intTypePromotion=3
Array
(
    [0] => Array
        (
            [banner_id] => 140
            [banner_name] => KM1 - nhân đôi thời gian
            [banner_picture] => 964_1568020473.jpg
            [banner_picture2] => 839_1568020473.jpg
            [banner_picture3] => 620_1568020473.jpg
            [banner_picture4] => 994_1568779877.jpg
            [banner_picture5] => 
            [banner_type] => 8
            [banner_link] => https://tailieu.vn/nang-cap-tai-khoan-vip.html
            [banner_status] => 1
            [banner_priority] => 0
            [banner_lastmodify] => 2019-09-18 11:11:47
            [banner_startdate] => 2019-09-11 00:00:00
            [banner_enddate] => 2019-09-11 23:59:59
            [banner_isauto_active] => 0
            [banner_timeautoactive] => 
            [user_username] => sonpham
        )

)

Bài giảng Hệ thống điều khiển số - Ths. Trần Công Binh

Chia sẻ: Huệ Mẫn | Ngày: | Loại File: PDF | Số trang:87

0
114
lượt xem
39
download

Bài giảng Hệ thống điều khiển số - Ths. Trần Công Binh

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài giảng Hệ thống điều khiển số (Động cơ không đồng bộ 3 pha) do Ths. Trần Công Binh biên soạn có kết cấu nội dung trình bày gồm 8 chương: chương 1 bộ nghịch lưu ba pha và Vector không gian, chương 2 hệ qui chiếu quay, chương 3 mô hình động cơ không đồng bộ 3 pha, chương 4 điều khiển định hướng từ thông động cơ không đồng bộ, chương 5 một số phương pháp ước lượng từ thông rotor, chương 6 các phương pháp điều khiển dòng, chương 7 một số phương pháp ước lượng tốc độ động cơ, chương 8 bộ điều khiển động cơ không đồng bộ ba pha.

Chủ đề:
Lưu

Nội dung Text: Bài giảng Hệ thống điều khiển số - Ths. Trần Công Binh

  1. ĐẠI HỌC QUỐC GIA TP. HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA ĐIỆN – ĐIỆN TỬ Bài giảng: HỆ THỐNG ĐIỀU KHIỂN SỐ (ĐỘNG CƠ KHÔNG ĐỒNG BỘ 3 PHA) Biên soạn: ThS. Trần Công Binh TP. HỒ CHÍ MINH, THÁNG 02 NĂM 2008
  2. Bài giảng Hệ Thống Điều Khiển Số (ĐCKĐB) T©B GIỚI THIỆU MÔN HỌC 1. Tên môn học: HỆ THỐNG ĐIỀU KHIỂN SỐ 2. Mã số: 3. Phân phối giờ: 28LT + 14BT+Kiểm tra 4. Số tín chỉ: 2(2.1.4) Kiểm tra: 20%, Thi: 80% 5. Môn tiên quyết: Kỹ thuật điện 2, Cơ sở tự động học, Kỹ thuật số 6. Môn song hành: 7. Giáo trình chính: 8. Tài liệu tham khảo: 9. Tóm tắc nội dung: Phần Tiếng Việt: Summary: Electrical Engineering 10. Đối tượng học: Sinh viên ngành Điện. 2/11/2009 2
  3. Bài giảng Hệ Thống Điều Khiển Số (ĐCKĐB) T©B CHƯƠNG TRÌNH MÔN HỌC HỆ THỐNG ĐIỀU KHIỂN SỐ Chương 1: Bộ nghịch lưu ba pha và Vector không gian (4,5T) Vector không gian. Bộ nghịch lưu ba pha. Chương 2: Hệ qui chiếu quay (1,5T) Hệ qui chiếu quay. Chuyển đổi hệ toạ độ abc ↔ αβ ↔ dq. Chương 3: Mô hình ĐCKĐB 3 pha (αβ), (dq) (9T) Sơ đồ tương đương của động cơ và một số ký hiệu. Mô hình động cơ trong HTĐ stator (αβ). Mô hình động cơ trong HTĐ từ thông rotor (Ψr). Chương 4: Điều khiển định hướng từ thông (FOC) ĐCKĐB (6T) Điều khiển PID Điều khiển tiếp dòng. Điều khiển tiếp áp. Mô phỏng của FOC. (21 tiết) Chương 5: Một số phương pháp ước lượng từ thông rotor (6T) Từ Ψm và ia, ib hồi tiếp. Từ us và ia, ib hồi tiếp. Từ ω và ia, ib hồi tiếp. Ước lượng vị trí (góc) vector Ψr. Ước lượng (Ψr) trong HTĐ dq. Ước lượng từ thông rotor dùng khâu quan sát (observer) Đáp ứng mô phỏng FOC. Chương 6: Các phương pháp điều khiển dòng (6T) Điều khiển dòng trong HQC (αβ): vòng trễ và so sánh. Điều khiển dòng trong HQC (dq). Chương 7: Một số phương pháp ước lượng tốc độ động cơ (3T) Ước lượng vận tốc vòng hở (2 pp). Ước lượng vận tốc vòng kín (có hồi tiếp). Điều khiển không dùng cảm biến (sensorless). Chương 8: Bộ điều khiển động cơ không đồng bộ ba pha (6T) Cấu trúc một hệ thống điều khiển động cơ. Cảm biến đo lường Một số ưu điểm khi sử dụng bộ điều khiển tốc độ động cơ Hệ thống điều khiển số động cơ không đồng bộ ba pha Bộ biến tần (21 tiết) (42 tiết) 2/11/2009 3
  4. Bài giảng Hệ Thống Điều Khiển Số (ĐCKĐB) T©B Chương 1: VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯU BA PHA I. Vector không gian I.1. Biểu diễn vector không gian cho các đại lượng ba pha Động cơ không đồng bộ (ĐCKĐB) ba pha có ba (hay bội số của ba) cuộn dây stator bố trí trong không gian như hình vẽ sau: usb Pha B stator usa Pha A rotor usc Pha C Hình 1.1: Sơ đồ đấu dây và điện áp stator của ĐCKĐB ba pha. (Ba trục của ba cuộn dây lệch nhau một góc 1200 trong không gian) Ba điện áp cấp cho ba đầu dây của động cơ từ lưới ba pha hay từ bộ nghịch lưu, biến tần; ba điện áp này thỏa mãn phương trình: usa(t) + usb(t) + usc(t) = 0 (1.1) Trong đó: usa(t) = |us| cos(ωst) (1.2a) usb(t) = |us| cos(ωst – 1200) (1.2b) usc(t) = |us| cos(ωst + 1200) (1.2c) Với ωs = 2πfs; fs là tần số của mạch stator; |us| là biên độ của điện áp pha, có thể thay đổi. (điện áp pha là các số thực) Vector không gian của điện áp stator được định nghĩa như sau: r 2 r r r u s ( t ) = [u sa ( t ) + u sb ( t ) + u sc ( t )] (1.3) 3 r 2 [ 0 0 ] u s ( t ) = u sa ( t )e j0 + u sb ( t )e j120 + u sc ( t )e j240 3 0 (mặt phẳng ba chiều với 3 vector đơn vị) r 2 [ 0 ] u s ( t ) = u sa ( t ) + u sb ( t )e j120 + u sc ( t )e j240 3 0 (1.4) (tương tự như vector trong mặt phẳng phức hai chiều với 2 vector đơn vị) r 2 [ ] u s ( t ) = u sa ( t ) + a.u sb ( t ) + a 2 .u sc ( t ) 3 với a = e j120 0 [1 + a + a ] = [e 2 j0 0 0 0 ] + e j120 + e j240 = 0 Chöông 1: Vector không gian và Bộ nghịch lưu ba pha I.1
  5. Bài giảng Hệ Thống Điều Khiển Số (ĐCKĐB) T©B Ví dụ 1.1: Chứng minh? r a) u s ( t ) = u s e jωs t = u s ∠(ωs t ) = u s [cos(ωs t ) + jsin (ωs t )] (1.6) 2⎛ ⎜ [u as − 0,5u bs − 0,5u cs ] + ⎡ 3 3 ⎤⎞ b) us = j⎢ u bs − u cs ⎥ ⎟ (1.5) 3⎜ ⎝ ⎣ 2 2 ⎦⎠ ⎟ β Im o e j120 ωs r B us 2r u sc 3 Re usa α A e j0 o 2r u sa 2r C 3 u sb 3 o e j240 Hình 1.2: Vector không gian điện áp stator trong hệ tọa độ αβ. Theo hình vẽ trên, điện áp của từng pha chính là hình chiếu của vector điện áp r stator u s lên trục của cuộn dây tương ứng. Đối với các đại lượng khác của động cơ: dòng điện stator, dòng rotor, từ thông stator và từ thông rotor đều có thể xây dựng các vector không gian tương ứng như đối với điện áp stator ở trên. I.2. Hệ tọa độ cố định stator Vector không gian điện áp stator là một vector có modul xác định (|us|) quay trên mặt phẳng phức với tốc độ góc ωs và tạo với trục thực (trùng với cuộn dây pha A) một góc ωst. Đặt tên cho trục thực là α và trục ảo là β, vector không gian (điện áp stator) có thể được mô tả thông qua hai giá trị thực (usα) và ảo (usβ) là hai thành phần của vector. Hệ tọa độ này là hệ tọa độ stator cố định, gọi tắt là hệ tọa độ αβ. Chöông 1: Vector không gian và Bộ nghịch lưu ba pha I.2
  6. Bài giảng Hệ Thống Điều Khiển Số (ĐCKĐB) T©B jβ usc r Cuộn dây pha B usβ us usb Cuộn dây pha A α 0 usa = usα Cuộn dây pha C r Hình 1.3: Vector không gian điện áp stator u s và các điện áp pha. Bằng cách tính hình chiếu các thành phần của vector không gian điện áp stator (u sα , u sβ ) lên trục pha A, B (trên hình 1.3), có thể xác định các thành phần theo phương pháp hình học: usa = usα (1.7a) usb = 1 3 − u sα + u sβ (1.7b) 2 2 suy ra usα = usa (1.8a) (1.8b) usβ = 1 (u sa + 2u sb ) 3 Theo phương trình (1.1), và dựa trên hình 1.3 thì chỉ cần xác định hai trong số ba điện áp r pha stator là có thể tính được vector u s . Hay từ phương trình (1.5) 2⎛ ⎡ 3 3 ⎤⎞ u s = ⎜ [u as − 0,5u bs − 0,5u cs ] + j⎢ u bs − u cs ⎥ ⎟ (1.9) 3⎜ ⎝ ⎣ 2 2 ⎦⎠ ⎟ có thể xác định ma trận chuyển đổi abc → αβ theo phương pháp đại số: ⎡ 1 1 ⎤ ⎡u ⎤ 1 − − ⎡u ⎤ 2 ⎢ 2 ⎥⎢ ⎥ s as sα 2 ⎢ s ⎥= ⎢ ⎥ ⎢u bs ⎥ (1.10) u sβ ⎥ 3 ⎢ ⎢ ⎦ ⎣ 3 3 ⎥⎢ ⎥ ⎢0 − u ⎣ 2 2 ⎥ ⎣ cs ⎦ ⎦ Ví dụ 1.2: Chứng minh ma trận chuyển đổi hệ toạ độ αβ → abc? Chöông 1: Vector không gian và Bộ nghịch lưu ba pha I.3
  7. Bài giảng Hệ Thống Điều Khiển Số (ĐCKĐB) T©B ⎡ ⎤ ⎢1 0 ⎥ ⎡u as ⎤ ⎢ ⎥ s ⎢ ⎥ ⎢ 1 3 ⎥ ⎡u sα ⎤ ⎢u bs ⎥ = ⎢− ⎢ ⎥ (1.11) ⎢u ⎥ ⎢ 2 2 ⎥ ⎢u sβ ⎥ ⎥⎣ s ⎦ ⎣ cs ⎦ ⎢ 1 3 ⎥ ⎢− 2 ⎣ − 2 ⎥ ⎦ Ví dụ 1.3: Chứng minh: Bằng cách tương tự như đối với vector không gian điện áp stator, các vector không gian dòng điện stator, dòng điện rotor, từ thông stator và từ thông rotor đều có thể được biểu diễn trong hệ tọa độ stator cố định (hệ tọa độ αβ) như sau: r u s = usα + j usβ (1.12a) r is = isα + j isβ (1.12b) r ir = irα + j irβ (1.12c) r (1.12d) ψ s = ψ sα + jψ sβ r (1.12e) ψ r = ψ rα + jψ rβ II. Bộ nghịch lưu ba pha II.1. Bộ nghịch lưu ba pha Chöông 1: Vector không gian và Bộ nghịch lưu ba pha I.4
  8. Bài giảng Hệ Thống Điều Khiển Số (ĐCKĐB) T©B R S1 S3 S5 Udc A motor B C N S7 S2 S4 S6 n n Hình 1.4: Sơ đồ bộ nghịch lưu ba pha cân bằng gồm 6 khoá S1→S6. Ví dụ 1.4: Chứng minh các phương trình tính điện áp pha? 1 a) U Nn = (U An + U Bn + U Cn ) 3 2 1 1 b) U AN = U An − U Bn − U Cn 3 3 3 Phương pháp tính mạch điện: Ví dụ 1.5: Tính điện áp các pha ở trạng thái S1, S3, S6 ON và S2, S4, S5 OFF? A B UAN UBN Udc N UCN n C Hình 1.5: Trạng thái các khoá S1, S3, S6 ON, và S2, S4, S5 OFF (trạng thái 110). II.2. Vector không gian điện áp Đơn vị (Udc) Va Vb Vc usa usb usc uab ubc uca U Deg us k S1 S3 S5 UAN UBN UCN UAB UBC UCA usα usβ 0 0 0 0 0 0 0 0 0 0 U0 U000 1 1 0 0 2/3 -1/3 -1/3 1 0 -1 U1 0o 2 1 1 0 1/3 1/3 -2/3 0 1 -1 U2 60 o 3 0 1 0 -1/3 2/3 -1/3 -1 1 0 U3 120 o 4 0 1 1 -2/3 1/3 1/3 -1 0 1 U4 180 o 5 0 0 1 -1/3 -1/3 2/3 0 -1 1 U5 240 o 6 1 0 1 1/3 -2/3 1/3 1 -1 0 U6 300 o 7 1 1 1 0 0 0 0 0 0 U7 U111 Bảng 1.1: Các điện áp thành phần tương ứng với 8 trạng thái của bộ nghịch lưu. Ví dụ 1.6: Tính các điện áp thành phần usα và usβ tương ứng với 8 trạng thái trong bảng 1.1? Chöông 1: Vector không gian và Bộ nghịch lưu ba pha I.5
  9. Bài giảng Hệ Thống Điều Khiển Số (ĐCKĐB) T©B Điều chế vector không gian điện áp sử dụng bộ nghịch lưu ba pha Ví dụ 1.7: Xét bộ nghịch lưu ở trạng thái 110: Khi đó các điện áp pha usa=1/3Udc, usb= 1/3Udc, usc=-2/3Udc. Phương pháp đại số: theo phương trình (1.4): r 2 3 [ 0 ] 0 2 ⎡1 3 ⎣3 1 3 0 2 0 ⎤ u phase _ 1 = u sa ( t ) + u sb ( t )e j120 + u sc ( t )e j240 = ⎢ U dc + U dc e j120 − U dc e j240 ⎥ 3 ⎦ r ⇒ u phase _ 1 = 2 U dc 3 3 [( 0 0 ) 0 2 ] 0 2 0 0 2 0 1 + e j120 + e j240 − 3e j240 = − U dc e j240 = U dc e j240 e − j180 = U dc e j60 , 3 3 3 Hay r 2 [ ] 2 ⎡1 1 2 ⎤ u phase _ 1 = u sa ( t ) + a.u sb ( t ) + a 2 .u sc ( t ) = ⎢ U dc + a.U dc − a 2 .U dc ⎥ 3 3 ⎣3 3 3 ⎦ với a = e j120 , (1 + a + a 2 ) = 0 0 ⇒ r u phase _ 1 = 2 U dc 3 3 [ ] (1 + a + a 2 ) − 3a 2 = − 2 U dca 2 = − 2 U dce j2400 = 2 U dce j600 3 3 3 Phương pháp hình học: có hình vẽ r r r u sa + u sb + u sc B r r u sc us r U2(100) u sb Udc r u sa A C r Hình 1.6: Vector không gian điện áp stator u s ứng với trạng thái (110). r Ở trạng thái (110), vector không gian điện áp stator pha u phase _ 1 có độ lớn bằng 2/3Udc và có góc pha là 60o. r Ví dụ 1.8: Tìm (độ lớn và góc của) vector không gian điện áp stator u s ( t ) ứng với trạng thái (101)? (Giải theo phương pháp đại số như trên hay theo phương pháp hình học) Chöông 1: Vector không gian và Bộ nghịch lưu ba pha I.6
  10. Bài giảng Hệ Thống Điều Khiển Số (ĐCKĐB) T©B Xét tương tự cho các trang thái còn lại, rút ra được công thức tổng quát π 2 j( k −1) U k = U dc e 3 với k = 1, 2, 3, 4, 5, 6. 3 U3 (010) U2 (110) CCW U0 (000) U4 (011) U1 (100) U7 (111) CW U5 (001) U6 (101) Hình 1.7: 8 vector không gian điện áp stator tương ứng với 8 trạng thái. π 2 j( k −1) U k = U dc e 3 k = 1, 2, 3, 4, 5, 6. U0 và U7 là vector 0. 3 Các trường hợp xét ở trên là vector không gian điện áp pha stator. Up3 Up2 b Up0 Up1 a Up4 Trục usa Up7 c Up5 Up6 Hình 1.8: Các vector không gian điện áp pha stator. π 2 j( k −1) U phase _ k =U dc e 3 k = 1, 2, 3, 4, 5, 6 3 Bằng cách điều khiển chuyển đổi trạng thái đóng cắt các khóa của bộ nghịch lưu dễ dàng điều khiển vector không gian điện áp “quay” thuận nghịch, nhanh chậm. Khi đó dạng điện áp ngõ ra bộ nghịch lưu có dạng 6 bước (six step). Chöông 1: Vector không gian và Bộ nghịch lưu ba pha I.7
  11. Bài giảng Hệ Thống Điều Khiển Số (ĐCKĐB) T©B Hình 1.9: Các điện áp thành phần tương ứng với 6 trạng thái. 2 0 Ví dụ 1.9: Chứng minh u phase _ 0 = U dc e j0 3 Xét bộ nghịch lưu ở trạng thái 100: Khi đó các điện áp pha usa=2/3Udc, usb= –1/3Udc, usc=-1/3Udc. r 2 r r r Phương pháp đại số: theo phương trình (1.3): u s ( t ) = [u sa ( t ) + u sb ( t ) + u sc ( t )] 3 hay phương trình (1.4): r 2 3 [ 0 ] 0 2 ⎡2 3 ⎣3 1 3 0 1 0 ⎤ u phase _ 0 = u sa ( t ) + u sb ( t )e j120 + u sc ( t )e j240 = ⎢ U dc − U dc e j120 − U dc e j240 ⎥ 3 ⎦ ⇒ r u phase _ 0 = 2 U dc 3 3 [ ( 0 0 2 )] 2 0 3 − 1 + e j120 + e j240 = U dc = U dc e j0 , 3 3 Hay r 2 [ ] 2 ⎡2 1 1 ⎤ u phase _ 0 = u sa ( t ) + a.u sb ( t ) + a 2 .u sc ( t ) = ⎢ U dc − a.U dc − a 2 .U dc ⎥ 3 3 ⎣3 3 3 ⎦ với a = e j120 , (1 + a + a 2 ) = 0 0 ⇒ r u phase _ 0 = 2 U dc 3 3 [ ] 3 − (1 + a + a 2 ) = U dc = U dc e j0 2 3 2 3 0 Phương pháp hình học: có hình vẽ Chöông 1: Vector không gian và Bộ nghịch lưu ba pha I.8
  12. Bài giảng Hệ Thống Điều Khiển Số (ĐCKĐB) T©B B 2/3Udc r u sc r r r r u sa u sa + u sb + u sc A r us r U1(100) u sb C r Hình 1.10: Vector không gian điện áp stator u s ứng với trạng thái (100). r Ở trạng thái (100), vector không gian điện áp pha stator u phase _ 0 có độ lớn bằng 2/3Udc và có góc pha trùng với trục pha A. Trong một số trường hợp, cần xét vector không gian điện áp dây của stator. r 2 r r r u line = [u ab ( t ) + u bc ( t ) + u ca ( t )] 3 hay r u line 2 [ 0 = u ab ( t ) + u bc ( t )e j120 + u ca ( t )e j240 3 0 ] hay r u line 2 [ ] = u ab ( t ) + a.u ba ( t ) + a 2 .u ca ( t ) 3 với a = e j120 0 Ví dụ 1.10: Xét bộ nghịch lưu ở trạng thái 100: Khi đó các điện áp pha uab=Udc, ubc= 0, uca= -Udc. Phương pháp đại số: theo phương trình trên: r 2 [ 0 ] [ 0 2 u line _ 1 = u ab ( t ) + u bc ( t )e j120 + u ca ( t )e j240 = U dc − U dc e j240 3 3 0 ] r 2 [ ] 2 ( 2 ) ⎡ ⎛1 u line _ 1 = U dc − U dc e j240 = U dc 1 + e j60 = U dc ⎢1 + ⎜ + j 3 0 3 0 3 ⎜2 3 ⎞⎤ ⎟⎥ 2 ⎟⎥ ⎢ ⎝ ⎣ ⎠⎦ r 2 ⎛3 3⎞ 2 ⎛ 3 1⎞ 2 u line _ 1 = U dc ⎜ + j ⎟= 3U dc ⎜ +j ⎟= 0 ⎜2 3U dc e j30 3 ⎝ 2 ⎟ 3 ⎠ ⎜ 2 ⎝ 2⎟ 3 ⎠ Phương pháp hình học: có hình vẽ: Chöông 1: Vector không gian và Bộ nghịch lưu ba pha I.9
  13. Bài giảng Hệ Thống Điều Khiển Số (ĐCKĐB) T©B BC 2/3Udc r u bc Uline_1 r AB u ab CA r Hình 1.11: Vector không gian điện áp dây stator u line _ 1 ứng với trạng thái (100). r Ở trạng thái (100), vector không gian điện áp dây stator u line _ 1 có độ lớn bằng 2 3U dc và có góc pha là 30o. 3 r Ví dụ 1.11: Tìm (độ lớn và góc của) vector không gian điện áp stator u line ứng với r trạng thái (110), u line _ 2 ? (Giải theo phương pháp đại số và phương pháp hình học) Xét tương tự cho các trạng thái còn lại, rút ra được công thức tổng quát π 2 j( 2 k −1) U line _ k = 3U dc e 6 k = 1, 2, 3, 4, 5, 6 3 Ud2 Ud3 Ud1 Ud0 Ud7 Trục uab Ud4 Ud6 Ud5 Hình 1.12: Các vector không gian điện áp dây stator. Ví dụ 1.12: Chứng minh các vector điện áp có giá trị như sau: 5π 5π 2 j 2 j a/ v 6 pha = VDC e 3 b/ v 3 day = 3VDC e 6 3 3 Chöông 1: Vector không gian và Bộ nghịch lưu ba pha I.10
  14. Bài giảng Hệ Thống Điều Khiển Số (ĐCKĐB) T©B Điều chế biên độ và góc vector không gian điện áp dùng bộ nghịch lưu ba pha U3 (010) U2 (110) CCW T2 us U0 (000) U4 (011) U1 (100) T1 U7 (111) CW U5 (001) U6 (101) Hình 1.13: Điều chế biên độ và góc vector không gian điện áp. T1 T2 T us = U1 + U 2 + 0 U 0 (U 7 ) hay u s = a.U 1 + b.U 2 + c.U 0 ( U 7 ) TPWM TPWM TPWM π sin( − α) ⎛ 2 U dc ⎞ 3 2 us 3 2 u s sin α a= 3 b= c = (a + b )⎜ ⎟ ⎜ 3 u − 1⎟ 2 Udc 2π 2 Udc 2π ⎝ ⎠ sin sin s 3 3 ⎛ 2 U dc ⎞ Trong đó: a + b + c = (a + b )⎜ ⎜ 3u ⎟ ≈1 ⎟ ⎝ s ⎠ ⇒ T1 = a.TPWM T2 = b.TPWM T0 = c.TPWM với chu kỳ điều rộng xung: TPWM ≈ (T1 + T2) + T0 hay T0 ≈ TPWM – (T1 + T2) với TPWM ≈ const Tổng quát: us =a.Ux + b.Ux+60 + c.{U0, U7} Trong đó, α là góc giữa vector Ux và vector điện áp us. Bằng cách điều khiển chuyển đổi trạng thái đóng cắt các khóa của bộ nghịch lưu thông qua T1, T2 và T0, dễ dàng điều khiển độ lớn và tốc độ quay của vector không gian điện áp. Khi đó dạng điện áp ngõ ra bộ nghịch lưu có dạng PWM sin. Chöông 1: Vector không gian và Bộ nghịch lưu ba pha I.11
