Bài tập đồ thị hàm số
lượt xem 228
download
tài liệu tham khảo cho sinh viên đang ôn thi đại học, cao đẳng chuyên môn toán học - Kỹ thuật giải một số bài toán tiếp tuyến của đồ thị hàm số, Tài liệu tham khảo Bài tập đồ thị hàm số,Giải bài toán khảo sát và vẽ đồ thị hàm số cần tiến hành các bước sau 1) Tìm tập xác định, xét tính chẵn, lẻ, tuần hoàn. Nếu hàm số chẵn hay lẻ chỉ cần khảo sát x ≥ 0, với x ...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài tập đồ thị hàm số
- Bài tập đồ thị hàm số
- ________________________________________________________________________________ C©u I. 1) Kh¶o s¸t sûå biÕn thiªn vµ vÏ ®å thÞ (C) cña hµm sè x2 - x + 1 y = . x - 1 2) T×m trªn trôc Oy c¸c ®iÓm tõ ®ã cã thÓ kÎ ®ûîc Ýt nhÊt mét tiÕp tuyÕn ®Õn ®å thÞ (C). 3) X¸c ®Þnh a ®Ó ®å thÞ (C) tiÕp xóc víi parabol y = x2 + a. C©u II. x + y + xy = m Cho hÖ phû¬ng tr×nh 2 x + y = m 2 1) Gi¶i hÖ víi m = 5. 2) Víi gi¸ trÞ nµo cña m th× hÖ cã nghiÖm? C©u III. 1) Cho bÊt phû¬ng tr×nh x2 + 2x(cosy + siny) + 1 ≥ 0. T×m x ®Ó bÊt phû¬ng tr×nh ® îc nghiÖm ®óng víi mäi y. 2) Gi¶i phû¬ng tr×nh lûîng gi¸c sin 2 x(tgx + 1) = 3sinx(cosx - sinx) + 3 C©u IVa. Trong mÆt ph¼ng víi hÖ trôc täa ®é §Òc¸c vu«ng gãc, cho elip x2 y2 E) : + = 1, 9 4
- ________________________________________________________________________________ vµ hai ®ûêng th¼ng (D) : ax - by = 0, (D’) : bx + ay = 0, víi a2 + b2 > 0. 1) X¸c ®Þnh c¸c giao ®iÓm M, N cña (D) víi (E), vµ c¸c giao ®iÓm P, Q cña (D’) víi (E). 2) TÝnh theo a, b diÖn tÝch tûá gi¸c MPNQ. 3) T×m ®iÒu kiÖn ®èi víi a, b, ®Ó diÖn tÝch Êy lín nhÊt. 4) T×m ®iÒu kiÖn ®èi víi a, b, ®Ó diÖn tÝch Êy nhá nhÊt. C©u IVb. Trong mÆt ph¼ng (P) cho tam gi¸c ABC víi c¶ ba gãc nhän. Trªn ®ûêng th¼ng (d) vu«ng gãc víi mÆt ph¼ng (P) t¹i A, lÊy mét ®iÓm M. Dûång BN⊥CM , BH⊥CM . §ûêng th¼ng KH c¾t (d) t¹i N. 1) Chûáng minh : BN⊥CM 2) Chûáng minh : BM⊥CN 3) H·y chØ c¸ch dûång ®iÓm M trªn (d) sao cho ®o¹n MN ng¾n nhÊt.
- ___________________________________________________________ C©u 1 1) B¹n ®äc tù gi¶i nhÐ! 2) LÊy A(0, b) lµ mét ®iÓm trªn Oy. §−êng th¼ng qua A, víi hÖ sè gãc k cã ph−¬ng tr×nh : y = kx + b. x2 − x + 1 1 1 Ta cã y = =x+ ; y' = 1 − x −1 x −1 (x − 1)2 Hoµnh ®é tiÕp ®iÓm cña ®−êng th¼ng y = kx + b víi ®å thÞ (C) lµ nghiÖm cña hÖ 1 x + x − 1 = kx + b 1 1 − =k (x − 1)2 1 1 ⇒ x+ = 1 − x+ b x − 1 (x − 1)2 ⇒ bx2 − 2(1 + b)x + (1 + b) = 0 (1) 1 b = 0 : (1) trë thµnh −2x + 1 = 0 ⇔ x = 2 b ≠ 0 : (1) cã nghiÖm khi ∆ ' = (1 + b)2 − b(1 + b) ≥ 0 ⇔ b ≥ −1 (b ≠ 0) Thµnh thö c¸c ®iÓm trªn Oy tõ ®ã cã thÓ ®−îc Ýt nhÊt mét tiÕp tuyÕn ®Õn ®å thÞ (C) lµ c¸c ®iÓm cã tung ®é b ≥ −1. 3) Hoµnh ®é tiÕp ®iÓm cña parabol y = x2 + a víi ®å thÞ (C) lµ nghiÖm cña hÖ : 1 2 x + x − 1 = x + a o 1 1 − = 2x (x − 1)2 Tõ ph−¬ng tr×nh thø hai, suy ra : x(2x2 − 5x + 4) = 0 ⇒ x = 0. Thay vµo ph−¬ng tr×nh ®Çu th× ®−îc a = - 1. C©u II. §Æt S = x + y, P = xy, ta ®i ®Õn hÖ : S + P = m 2 S − 2P = m 1) Víi m = 5 ta ®−îc : S + P = 5 2 ⇒ P=5−S ⇒ S2 + 2S − 15 = 0 S − 2P = 5 ⇒ S = −5, S = 3. Víi S = −5, ta cã P = 10, lo¹i v× ®iÒu kiÖn S2 ≥ 4P kh«ng ®−îc nghiÖm ®óng. x = 2, x = 1 Víi S = 3, ta cã P = 2 vµ ®−îc y = 1, y = 2. 2) Trong tr−êng hîp tæng qu¸t, P = m - S ⇒ S2 + 2S − 3m = 0 .
- ___________________________________________________________ §Ó ph−¬ng tr×nh cã nghiÖm, cÇn ph¶i cã : 1 ∆ ' = 1 + 3m ≥ 0 ⇒ m ≥ − . 3 Khi ®ã gäi S1 vµ S2 lµ c¸c nghiÖm : S1 = −1 − 1 + 3m , S2 = −1 + 1 + 3m . a) Víi S = S1 ⇒ P = m − S1 , ®iÒu kiÖn S2 ≥ 4P trë thµnh (1 + 1 + 3m)2 ≥ 4(m + 1 + 1 + 3m) ⇒ −(m + 2) ≥ 2 1 + 3m , 1 kh«ng ®−îc nghiÖm v× m ≥ − ⇒ m + 2 > 0. 3 b) Víi S = S2 ⇒ P = m − S2 , ®iÒu kiÖn S2 ≥ 4P trë thµnh : (−1 + 1 + 3m)2 ≥ 4(m + 1 − 1 + 3m) ⇒ 2 1 + 3m ≥ m + 2 . V× m + 2 > 0, cã thÓ b×nh ph−¬ng hai vÕ cña bÊt ph−¬ng tr×nh nµy vµ ®i ®Õn 0 ≥ m2 − 8m ⇒ 0 ≤ m ≤ 8 . 1 Cïng víi m ≥ − suy ra ®¸p sè : 0 ≤ m ≤ 8. 3 C©u III. 1) HiÓn nhiªn víi x = 0 bÊt ph−¬ng tr×nh ®−îc nghiÖm víi mäi y. XÐt x > 0 ⇒ 1 + x2 cosy + sin y ≥ − . 2x Hµm f (y) = cosy + siny cã gi¸ trÞ lín nhÊt b»ng 2 , gi¸ trÞ nhá nhÊt b»ng − 2 , vËy ph¶i cã : 2 1+ x − 2≥− ⇒ x2 − 2 2x + 1 ≥ 0 ⇒ 2x ⇒ 0 < x ