Xem 1-5 trên 5 kết quả Tập iđêan nguyên tố
  • Cho (R;m) là vành giao hoán, địa phương, Noether với iđêan cực đại duy nhất m; I là iđêan của R, M là R-môđun hữu hạn sinh và A là R-môđun Artin. Để nghiên cứu cấu trúc của các môđun Noether và môđun Artin, người ta thường quan tâm đến các tập iđêan nguyên tố liên kết và iđêan nguyên tố gắn kết tương ứng của chúng.

    pdf0p greengrass304 11-09-2012 53 18   Download

  • Luận án Tiến sĩ Toán học: Về tập Iđêan nguyên tố gắn kết của môđun đối đồng điều địa phương do Trần Đõ Minh Châu thực hiện có kết cấu gồm 3 chương và phần kết luận - kiến nghị: Chương 1 - Kiến thức chuẩn bị, chương 2 - Môđun đối đồng điều địa phương với giá cực đại, chương 3 - Môđun đối đồng điều địa phương cấp cao nhất với giá tùy ý.

    pdf87p talata_8 27-01-2015 34 14   Download

  • Dãy chính quy lọc (filter regular sequences) cho các vành và modun đã được giới thiệu bởi Cuong-Trung-Schenzel vào năm 1978 nhằm nghiên cứu một loại vành và modun có quỹ tích không Cohen-Macaulay bằng 0. Lớp vành và modun này đã được hàng trăm chuyên gia về lĩnh vực đại số trên thế giới quan tâm nghiên cứu. Ngày nay, vành và modun Cohen-Macaulay đã trở nên rất quen biết và có nhiều ứng dụng trong Hình học....

    pdf0p greengrass304 11-09-2012 34 15   Download

  • Tuyển tập các báo cáo nghiên cứu của trường đại học Huế đề tài: Ổn định tiệm cận của tập Iđêan nguyên tố liên kết của mô đun đối đồng điều địa phương với chiều thấp...

    pdf5p phalinh17 11-08-2011 32 4   Download

  • Cho R là vành giao hoán có đơn vị 1, S ⊆ R. Khi đó S được.gọi là tập nhân đóng của vành R nếu 1 ∈ S và ∀a,b ∈ S thì ab ∈ S..Ví dụ. a) Cho R là một miền nguyên, R* = R \ {0} thì R* là một tập nhân đóng của.vành R..b) Cho P là một iđêan nguyên tố của vành R, đặt S = R \ P thì S là tập nhân đóng.của vành R..1.1.2 Xây dựng môđun các thương. Cho M là R-môđun, S là một tập nhân đóng.của vành R.

    doc4p truongch16vinh 30-09-2013 22 2   Download

Đồng bộ tài khoản