  15. Bài giảng Hệ Thống Điều Khiển Số (ĐCKĐB) T©B Hình 1.14: Điều chế biên độ và tần số điện áp. Hình 1.15: Dạng điện áp và dòng điện PWM sin. π ⎛2 ⎞ ⎛2 j ⎞ Ví dụ 1.13: Chứng minh u s e jα = T1 ⎜ U dc ⎟ + T2 ⎜ U dc e 6 ⎜3 ⎟ ⎟ ⎝3 ⎠ ⎝ ⎠ 4π 2 j Bài tập 1.1. Chứng minh: u phase _ 5 = U dc e 3 3 7π 2 j Bài tập 1.2. Chứng minh: u line _ 4 = 3U dc e 6 3 Bài tập 1.3. Điện áp ba pha 380V, 50Hz. Tại thời điểm t = 6ms. Tính usa, usb, usc, usα và usβ, |us|? Biết góc pha ban đầu của pha A là θo = 0. Bài tập 1.4. Điện áp ba pha cấp cho bộ nghịch lưu là 380V, 50Hz. Tính điện áp pha lớn nhất mà bộ nghịch lưu có thể cung cấp cho động cơ nối Y. Bài tập 1.5. Điện áp một pha cấp cho bộ nghịch lưu là 220V, 50Hz. Tính điện áp dây lớn nhất mà bộ nghịch lưu có thể cung cấp cho động cơ. Bài tập 1.6. Điện áp ba pha cấp cho bộ nghịch lưu là 380V, 50Hz. Điện áp pha bộ nghịch lưu cấp cho đồng cơ là 150V và 50Hz. Tại thời điểm t = 6ms. Tính T1, T2 và T0? Biết góc pha ban đầu θo = 0 và tần số điều rộng xung là 20KHz. Chöông 1: Vector không gian và Bộ nghịch lưu ba pha I.12
  16. Bài giảng Hệ Thống Điều Khiển Số (ĐCKĐB) T©B Bài tập 1.7. Lập bảng và vẽ giản đồ vector các điện áp dây thành phần tương ứng với 8 trạng thái của bộ nghịch lưu. Bài tập 1.8. Nêu các chức năng của khoá S7 và các diode ngược (mắc song song với các khoá đóng cắt S1 –S6) trong bộ nghịch lưu? Bài tập 1.9. Cho Udc = 309V, trạng thái các khoá như sau: S2, S3, S6: ON; và S1, S4, S5: OFF. Tính các điện áp usa, usb, usc, UAB, UBC? Bài tập 1.10. Khi tăng tần số điều rộng xung (PWM) của bộ nghịch lưu, đánh giá tác động của sóng hài bậc cao lên dòng điện động cơ. Phương pháp điều khiển nào có tần số PWM luôn thay đổi? Ví dụ 1.1: Chứng minh? r a) u s ( t ) = u s e jωs t = u s ∠(ωs t ) = u s [cos(ωs t ) + jsin(ωs t )] (1.6) 2⎛ ⎡ 3 ⎜ [u as − 0,5u bs − 0,5u cs ] + 3 ⎤⎞ b) us = j⎢ u bs − u cs ⎥ ⎟ (1.5) 3⎜ ⎝ ⎣ 2 2 ⎦⎠ ⎟ Ví dụ 1.2: Chứng minh ma trận chuyển đổi hệ toạ độ αβ → abc? ⎡ ⎤ ⎢1 0 ⎥ ⎡u as ⎤ ⎢ ⎥ s ⎢ ⎥ ⎢ 1 3 ⎥ ⎡u sα ⎤ ⎢u bs ⎥ = ⎢− ⎢ ⎥ (1.11) ⎢u ⎥ ⎢ 2 2 ⎥ ⎢u sβ ⎥ ⎥⎣ s ⎦ ⎣ cs ⎦ ⎢ 1 3 ⎥ ⎢− 2 ⎣ − 2 ⎥ ⎦ Ví dụ 1.3: Chứng minh: Ví dụ 1.4: Chứng minh các phương trình tính điện áp pha? 1 a) U Nn = (U An + U Bn + U Cn ) 3 2 1 1 b) U AN = U An − U Bn − U Cn 3 3 3 Ví dụ 1.5: Tính điện áp các pha ở trạng thái S1, S3, S6 ON và S2, S4, S5 OFF? Ví dụ 1.6: Tính các điện áp thành phần usα và usβ tương ứng với 8 trạng thái trong bảng 1.1? r 2 0 Ví dụ 1.7: Bộ nghịch lưu ở trạng thái 110, chứng minh u phase _ 1 = U dc e j60 3 r Ví dụ 1.8: Tìm (độ lớn và góc của) vector không gian điện áp stator u s ( t ) ứng với trạng thái (101)? (Giải theo phương pháp đại số như trên hay theo phương pháp hình học) 2 0 Ví dụ 1.9: Chứng minh u phase _ 0 = U dc e j0 3 2 r 0 Ví dụ 1.10: Bộ nghịch lưu ở trạng thái 100, chứng minh u line _ 1 = 3U dc e j30 3 r Ví dụ 1.11: Tìm (độ lớn và góc của) vector không gian điện áp stator u line ứng với r trạng thái (110), u line _ 2 ? (Giải theo phương pháp đại số và phương pháp hình học) Chöông 1: Vector không gian và Bộ nghịch lưu ba pha I.13
  17. Bài giảng Hệ Thống Điều Khiển Số (ĐCKĐB) T©B Ví dụ 1.12: Chứng minh các vector điện áp có giá trị như sau: 5π 5π 2 j 2 j a/ v 6 pha = VDC e 3 b/ v 3 day = 3VDC e 6 3 3 π ⎛2 ⎞ ⎛2 j ⎞ Ví dụ 1.13: Chứng minh u s e jα = T1 ⎜ U dc ⎟ + T2 ⎜ U dc e 6 ⎜3 ⎟ ⎟ ⎝3 ⎠ ⎝ ⎠ Chöông 1: Vector không gian và Bộ nghịch lưu ba pha I.14
  18. Bài giảng Hệ Thống Điều Khiển Số (ĐCKĐB) T©B Chương 2: HỆ QUI CHIẾU QUAY I. Hệ qui chiếu quay Trong mặt phẳng của hệ tọa độ αβ, xét thêm một hệ tọa độ thứ 2 có trục hoành d và trục tung q, hệ tọa độ thứ 2 này có chung điểm gốc và nằm lệch đi một dθ góc θs so với hệ tọa độ stator (hệ tọa độ αβ). Trong đó, ωa = a quay tròn quanh dt gốc tọa độ chung, góc θa = ωat + ωa0. Khi đó sẽ tồn tại hai tọa độ cho một vector trong không gian tương ứng với hai hệ tọa độ này. Hình vẽ sau sẽ mô tả mối liên hệ của hai tọa độ này. jβ ωs jq r d fsβ fs dθ a ωa = dt fsd fsq θa α 0 fsα r Hình 2.1: Chuyển hệ toạ độ cho vector không gian u s từ hệ tọa độ αβ sang hệ tọa độ dq và ngược lại. Từ hình 1.5 dễ dàng rút ra các công thức về mối liên hệ của hai tọa độ của một vector ứng với hai hệ tọa độ αβ và dq. Hay thực hiện biến đổi đại số: (1.10a) fsα = fsdcosθa - fsqsinθa (1.10b) fsβ = fsdsinθa + fsqcosθa r r r Theo pt (1.9a) thì: f sαβ = fsα + jfsβ (1.11) r r r và tương tự thì: f sdq = fsd + jfsq (1.12) r r Ví dụ 2.1: Chứng minh fsαβ = f sdq e jθ a Khi thay hệ pt r (1.10) vào pt (1.11) sẽ được: fsαβ = (fsd cosθ a − f sqsinθ a ) + j(f sdsinθ a + f sq cosθ a ) r = (fsd + jf sq )(cosθ a + jsin θ a ) = fsdq e jθ a (1.13) r αβ r dq jθ v r αβ − jθ Hay fs = fs e a ⇔ f sdq = fs e a (1.14) Chöông 2: Hệ qui chiếu quay II.1
  19. Bài giảng Hệ Thống Điều Khiển Số (ĐCKĐB) T©B Ví dụ 2.2: Tính fsd và fsq theo fsα, fsβ và θa. Thay pt (1.11) vào pt (1.14), thu được phương trình: (1.15a) fsd = fsαcosθa + fsβsinθa (1.15b) fsq = - fsαsinθa + fsβcosθa ωa d Cuoän daây ωs jq pha B fs fsd θa fsq 0 Cuoän daây pha A Cuoän daây pha C Hình 2.2: Hệ tọa đọ quay Chöông 2: Hệ qui chiếu quay II.2
  20. Bài giảng Hệ Thống Điều Khiển Số (ĐCKĐB) T©B XÉT KHI ωa = 0 II. Biễu diễn các vector không gian trên hệ tọa độ từ thông rotor Mục này trình bày cách biểu diễn các vector không gian của động cơ không đồng bộ (ĐCKĐB) ba pha trên hệ tọa độ từ thông rotor. Giả thiết một ĐCKĐB ba dθ pha đang quay với tốc độ góc ω = (tốc độ quay của rotor so với stator đứng dt yên), với θ là góc hợp bởi trục rotor với trục chuẩn stator (qui định trục cuộn dây pha A, chính là trục α trong hệ tọa độ αβ). Chöông 2: Hệ qui chiếu quay II.3

CÓ THỂ BẠN MUỐN DOWNLOAD

AMBIENT
Đồng bộ tài khoản