YOMEDIA
ADSENSE
Bài giải phần giải mạch P2
97
lượt xem 11
download
lượt xem 11
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Chapter 2, Solution 1 v = iR i = v/R = (16/5) mA = 3.2 mA Chapter 2, Solution 2 p = v2/R → Chapter 2, Solution 3 R = v/i = 120/(2.5x10-3) = 48k ohms Chapter 2, Solution 4 (a) (b) i = 3/100 = 30 mA i = 3/150 = 20 mA R = v2/p = 14400/60 = 240 ohms Chapter 2, Solution 5 n = 9; l = 7; b = n + l – 1 = 15 Chapter 2, Solution 6 n = 12; l = 8; b = n + l –1 = 19 Chapter 2, Solution 7...
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giải phần giải mạch P2
- Chapter 2, Solution 1 v = iR i = v/R = (16/5) mA = 3.2 mA Chapter 2, Solution 2 p = v2/R → R = v2/p = 14400/60 = 240 ohms Chapter 2, Solution 3 R = v/i = 120/(2.5x10-3) = 48k ohms Chapter 2, Solution 4 (a) i = 3/100 = 30 mA (b) i = 3/150 = 20 mA Chapter 2, Solution 5 n = 9; l = 7; b = n + l – 1 = 15 Chapter 2, Solution 6 n = 12; l = 8; b = n + l –1 = 19 Chapter 2, Solution 7 7 elements or 7 branches and 4 nodes, as indicated. 30 V 1 20 Ω 2 3 +++- + - 2A 30 Ω 60 Ω 40 Ω 10 Ω 4
- Chapter 2, Solution 8 12 A a i1 8A b i3 i2 12 A c 9A d At node a, 8 = 12 + i1 i1 = - 4A At node c, 9 = 8 + i2 i2 = 1A At node d, 9 = 12 + i3 i3 = -3A Chapter 2, Solution 9 Applying KCL, i1 + 1 = 10 + 2 i1 = 11A 1 + i2 = 2 + 3 i2 = 4A i2 = i3 + 3 i3 = 1A Chapter 2, Solution 10 2 4A -2A i2 1 i1 3 3A At node 1, 4 + 3 = i1 i1 = 7A At node 3, 3 + i2 = -2 i2 = -5A
- Chapter 2, Solution 11 Applying KVL to each loop gives -8 + v1 + 12 = 0 v1 = 4v -12 - v2 + 6 = 0 v2 = -6v 10 - 6 - v3 = 0 v3 = 4v -v4 + 8 - 10 = 0 v4 = -2v Chapter 2, Solution 12 + 15v - loop 2 – 25v + + 10v - + v2 - + + + 20v loop 1 v1 loop 3 v3 - - - For loop 1, -20 -25 +10 + v1 = 0 v1 = 35v For loop 2, -10 +15 -v2 = 0 v2 = 5v For loop 3, -v1 +v2 +v3 = 0 v3 = 30v Chapter 2, Solution 13 2A I2 7A I4 1 2 3 4 4A I1 3A I3
- At node 2, 3 + 7 + I2 = 0 → I 2 = −10 A At node 1, I1 + I 2 = 2 → I 1 = 2 − I 2 = 12 A At node 4, 2 = I4 + 4 → I 4 = 2 − 4 = −2 A At node 3, 7 + I4 = I3 → I3 = 7 − 2 = 5 A Hence, I 1 = 12 A, I 2 = −10 A, I 3 = 5 A, I 4 = −2 A Chapter 2, Solution 14 + + - 3V V1 I4 V2 - I3 - + 2V - + - + V3 - + + 4V I2 - V4 I1 5V + - For mesh 1, −V4 + 2 + 5 = 0 → V4 = 7V For mesh 2, +4 + V3 + V4 = 0 → V3 = −4 − 7 = −11V For mesh 3, −3 + V1 − V3 = 0 → V1 = V3 + 3 = −8V For mesh 4, −V1 − V2 − 2 = 0 → V2 = −V1 − 2 = 6V Thus, V1 = −8V , V2 = 6V , V3 = −11V , V4 = 7V
- Chapter 2, Solution 15 + + + 12V 1 v2 - - 8V + - v1 - 3 + 2 - v3 10V - + For loop 1, 8 − 12 + v2 = 0 → v2 = 4V For loop 2, − v3 − 8 − 10 = 0 → v3 = −18V For loop 3, − v1 + 12 + v3 = 0 → v1 = −6V Thus, v1 = −6V , v2 = 4V , v3 = −18V Chapter 2, Solution 16 + v1 - + + loop 1 6V - 10V v1 - +- +- 12V loop 2 + v2 - Applying KVL around loop 1, –6 + v1 + v1 – 10 – 12 = 0 v1 = 14V Applying KVL around loop 2, 12 + 10 – v2 = 0 v2 = 22V
- Chapter 2, Solution 17 + v1 - loop 1 + - + 24V - v2 v3 + - 10V + - loop 2 -+ 12V It is evident that v3 = 10V Applying KVL to loop 2, v2 + v3 + 12 = 0 v2 = -22V Applying KVL to loop 1, -24 + v1 - v2 = 0 v1 = 2V Thus, v1 = 2V, v2 = -22V, v3 = 10V Chapter 2, Solution 18 Applying KVL, -30 -10 +8 + I(3+5) = 0 8I = 32 I = 4A -Vab + 5I + 8 = 0 Vab = 28V
- Chapter 2, Solution 19 Applying KVL around the loop, we obtain -12 + 10 - (-8) + 3i = 0 i = -2A Power dissipated by the resistor: p 3Ω = i2R = 4(3) = 12W Power supplied by the sources: p12V = 12 (- -2) = 24W p10V = 10 (-2) = -20W p8V = (- -2) = -16W Chapter 2, Solution 20 Applying KVL around the loop, -36 + 4i0 + 5i0 = 0 i0 = 4A Chapter 2, Solution 21 Apply KVL to obtain 10 Ω -45 + 10i - 3V0 + 5i = 0 + v0 - But v0 = 10i, + - 45V - + 3v0 -45 + 15i - 30i = 0 i = -3A P3 = i2R = 9 x 5 = 45W 5Ω
- Chapter 2, Solution 22 4Ω + v0 - 6Ω 10A 2v0 At the node, KCL requires that v0 + 10 + 2 v 0 = 0 v0 = –4.444V 4 The current through the controlled source is i = 2V0 = -8.888A and the voltage across it is v0 v = (6 + 4) i0 = 10 = −11.111 4 Hence, p2 vi = (-8.888)(-11.111) = 98.75 W Chapter 2, Solution 23 8//12 = 4.8, 3//6 = 2, (4 + 2)//(1.2 + 4.8) = 6//6 = 3 The circuit is reduced to that shown below. ix 1Ω + vx - 6A 2Ω 3Ω
- Applying current division, 2 ix = (6 A) = 2 A, v x = 1i x = 2V 2 + 1+ 3 The current through the 1.2- Ω resistor is 0.5ix = 1A. The voltage across the 12- Ω resistor is 1 x 4.8 = 4.8 V. Hence the power is v 2 4.8 2 p= = = 1.92W R 12 Chapter 2, Solution 24 Vs (a) I0 = R1 + R2 αV0 R3 R4 V0 = −α I0 (R3 R4 ) = − ⋅ R1 + R 2 R3 + R4 V0 − αR3 R4 = Vs (R1 + R2 )(R3 + R4 ) (b) If R1 = R2 = R3 = R4 = R, V0 α R α = ⋅ = = 10 α = 40 VS 2R 2 4 Chapter 2, Solution 25 V0 = 5 x 10-3 x 10 x 103 = 50V Using current division, 5 I20 = (0.01x50) = 0.1 A 5 + 20 V20 = 20 x 0.1 kV = 2 kV p20 = I20 V20 = 0.2 kW
- Chapter 2, Solution 26 V0 = 5 x 10-3 x 10 x 103 = 50V Using current division, 5 I20 = (0.01x50) = 0.1 A 5 + 20 V20 = 20 x 0.1 kV = 2 kV p20 = I20 V20 = 0.2 kW Chapter 2, Solution 27 Using current division, 4 i1 = (20) = 8 A 4+6 6 i2 = (20) = 12 A 4+6 Chapter 2, Solution 28 We first combine the two resistors in parallel 15 10 = 6 Ω We now apply voltage division, 14 v1 = (40) = 20 V 14 + 6 6 v2 = v3 = (40) = 12 V 14 + 6 Hence, v1 = 28 V, v2 = 12 V, vs = 12 V
- Chapter 2, Solution 29 The series combination of 6 Ω and 3 Ω resistors is shorted. Hence i2 = 0 = v2 12 v1 = 12, i1 = = 3A 4 Hence v1 = 12 V, i1 = 3 A, i2 = 0 = v2 Chapter 2, Solution 30 8Ω i1 i + 9A 6Ω v 4Ω - 12 By current division, i = (9) = 6 A 6 + 12 i1 = 9 − 6 = 3A, v = 4i1 = 4 x 3 = 12 V p6 = 12R = 36 x 6 = 216 W Chapter 2, Solution 31 The 5 Ω resistor is in series with the combination of 10 (4 + 6) = 5Ω . Hence by the voltage division principle, 5 v= (20V) = 10 V 5+5 by ohm's law, v 10 i= = = 1A 4 + 6 4+ 6 pp = i2R = (1)2(4) = 4 W
- Chapter 2, Solution 32 We first combine resistors in parallel. 20 x30 20 30 = = 12 Ω 50 10x 40 10 40 = = 8Ω 50 Using current division principle, 8 12 i1 + i 2 = (20) = 8A, i 3 + i 4 = (20) = 12A 8 + 12 20 20 i1 = (8) = 3.2 A 50 30 i2 = (8) = 4.8 A 50 10 i3 = (12) = 2.4A 50 40 i4 = (12) = 9.6 A 50 Chapter 2, Solution 33 Combining the conductance leads to the equivalent circuit below i 4S i + + 9A v 1S 9A v 1S 4S 2S - - 6x3 6 S 3S = = 25 and 25 + 25 = 4 S 9 Using current division, 1 i= (9) = 6 A, v = 3(1) = 3 V 1 1+ 2
- Chapter 2, Solution 34 By parallel and series combinations, the circuit is reduced to the one below: i1 8Ω 10 x15 10 ( 2 + 13 ) = = 6Ω 25 15 x15 + 15 (4 + 6) = = 6Ω 28V + v1 25 - 6Ω - 12 (6 + 6) = 6Ω 28 Thus i1 = = 2 A and v1 = 6i1 = 12 V 8+6 We now work backward to get i2 and v2. i1 = 2A 8Ω 6Ω 1A 1A + + + 6V 28V - 12V 12 Ω 6Ω - - i1 = 2A 8Ω 6Ω 1A 4Ω 0.6A 1A + + + + 6V 3.6V 28V - 12V 12 Ω 15 Ω 6Ω - - - 13 v Thus, v2 = (3 ⋅ 6) = 3 ⋅ 12, i2 = 2 = 0.24 15 13 p2 = i2R = (0.24)2 (2) = 0.1152 W i1 = 2 A, i2 = 0.24 A, v1 = 12 V, v2 = 3.12 V, p2 = 0.1152 W Chapter 2, Solution 35 i + 70 Ω V1 30 Ω + i1 - I0 50V a b - + 20 Ω V0 5 Ω i2 -
- Combining the versions in parallel, 70x30 20x 5 70 30 = = 21Ω , 20 15 = =4 Ω 100 25 50 i= =2 A 21 + 4 vi = 21i = 42 V, v0 = 4i = 8 V v v i1 = 1 = 0.6 A, i2 = 2 = 0.4 A 70 20 At node a, KCL must be satisfied i1 = i2 + I0 0.6 = 0.4 + I0 I0 = 0.2 A Hence v0 = 8 V and I0 = 0.2A Chapter 2, Solution 36 The 8-Ω resistor is shorted. No current flows through the 1-Ω resistor. Hence v0 is the voltage across the 6Ω resistor. 4 4 I0 = = =1 A 2 + 3 16 4 v0 = I0 (3 6 ) = 2I 0 = 2 V
- Chapter 2, Solution 37 Let I = current through the 16Ω resistor. If 4 V is the voltage drop across the 6 R combination, then 20 - 4 = 16 V in the voltage drop across the 16Ω resistor. 16 Hence, I = = 1 A. 16 20 6R But I = =1 4= 6R= R = 12 Ω 16 + 6 R 6+R Chapter 2, Solution 38 Let I0 = current through the 6Ω resistor. Since 6Ω and 3Ω resistors are in parallel. 6I0 = 2 x 3 R0 = 1 A The total current through the 4Ω resistor = 1 + 2 = 3 A. Hence vS = (2 + 4 + 2 3 ) (3 A) = 24 V vS I= = 2.4 A 10 Chapter 2, Solution 39 (a) Req = R 0 = 0 R R (b) Req = R R + R R = + = R 2 2 (c) Req = (R + R ) (R + R ) = 2R 2R = R 1 (d) Req = 3R (R + R R ) = 3R (R + R ) 2 3 3Rx R = 2 =R 3 3R + R 2 R ⋅ 2R (e) Req = R 2R 3R = 3R 3R 2 3Rx R = 3R 2 R= 3 = 6R 3 2 11 3R + R 3
- Chapter 2, Solution 40 Req = 3 + 4 (2 + 6 3) = 3 + 2 = 5Ω 10 10 I= = = 2A Re q 5 Chapter 2, Solution 41 Let R0 = combination of three 12Ω resistors in parallel 1 1 1 1 = + + Ro = 4 R o 12 12 12 R eq = 30 + 60 (10 + R 0 + R ) = 30 + 60 (14 + R ) 60(14 + R ) 50 = 30 + 74 + R = 42 + 3R 74 + R or R = 16 Ω Chapter 2, Solution 42 5x 20 (a) Rab = 5 (8 + 20 30) = 5 (8 + 12) = = 4Ω 25 (b) Rab = 2 + 4 (5 + 3) 8 + 5 10 (6 + 4) = 2 + 4 4 + 5 5 = 2 + 2 + 2.5 = 6.5 Ω Chapter 2, Solution 43 5x 20 400 (a) Rab = 5 20 + 10 40 = + = 4 + 8 = 12 Ω 25 50 −1 1 1 1 60 (b) 60 20 30 = + + = = 10Ω 60 20 30 6 80 + 20 Rab = 80 (10 + 10) = = 16 Ω 100
- Chapter 2, Solution 44 (a) Convert T to Y and obtain 20 x 20 + 20 x10 + 10 x 20 800 R1 = = = 80 Ω 10 10 800 R2 = = 40 Ω = R3 20 The circuit becomes that shown below. R1 a R3 R2 5Ω b R1//0 = 0, R3//5 = 40//5 = 4.444 Ω Rab = R2 / /(0 + 4.444) = 40 / /4.444 = 4Ω (b) 30//(20+50) = 30//70 = 21 Ω Convert the T to Y and obtain 20 x10 + 10 x 40 + 40 x 20 1400 R1 = = = 35Ω 40 40 1400 1400 R2 = = 70 Ω , R3 = = 140 Ω 20 10 The circuit is reduced to Ω shown below. 15 that 11 Ω R1 R2 R3 30 Ω 21 Ω 21 Ω Combining the resistors in parallel
- R1//15 =35//15=10.5, 30//R2=30//70 = 21 leads to the circuit below. 11 Ω 10.5 Ω 21 Ω 140 Ω 21 Ω 21 Ω Coverting the T to Y leads to the circuit below. 11 Ω 10.5 Ω R4 R5 R6 21 Ω 21x140 + 140 x 21 + 21x 21 6321 R4 = = = 301Ω = R6 21 21 6321 R5 = = 45.15 140 10.5//301 = 10.15, 301//21 = 19.63 R5//(10.15 +19.63) = 45.15//29.78 = 17.94 Rab = 11 + 17 .94 = 28.94Ω Chapter 2, Solution 45 (a) 10//40 = 8, 20//30 = 12, 8//12 = 4.8 Rab = 5 + 50 + 4.8 = 59.8 Ω (b) 12 and 60 ohm resistors are in parallel. Hence, 12//60 = 10 ohm. This 10 ohm and 20 ohm are in series to give 30 ohm. This is in parallel with 30 ohm to give 30//30 = 15 ohm. And 25//(15+10) = 12.5. Thus Rab = 5 + 12.8 + 15 = 32.5Ω
- Chapter 2, Solution 46 30x 70 60 + 20 (a) Rab = 30 70 + 40 + 60 20 = + 40 + 100 80 = 21 + 40 + 15 = 76 Ω (b) The 10-Ω, 50-Ω, 70-Ω, and 80-Ω resistors are shorted. 20x30 20 30 = = 12Ω 50 40x 60 40 60 = = 24 100 Rab = 8 + 12 + 24 + 6 + 0 + 4 = 54 Ω Chapter 2, Solution 47 5x 20 5 20 = = 4Ω 25 6x3 6 3= = 2Ω 9 10 Ω 8Ω a b 2Ω 4Ω Rab = 10 + 4 + 2 + 8 = 24 Ω
- Chapter 2, Solution 48 R 1 R 2 + R 2 R 3 + R 3 R 1 100 + 100 + 100 (a) Ra = = = 30 R3 10 Ra = Rb = Rc = 30 Ω 30x 20 + 30x50 + 20x 50 3100 (b) Ra = = = 103.3Ω 30 30 3100 3100 Rb = = 155Ω, R c = = 62Ω 20 50 Ra = 103.3 Ω, Rb = 155 Ω, Rc = 62 Ω Chapter 2, Solution 49 RaRc 12 + 12 (a) R1 = = = 4Ω Ra + Rb + Rc 36 R1 = R2 = R3 = 4 Ω 60x30 (b) R1 = = 18Ω 60 + 30 + 10 60 x10 R2 = = 6Ω 100 30x10 R3 = = 3Ω 100 R1 = 18Ω, R2 = 6Ω, R3 = 3Ω Chapter 2, Solution 50 Using R ∆ = 3RY = 3R, we obtain the equivalent circuit shown below: R 30mA 3R 3R 30mA 3R 3R/2 3R R
ADSENSE
CÓ THỂ BẠN MUỐN DOWNLOAD
Thêm tài liệu vào bộ sưu tập có sẵn:
Báo xấu
LAVA
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn