Bài giảng đồ họa : Các phép biến đổi trong đồ họa hai chiều part 3
lượt xem 9
download
Tương tự, ta có tọa độ điểm Q(x' , y') là điểm phát sinh sau khi kết hợp hai phép quay quanh gốc tọa độ M R1 (α 1 ) và M R 2 (α 2 ) là : Q = {P.M R1 (α 1 )}.M R2 (α 2 ) = P.{M R1 (α 1 ).M R2 (α 2 )} hay : M R1 (α 1 ).M R 2 (α 2 ) = M R (α 1 + α 2 ) • Vậy kết hợp hai phép quay quanh gốc tọa độ là một phép quay quanh gốc tọa độ. Từ đó...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giảng đồ họa : Các phép biến đổi trong đồ họa hai chiều part 3
- ÑOÀ HOÏA MAÙY TÍNH Keát hôïp caùc pheùp quay • Töông töï, ta coù toïa ñoä ñieåm Q(x' , y') laø ñieåm phaùt sinh sau khi keát hôïp hai pheùp quay quanh goác toïa ñoä M R1 (α 1 ) vaø M R 2 (α 2 ) laø : Q = {P.M R1 (α 1 )}.M R2 (α 2 ) = P.{M R1 (α 1 ).M R2 (α 2 )} • Ta coù : cos α 1 sin α 1 0 cos α 2 sin α 2 0 M R1 (α 1 ).M R 2 (α 2 ) = − sin α 1 cos α 1 0 . − sin α 2 cos α 2 0 1 1 0 0 0 0 cos(α 1 + α 2 ) sin(α 1 + α 2 ) 0 = − sin(α 1 + α 2 ) cos(α 1 + α 2 ) 0 1 0 0 hay : M R1 (α 1 ).M R 2 (α 2 ) = M R (α 1 + α 2 ) • Vaäy keát hôïp hai pheùp quay quanh goác toïa ñoä laø moät pheùp quay quanh goác toïa ñoä. Töø ñoù deã daøng suy ra keát hôïp cuûa nhieàu pheùp quay quanh goác toïa ñoä cuõng laø moät pheùp quay quanh goác toïa ñoä. Döông Anh Ñöùc, Leâ Ñình Duy Caùc pheùp bieán ñoåi trong ñoà hoïa 2 chieàu 9/16
- ÑOÀ HOÏA MAÙY TÍNH Pheùp quay coù taâm quay laø ñieåm baát kì • Giaû söû taâm quay coù toïa ñoä I (x R , y R ) , ta coù theå xem pheùp quay quanh taâm I moät goùc α ñöôïc keát hôïp töø caùc pheùp bieán ñoåi cô sôû sau : ♦ Tònh tieán theo vector tònh tieán (− x R ,− y R ) ñeå dòch chuyeån taâm quay veà goác toïa ñoä (ñöa veà tröôøng hôïp quay quanh goác toïa ñoä). ♦ Quay quanh goác toïa ñoä moät goùc α . ♦ Tònh tieán theo vector tònh tieán (x R , y R ) ñeå ñöa taâm quay veà laïi vò trí ban ñaàu. y y y y I(xR,yR) I(xR,yR) α x x x x (a) (b) (c) (d) • Ta coù ma traän cuûa pheùp bieán ñoåi : M R (x R , y R , α ) = M T (− x R ,− y R ).M R (α ).M T (x R , y R ) 1 0 0 cos α sin α 0 1 0 0 = 0 1 0 . − sin α cos α 0 . 0 1 0 − x 1 0 1 xR 1 − yR yR 0 R cos α sin α 0 − sin α cos α 0 = (1 − cos α )x + sin α . y 1 − sin α .x R + (1 − cos α ) y R R R Döông Anh Ñöùc, Leâ Ñình Duy Caùc pheùp bieán ñoåi trong ñoà hoïa 2 chieàu 10/16
- ÑOÀ HOÏA MAÙY TÍNH Moät soá tính chaát cuûa pheùp bieán ñoåi affine • Baûo toaøn ñöôøng thaúng : aûnh cuûa ñöôøng thaúng qua pheùp bieán ñoåi affine laø ñöôøng thaúng. ♦ Ñeå bieán ñoåi moät ñoaïn thaúng qua hai ñieåm A vaø B, chæ caàn thöïc hieän pheùp bieán ñoåi cho A vaø B. ♦ Ñeå bieán ñoåi moät ña giaùc, chæ caàn thöïc hieän pheùp bieán ñoåi ñoái vôùi caùc ñænh cuûa ña giaùc. • Baûo toaøn tính song song : aûnh cuûa hai ñöôøng thaúng song song laø song song. ♦ AÛnh cuûa caùc hình vuoâng, hình chöõ nhaät, hình thoi, hình bình haønh sau pheùp bieán ñoåi laø hình bình haønh. • Baûo toaøn tính tæ leä veà khoaûng caùch : Neáu ñieåm C chia ñoaïn AB theo tæ soá t thì aûnh cuûa C cuõng seõ chia aûnh cuûa ñoaïn AB theo tæ soá t. ♦ Trong hình vuoâng, caùc ñöôøng cheùo caét nhau taïi trung ñieåm cuûa moãi ñöôøng neân caùc ñöôøng cheùo cuûa baát kì hình bình haønh naøo cuõng caét nhau taïi trung ñieåm cuûa moãi ñöôøng. ♦ Trong tam giaùc ñeàu, giao ñieåm cuûa ba ñöôøng trung tuyeán chia moãi ñöôøng theo tæ soá 1:2. Do aûnh cuûa tam giaùc ñeàu qua pheùp bieán ñoåi affine laø moät tam giaùc neân giao ñieåm cuûa caùc ñöôøng trung tuyeán trong moät tam giaùc cuõng seõ chia chuùng theo tæ leä 1:2. Döông Anh Ñöùc, Leâ Ñình Duy Caùc pheùp bieán ñoåi trong ñoà hoïa 2 chieàu 11/16
- ÑOÀ HOÏA MAÙY TÍNH Pheùp ñoái xöùng • Pheùp ñoái xöùng truïc coù theå xem laø pheùp quay quanh truïc ñoái xöùng moät goùc 1800. 1 0 0 M Rfx = 0 − 1 0 • Truïc ñoái xöùng laø truïc hoaønh : 0 0 1 − 1 0 0 M Rfy = 0 1 0 • Truïc ñoái xöùng laø truïc tung : 0 0 1 Pheùp bieán daïng • Pheùp bieán daïng laø pheùp bieán ñoåi laøm thay ñoåi, meùo moù hình daïng cuûa caùc ñoái töôïng. • Bieán daïng theo phöông truïc x seõ laøm thay ñoåi hoaønh 1 0 0 ñoä coøn tung ñoä vaãn giöõ nguyeân : M Shx = shxy 1 0 0 0 1 • Bieán daïng theo phöông truïc y seõ laøm thay ñoåi tung 1 sh yx 0 ñoä coøn hoaønh ñoä vaãn giöõ nguyeân : M Shy = 0 1 0 0 1 0 y (1,3) (3,3) (10,3) (12,3) (1,1) (3,1) (4,1) (6,1) x Döông Anh Ñöùc, Leâ Ñình Duy Caùc pheùp bieán ñoåi trong ñoà hoïa 2 chieàu 12/16
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài giảng Đồ họa máy tính - Ma Thị Châu
22 p | 279 | 28
-
Bài giảng Đồ họa máy tính: Các thuật toán mành hóa - Ma Thị Châu
18 p | 223 | 17
-
Bài giảng Đồ họa máy tính: Phần 1
47 p | 112 | 14
-
Bài giảng Đồ họa máy tính: Giới thiệu đồ họa 3 chiều - TS. Đào Nam Anh
54 p | 110 | 12
-
Bài giảng Đồ họa máy tính: Các phép biến đổi trong đồ họa ba chiều - TS. Đào Nam Anh
28 p | 99 | 11
-
Bài giảng Đồ họa máy tính: Các đối tượng đồ họa cơ sở - TS. Đào Nam Anh
50 p | 100 | 10
-
Bài giảng đồ họa : CÁC PHÉP BIẾN ĐỔI 3 CHIỀU part 2
0 p | 197 | 9
-
Bài giảng Đồ họa máy tính: Phần 2
40 p | 102 | 8
-
Bài giảng Đồ họa máy tính: Giới thiệu về đồ họa máy tính - TS. Đào Nam Anh
50 p | 88 | 7
-
Bài giảng Đồ họa máy tính: Giới thiệu đồ họa 3 chiều - TS. Đào Nam Anh (tt)
54 p | 91 | 6
-
Bài giảng Đồ họa máy tính - ĐH Hàng Hải VN
54 p | 41 | 6
-
Bài giảng Đồ họa máy tính: Bài 3 - Lê Tấn Hùng
39 p | 73 | 5
-
Bài giảng Đồ hoạ trên VC6.0(MFC) - Trần Anh Tuấn
11 p | 75 | 3
-
Bài giảng Đồ họa hiện thực ảo: Bài 1 - Lê Tấn Hùng
11 p | 56 | 3
-
Bài giảng Đồ họa hiện thực ảo: Bài 4A - Lê Tấn Hùng
41 p | 58 | 3
-
Bài giảng Đồ họa hiện thực ảo: Bài 4B - Lê Tấn Hùng
27 p | 40 | 3
-
Bài giảng Đồ họa hiện thực ảo: Bài 5 - Lê Tấn Hùng
8 p | 36 | 3
-
Bài giảng Đồ họa hiện thực ảo: Bài 6 - Lê Tấn Hùng
8 p | 38 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn