Open channel flows

The textbook of Open Channel Hydraulics for Engineers, also called Applied Hydraulics, emphasizes the dynamics of the openchannel flow, by attempting to provide a complete framework of the basic equations of motion of the fluid, which are used as building blocks for the treatment of many practical problems. The structure of the document, with seven chapters totally, follows a logical sequence from a description and classification of Fluid Mechanics and Open Channel Flows, as reviewed in Chapter 1. A development of the basic equation of motion for uniform flow is encountered in Chapter 2.
129p ktct_1669 10042012 123 42 Download

In this chapter, the specificenergy concept is introduced and, then, the momentum principle is applied to openchannel flows. The hydraulic jump and its types are defined and classified. This chapter introduces how to determine the direct and submerged hydraulics jump; their characteristics are presented
0p haivan 16032009 107 27 Download

The chapter on uniform flow in open channels is basic knowledge required for all hydraulics students. In this chapter, we shall assume the flow to be uniform, unless specified otherwise. This chapter guides students how to determine the rate of discharge, the depth of flow, and the velocity. The slope of the bed and the crosssectional area remain constant over the given length of the channel under the uniformflow conditions. The same holds for the computation of the most economical cross section when designing the channel.
0p haivan 16032009 70 16 Download

Linking up with Chapter 2, dealing with uniform flow in open channels, it may be noted that any change in the flow phenomenon (i.e. flow rate, velocity, flow depth, flow area, bed slope do not remain constant) causes the flow to be nonuniform. This chapter will discuss the effect of change in any one of the above quantities, including specific energy, critical depth and slope, and flow types. How to draw water surface profiles will also be introduced.
0p haivan 16032009 72 12 Download

Average depth model has a variety of applications in hydraulic engineering, especially in applications that flow depth is much smaller than the width of the flow. In this method the vertical variation is negligible and the hydraulic variables average integrated from channel bed to the surface free for the vertical axis. in equations arising management, pure hydrostatic pressure is assumed that not really valid in the case of flow in the bed is curved and can not be described curvature effects of the bed.
127p gauhaman123 17112011 57 11 Download

After a review of the literature, the author has concluded that the concept of heat transfer was first introduced by the English scientist Sir Isaac Newton in his 1701 paper entitled “Scala Graduum Caloris.”(1) The specific ideas of heat convection and Newton’s Law of Cooling were developed from that paper
664p aries23 29092012 37 14 Download

This chapter introduces issues concerning unsteady flow, i.e. flow situations in which hydraulic conditions change with time. Many flow phenomena of great importance to the engineer are unsteady in character, and cannot be reduced to steady flow by changing the viewpoint of the observer. The equations of motion are formulated and the method of characteristics is introduced as main part of this chapter. The concept of positive and negative waves and formation of surges are described. Finally, some solutions to unsteady flow equations are introduced in their mathematical concepts.......
0p haivan 16032009 102 12 Download

The term "transition" is introduced whenever a channel's crosssectional configuration (shape and dimension) changes along its length. Beside it, in the water control design, engineers need to provide for the dissipation of excess kinetic energy possessed by the downstream flow. Formulas for design calculation of transition works and energy dissipators are presented in this chapter
0p haivan 16032009 102 10 Download

For a timely answer to the question of sustainability, or how to provide for future generations, there needs to be shared accounting of our social and physical resources. Supply chain transparency makes it possible to map resource flows and ensure dependable production while avoiding social and environmental problems. Open channels of communications can support a collective effort to account for the impacts of supply chains and engage more people in the invention of longterm solutions, or sustainable design....
104p conrepcon 12042012 27 8 Download