Nature of mathematics

Xem 1-20 trên 539 kết quả Nature of mathematics
  • This work develops and defends a structural view of the nature of mathematics, which is used to explain a number of striking features of mathematics that have puzzled philosophers for centuries. It rejects the most widely held philosophical view of mathematics (Platonism), according to which mathematics is a science dealing with mathematical objects such as sets and numbers—objects which are believed not to exist in the physical world.

    pdf394p bimap_5 28-12-2012 24 7   Download

  • The first is the widely held view that mathematics is, somehow, innate11. Pre-service teachers will often indicate that they do not see the need to learn the material being covered because, when the time comes that they actually need it, they will be able to dredge it up.

    pdf640p dacotaikhoan 25-04-2013 35 8   Download

  • Annals of Mathematics This paper is the third in a series where we describe the space of all embedded minimal surfaces of fixed genus in a fixed (but arbitrary) closed 3-manifold. In [CM3]–[CM5] we describe the case where the surfaces are topologically disks on any fixed small scale. Although the focus of this paper, general planar domains, is more in line with [CM6], we will prove a result here (namely, Corollary III.

    pdf51p tuanloccuoi 04-01-2013 19 7   Download

  • Annals of Mathematics In our first article [2] we developed a new view of Gauss composition of binary quadratic forms which led to several new laws of composition on various other spaces of forms. Moreover, we showed that the groups arising from these composition laws were closely related to the class groups of orders in quadratic number fields, while the spaces underlying those composition laws were closely related to certain exceptional Lie groups.

    pdf23p tuanloccuoi 04-01-2013 33 5   Download

  • Annals of Mathematics By S. Artstein, V. Milman, and S. J. Szarek For two convex bodies K and T in Rn , the covering number of K by T , denoted N (K, T ), is defined as the minimal number of translates of T needed to cover K. Let us denote by K ◦ the polar body of K and by D the euclidean unit ball in Rn . We prove that the two functions of t, N (K, tD) and N (D, tK ◦ ), are equivalent in the appropriate sense, uniformly over symmetric convex bodies K ⊂...

    pdf17p tuanloccuoi 04-01-2013 22 5   Download

  • We study a 1D transport equation with nonlocal velocity and show the formation of singularities in finite time for a generic family of initial data. By adding a diffusion term the finite time singularity is prevented and the solutions exist globally in time. 1. Introduction In this paper we study the nature of the solutions to the following class of equations (1.1)

    pdf14p noel_noel 17-01-2013 28 5   Download

  • Annals of Mathematics By Curtis T. McMullen* .Annals of Mathematics, 165 (2007), 397–456 Dynamics of SL2(R) over moduli space in genus two By Curtis T. McMullen* Abstract This paper classifies orbit closures and invariant measures for the natural action of SL2 (R) on ΩM2 , the bundle of holomorphic 1-forms over the moduli space of Riemann surfaces of genus two. Contents 1. Introduction 2. Dynamics and Lie groups 3. Riemann surfaces and holomorphic 1-forms 4. Abelian varieties with real multiplication 5. Recognizing eigenforms 6. Algebraic sums of 1-forms 7.

    pdf61p noel_noel 17-01-2013 28 5   Download

  • We prove that if f (x) = n−1 ak xk is a polynomial with no cyclotomic k=0 factors whose coefficients satisfy ak ≡ 1 mod 2 for 0 ≤ k 1 + log 3 , 2n resolving a conjecture of Schinzel and Zassenhaus [21] for this class of polynomials. More generally, we solve the problems of Lehmer and Schinzel and Zassenhaus for the class of polynomials

    pdf21p noel_noel 17-01-2013 23 5   Download

  • Annals of Mathematics We study the motion of an incompressible perfect liquid body in vacuum. This can be thought of as a model for the motion of the ocean or a star. The free surface moves with the velocity of the liquid and the pressure vanishes on the free surface. This leads to a free boundary problem for Euler’s equations, where the regularity of the boundary enters to highest order. We prove local existence in Sobolev spaces assuming a “physical condition”, related to the fact that the pressure of a fluid has to be positive. ...

    pdf87p noel_noel 17-01-2013 25 4   Download

  • Annals of Mathematics In this paper we will solve one of the central problems in dynamical systems: Theorem 1 (Density of hyperbolicity for real polynomials). Any real polynomial can be approximated by hyperbolic real polynomials of the same degree. Here we say that a real polynomial is hyperbolic or Axiom A, if the real line is the union of a repelling hyperbolic set, the basin of hyperbolic attracting periodic points and the basin of infinity.

    pdf39p noel_noel 17-01-2013 19 4   Download

  • That is all: just a computer procedure to approximate a real root. From the narrow perspective of treating mathematics as a tool to solve real life problems, this is of course sufficient. However, from the point of view of mathematics, shouldn’t a student be interested in roots of polynomials in general? Fourth degree? Odd degree? Other roots, once one is found? Rational roots? Total number of roots? Not every detail need be explained, but even the average student will have his life improved by the mere knowledge that there are such questions, often with answers, e.g.

    pdf334p dacotaikhoan 25-04-2013 16 2   Download

  • Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Department of Mathematic dành cho các bạn yêu thích môn toán học đề tài: A note on naturally embedded ternary trees...

    pdf20p thulanh7 05-10-2011 17 1   Download

  • Like all other sciences, physics is based on experimental observations and quantitative measurements. The main objective of physics is to find the limited number of fundamental laws that govern natural phenomena and to use them to develop theories that can predict the results of future experiments. The fundamental laws used in developing theories are expressed in the language of mathematics, the tool that provides a bridge between theory and experiment

    pdf1333p gian_anh 18-10-2012 106 21   Download

  • Stochastic Calculus of Variations (or Malliavin Calculus) consists, in brief, in constructing and exploiting natural differentiable structures on abstract probability spaces; in other words, Stochastic Calculus of Variations proceeds from a merging of differential calculus and probability theory. As optimization under a random environment is at the heart of mathematical finance, and as differential calculus is of paramount importance for the search of extrema, it is not surprising that Stochastic Calculus of Variations appears in mathematical finance.

    pdf147p thuymonguyen88 07-05-2013 38 8   Download

  • We verify an old conjecture of G. P´lya and G. Szeg˝ saying that the o o regular n-gon minimizes the logarithmic capacity among all n-gons with a fixed area. 1. Introduction The logarithmic capacity cap E of a compact set E in R2 , which we identify with the complex plane C, is defined by (1.1) − log cap E = lim (g(z, ∞) − log |z|), z→∞ where g(z, ∞) denotes the Green function of a connected component Ω(E) ∞ of C \ E having singularity at z = ∞; see [4, Ch. 7], [7, §11.1]. By an n-gon with...

    pdf28p tuanloccuoi 04-01-2013 33 7   Download

  • We completely classify diffeomorphism covariant local nets of von Neumann algebras on the circle with central charge c less than 1. The irreducible ones are in bijective correspondence with the pairs of A-D2n-E6,8 Dynkin diagrams such that the difference of their Coxeter numbers is equal to 1. We first identify the nets generated by irreducible representations of the Virasoro algebra for c

    pdf31p tuanloccuoi 04-01-2013 30 7   Download

  • We study “flat knot types” of geodesics on compact surfaces M 2 . For every flat knot type and any Riemannian metric g we introduce a Conley index associated with the curve shortening flow on the space of immersed curves on M 2 . We conclude existence of closed geodesics with prescribed flat knot types, provided the associated Conley index is nontrivial. 1. Introduction If M is a surface with a Riemannian metric g then closed geodesics on (M, g) are critical points of the length functional L(γ) = |γ (x)|dx defined on the space of unparametrized C...

    pdf56p noel_noel 17-01-2013 30 7   Download

  • The stochastic 2D Navier-Stokes equations on the torus driven by degenerate noise are studied. We characterize the smallest closed invariant subspace for this model and show that the dynamics restricted to that subspace is ergodic. In particular, our results yield a purely geometric characterization of a class of noises for which the equation is ergodic in L2 (T2 ). Unlike previous 0 works, this class is independent of the viscosity and the strength of the noise.

    pdf41p noel_noel 17-01-2013 21 7   Download

  • The existence problem is solved, and global pointwise estimates of solutions are obtained for quasilinear and Hessian equations of Lane-Emden type, including the following two model problems: −∆p u = uq + µ, Fk [−u] = uq + µ, u ≥ 0, on Rn , or on a bounded domain Ω ⊂ Rn . Here ∆p is the p-Laplacian defined by ∆p u = div ( u| u|p−2 ), and Fk [u] is the k-Hessian defined as the sum of k × k principal minors of the Hessian matrix D2 u (k = 1, 2, . . . ,...

    pdf58p dontetvui 17-01-2013 32 7   Download

  • Suppose that G is a locally compact abelian group, and write M(G) for the algebra of bounded, regular, complex-valued measures under convolution. A measure µ ∈ M(G) is said to be idempotent if µ ∗ µ = µ, or alternatively if µ takes only the values 0 and 1. The Cohen-Helson-Rudin idempotent theorem states that a measure µ is idempotent if and only if the set {γ ∈ G : µ(γ) = 1} belongs to the coset ring of G, 1. Introduction Let

    pdf31p dontetvui 17-01-2013 43 7   Download


Đồng bộ tài khoản