intTypePromotion=3
Array
(
    [0] => Array
        (
            [banner_id] => 140
            [banner_name] => KM1 - nhân đôi thời gian
            [banner_picture] => 964_1568020473.jpg
            [banner_picture2] => 839_1568020473.jpg
            [banner_picture3] => 620_1568020473.jpg
            [banner_picture4] => 849_1568189308.jpg
            [banner_picture5] => 
            [banner_type] => 8
            [banner_link] => https://tailieu.vn/nang-cap-tai-khoan-vip.html
            [banner_status] => 1
            [banner_priority] => 0
            [banner_lastmodify] => 2019-09-11 15:08:43
            [banner_startdate] => 2019-09-11 00:00:00
            [banner_enddate] => 2019-09-11 23:59:59
            [banner_isauto_active] => 0
            [banner_timeautoactive] => 
            [user_username] => sonpham
        )

)

A new hybrid fuzzy time series forecasting model based on combing fuzzy C-means clustering and particle swam optimization

Chia sẻ: ViConanDoyle2711 ViConanDoyle2711 | Ngày: | Loại File: PDF | Số trang:26

0
7
lượt xem
0
download

A new hybrid fuzzy time series forecasting model based on combing fuzzy C-means clustering and particle swam optimization

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

In this paper, a novel FTS forecasting model based on fuzzy C-means (FCM) clustering and particle swarm optimization (PSO) was developed to enhance the forecasting accuracy. Firstly, the FCM clustering is used to divide the historical data into intervals with different lengths. After generating interval, the historical data is fuzzified into fuzzy sets.

Chủ đề:
Lưu

Nội dung Text: A new hybrid fuzzy time series forecasting model based on combing fuzzy C-means clustering and particle swam optimization

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản