Download