Regression

Multiple regression is the extension of simple regression, to take account of more than one independent variable X. In multiple regression, we study the relationship between Y and a number of explanatory variable (X1, X2, …, Xk). The model we assume is as follows: Yi = β0 + β1X1 + β2X2 + … + βkXk + ei
12p truongdoan 10112009 75 19 Download

The estimation process begins by assuming or hypothesizing that the least squares linear regression model (drawn from a sample) is valid. The formal twovariable linear regression model is based on the following assumptions: (1) The population regression is adequately represented by a straight line: E(Yi) = μ(Xi) = β0 + β1Xi (2) The error terms have zero mean: E(∈i) = 0 (3) A constant variance (homoscedasticity): V(∈i) = σ2
12p truongdoan 10112009 80 16 Download

Government size has attracted much scholarly attention. Political economists have considered large public expenditures a product of leftist rule and an ex pression of a stronger representation of labor interest. Although the size of the government has become the most important policy difference between the left and the right in postwar politics, the formation of the government’s funding base has not been explored. Junko Kato ﬁnds that the differentiation of tax rev enue structure is pathdependent upon the shift to regressive taxation.
278p layon_5 28032013 41 7 Download

Reading is known to be an essential task in language learning, but ﬁnding the appropriate text for every learner is far from easy. In this context, automatic procedures can support the teacher’s work. Some tools exist for English, but at present there are none for French as a foreign language (FFL). In this paper, we present an original approach to assessing the readability of FFL texts using NLP techniques and extracts from FFL textbooks as our corpus. Two logistic regression models based on lexical and grammatical features are explored and give quite good predictions on new texts. ...
9p bunthai_1 06052013 26 3 Download

This lecture will teach you how to fit nonlinear functions by using bases functions and how to control model complexity. The goal is for you to: Learn how to derive ridge regression; understand the tradeoff of fitting the data and regularizing it; Learn polynomial regression; understand that, if basis functions are given, the problem of learning the parameters is still linear; learn crossvalidation; understand model complexity and generalization.
28p allbymyself_08 22022016 4 2 Download

This lecture describes the construction of binary classifiers using a technique called Logistic Regression. The objective is for you to learn: How to apply logistic regression to discriminate between two classes; how to formulate the logistic regression likelihood; how to derive the gradient and Hessian of logistic regression; how to incorporate the gradient vector and Hessian matrix into Newton’s optimization algorithm so as to come up with an algorithm for logistic regression, which we call IRLS.
17p allbymyself_08 22022016 16 2 Download

Bài giảng Chapter 3: Stochastic regression model hướng đến trình bày các vấn đề cơ bản như: Consistency; classical stochastic regression model; limiting distributions and asymptotic distributions; asymptotic distribution of;... Mời các bạn cùng tìm hiểu và tham khảo nội dung thông tin tài liệu.
0p codon_09 01042016 8 2 Download

Lecture "Advanced Econometrics (Part II)  Chapter 7: Greneralized linear regression model" presentation of content: Model, properties of ols estimators, white's heteroscedascity consistent estimator, greneralized least squares estimation.
0p nghe123 06052016 16 2 Download

Lecture "Advanced Econometrics (Part II)  Chapter 11: Seemingly unrelated regressions" presentation of content: Model, generalized least squares estimation of sur model, kronecker product, two case when sur provides no eficiency gain over, hypothesis testing.
0p nghe123 06052016 12 2 Download

Machine learning methods have been extensively employed in developing MT evaluation metrics and several studies show that it can help to achieve a better correlation with human assessments. Adopting the regression SVM framework, this paper discusses the linguistic motivated feature formulation strategy. We argue that “blind” combination of available features does not yield a general metrics with high correlation rate with human assessments.
6p hongphan_1 15042013 15 1 Download

Many automatic evaluation metrics for machine translation (MT) rely on making comparisons to human translations, a resource that may not always be available. We present a method for developing sentencelevel MT evaluation metrics that do not directly rely on human reference translations. Our metrics are developed using regression learning and are based on a set of weaker indicators of ﬂuency and adequacy (pseudo references). Experimental results suggest that they rival standard referencebased metrics in terms of correlations with human judgments on new test instances. ...
8p hongvang_1 16042013 18 1 Download

Bài giảng Chapter 1: Classical linear regression tập trung trình bày các vấn đề cơ bản về model; assumptions of the classial regression model; least souares estimation;... Mời các bạn cùng tìm hiểu và tham khảo nội dung thông tin tài liệu.
0p codon_09 01042016 5 1 Download

Chapter 13  Linear regression and correlation, after studying this chapter you will be able to: Identify a relationship between variables on a scatter diagram, measure and interpret a degree of relationship by a coefficient of correlation, conduct a test of hypothesis about the coefficient of correlation in a population,...and other contents.
56p tangtuy09 21042016 6 1 Download

When you have completed this chapter, you will be able to: Understand the importance of an appropriate model specification and multiple regression analysis, comprehend the nature and technique of multiple regression models and the concept of partial regression coefficients, use the estimation techniques for multiple regression models,...
31p tangtuy09 21042016 7 1 Download

The main purposes of this study are: To estimate the wage regression in Vietnam, To examine the existence of gender and urban/rural wage gap, and to decompose these wage gaps to clarify whether there are wage discrimination in Vietnam throughout the wage distribution.
28p change03 06052016 11 1 Download

Lecture "Applied econometrics course  Chapter 1: Simple regression model" has content: What is simple regression model, how to estimate simple regression model, R – Square, assumption, variance and standard error of parameters,... and other contents.
25p bautroibinhyen18 18022017 2 1 Download

Lecture "Applied econometrics course  Chapter 2: Multiple regression model" has content: Why we need multiple regression model, estimation, R – Square, assumption, variance and standard error of parameters, the issues of multiple regression model, Illustration by Computer.
22p bautroibinhyen18 18022017 1 1 Download

Chapter 13: Correlation and linear regression. When you have completed this chapter, you will be able to: Define the terms dependent variable and independent variable; calculate, test, and interpret the relationship between two variables using the correlation coefficient; apply regression analysis to estimate the linear relationship between two variables;...
15p nomoney7 06032017 1 1 Download

Lecture Basic statistics for business and economics  Chapter 14: Multiple regression analysis. After completing this chapter, students will be able to: Describe the relationship between several independent variables and a dependent variable using multiple regression analysis, develop and interpret an ANOVA table, compute and interpret measures of association in multiple regression,...
16p nomoney7 06032017 2 1 Download

(BQ) This paper presents an investigation of the effects of machining variables on the surface roughness of wireEDMed DC53 die steel. In this study, the machining variables investigated were pulsepeak current, pulseon time, pulseoff time, and wire tension. Analysis of variance (ANOVA) technique was used to find out the variables affecting the surface roughness. Assumptions of ANOVA were discussed and carefully examined using analysis of residuals. Quantitative testing methods on residual analysis were used in place of the typical qualitative testing techniques.
6p xuanphuongdhts 27032017 1 0 Download