# Pulleys

Xem 1-20 trên 26 kết quả Pulleys
• ### Mechanisms and Mechanical Devices Sourcebook P9

COUPLING, CLUTCHING, AND BRAKING DEVICES Fig. 1 One method of coupling shafts makes use of gears that can replace chains, pulleys, and friction drives. Its major limitation is the need for adequate center distance. However, an idler can be used for close centers, as shown. This can be a plain pinion or an internal gear.

• ### Handbook of Mechanical Engineering Calculations P19

SHAFTS, FLYWHEELS, PULLEYS, AND BELTS FOR POWER TRANSMISSION STRESSES IN SOLID AND HOLLOW SHAFTS AND THEIR COMPONENTS Solid and Hollow Shafts in Torsion Solid Shafts in Bending and Torsion Shaft Torque and Shearing Stress Determination Choice of Shaft Diameter to Limit Torsional Deﬂection 19.4 Shaft Diameter Needed to

• ### Text Book of Machine Design P19

CONTENTS CONTENTS C H A P T E R 19 1. Introduction. 2. Types of Pulleys for Flat Belts. 3. Cast Iron Pulleys. 4. Steel Pulleys. 5. Wooden Pulleys. 6. Paper Pulleys. 7. Fast and Loose Pulleys. 8. Design of Cast Iron Pulleys. .lat Belt Pulleys 19.1 Introduction The pulleys are used to transmit power from one shaft to another by means of flat belts, V-belts or ropes. Since the velocity ratio is the inverse ratio of the diameters of driving and driven pulleys, therefore the pulley diameters should be carefully selected in order to have a desired velocity ratio.

• ### Text Book of Machine Design P18

CONTENTS CONTENTS .lat Belt Drives C H A P T E R n 677 18 .lat Belt Drives Introduction. Selection of a Belt Drive. Types of Belt Drives. Types of Belts. Material used for Belts. Working Stresses in Belts. Density of Belt Materials. Belt Speed. Coefficient of Fr iction Between Belt and Pulley 10. Standard Belt Thicknesses and Widths. 11. Belt Joints. 12. Types of Flat Belt Drives. 13. Velocity Ratio of a Belt Drive. 14. Slip of the Belt. 15. Creep of Belt. 16. Length of an Open Belt Drive. 17. Length of a Cross Belt Drive. 18. Power transmitted by a Belt. 19. Ratio of...

• ### Fundamentals of Machine Design P38

Flat belts drives can be used for large amount of power transmission and there is no upper limit of distance between the two pulleys. Belt conveyer system is one such example. These drives are efficient at high speeds and they offer quite running. A typical flat belt drive with idler pulley is shown in Fig. 13.2.1. Idler pulleys are used to guide a flat belt in various manners, but do not contribute to power transmission. A view of the flat belt cross section is also shown in the figure.

• ### Fundamentals of Machine Design P39

V - Belt Drives Among flexible machine elements, perhaps V-belt drives have widest industrial application. These belts have trapezoidal cross section and do not have any joints. Therefore, these belts are manufactured only for certain standard lengths. To accommodate these belts the pulleys have V shaped grooves which makes them relatively costlier. Multiple groove pulleys are available to accommodate number of belts, when large power transmission is required.

• ### Text Book of Machine Design P20

CONTENTS CONTENTS V-belt and Rope Drives C H A P T E R n 727 20 V-Belt and Rope Drives 1. Introduction. 2. Types of V-belts and Pulleys. 3. Standard Pitch Lengths of V-belts. 4. Advantages and Disadvantages of V-belt Drive over Flat Belt Drive. 5. Ratio of Driving Tensions for V-belt. 6. V-flat Drives. 7. Rope Drives. 8. Fibre Ropes. 9. Advantages of Fibre Rope Drives. 10. Sheave for Fibre Ropes. 11. Ratio of Driving Tensions for Fibre Rope. 12. Wire Ropes. 13. Advantages of Wire Ropes. 14. Construction of Wire Ropes. 15. Classification of Wire Ropes. 16. Designation of Wire Ropes. 17.

• ### Aircraft Systems Mechanical, electrical, and avionics subsystems integration,

Flight controls have advanced considerably throughout the years. In the earliest biplanes flown by the pioneers flight control was achieved by warping wings and control surfaces by means of wires attached to the flying controls in the cockpit. Figure 1.1 clearly shows the multiplicity of rigging and control wires on an early monoplane. Such a means of exercising control was clearly rudimentary and usually barely adequate for the task in hand.

• ### Fundamentals of Machine Design P22

Shaft is a common and important machine element. It is a rotating member, in general, has a circular cross-section and is used to transmit power. The shaft may be hollow or solid. The shaft is supported on bearings and it rotates a set of gears or pulleys for the purpose of power transmission. The shaft is generally acted upon by bending moment, torsion and axial force. Design of shaft primarily involves in determining stresses at critical point in the shaft that is arising due to aforementioned loading....

• ### Handbook of Machine Design P37

NOMENCLATURE A b Cp C8 di d2 e E F fb / M n P q r s t v z Cross section Width Angular factor Service factor Diameter of driving pulley Diameter of driven pulley Center distance Modulus of elasticity Force Bending frequency Datum length of flexible connector Torque Speed Power Mass per length Radius Belt thickness Pitch Velocity Number

• ### Text Book of Machine Design Part 19

Flat Belt Pulleys

• ### Văn bản hướng dẫn thiết kế máy P19

1. Introduction. 2. Types of Pulleys for Flat Belts. 3. Cast Iron Pulleys. 4. Steel Pulleys. 5. Wooden Pulleys. 6. Paper Pulleys. 7. Fast and Loose Pulleys. 8. Design of Cast Iron Pulleys. .lat Belt Pulleys 19.1 Introduction The pulleys are used to transmit power from one shaft to another by means of flat belts, V-belts or ropes. Since the velocity ratio is the inverse ratio of the diameters of driving and driven pulleys, therefore the pulley diameters should be carefully selected in order to have a desired velocity ratio.

• ### ENGINEERING PROBLEM SOLVING: A CLASSICAL PERSPECTIVE

In this day and age of ever-shorter time schedules and increasing expectations of productivity gains in every aspect of engineering activity, creative problem solving has become prominent among the most important skills that engineers possess. Unfortunately, in the day-to-day intensity of the search for new engineering solutions, it is easy to lose touch with the foundations of that creativity.

• ### Machinery's Handbook Guide P1

Circumferences of circles are used in calculating speeds of rotating machine parts, including drills, reamers, milling cutters, grinding wheels, gears, and pulleys. These speeds are variously referred to as surface speed, circumferential speed, and peripheral speed; meaning for each, the distance that a point on the surface or circumference would travel in one minute.

• ### Sách: An Introduction to Microelectromechanical Systems Engineering

Simple machines, such as the club and oar (examples of the lever), are prehistoric. More complex engines using human power, animal power, water power, wind power and even steam power date back to antiquity. Human power was focused by the use of simple engines, such as the capstan, windlass or treadmill, and with ropes, pulleys, and block and tackle arrangements; this power was transmitted usually with the forces multiplied and the speed reduced. These were used in cranes and aboard ships in Ancient Greece, as well as in mines, water pumps and siege engines in Ancient Rome. The writers of...

• ### Thông tin cơ chế - Thiết bị cơ khí P9

CHAPTER 9 COUPLING, CLUTCHING, AND BRAKING DEVICES COUPLING OF PARALLEL SHAFTS Fig. 1 One method of coupling shafts makes use of gears that can replace chains, pulleys, and friction drives. Its major limitation is the need for adequate center distance. However, an idler can be used for close centers, as shown. This can be a plain pinion or an internal gear. Transmission is at a constant velocity and there is axial freedom. Fig. 2 This coupling consists of two universal joints and a short shaft.

• ### Văn bản hướng dẫn thiết kế máy P18

Introduction. Selection of a Belt Drive. Types of Belt Drives. Types of Belts. Material used for Belts. Working Stresses in Belts. Density of Belt Materials. Belt Speed. Coefficient of Fr iction Between Belt and Pulley 10. Standard Belt Thicknesses and Widths. 11. Belt Joints. 12. Types of Flat Belt Drives. 13. Velocity Ratio of a Belt Drive. 14. Slip of the Belt. 15. Creep of Belt. 16. Length of an Open Belt Drive. 17. Length of a Cross Belt Drive. 18. Power transmitted by a Belt. 19. Ratio of Driving Tensions for Flat Belt Drive. 20. Centrifugal Tension. 21. Maximum...

• ### hydraulic power systems for civil works structures 8

Antiquity Simple machines, such as the club and oar (examples of the lever), are prehistoric. More complex engines using human power, animal power, water power, wind power and even steam power date back to antiquity. Human power was focused by the use of simple engines, such as the capstan, windlass or treadmill, and with ropes, pulleys, and block and tackle arrangements; this power was transmitted usually with the forces multiplied and the speed reduced. These were used in cranes and aboard ships in Ancient Greece, as well as in mines, water pumps and siege engines in Ancient Rome.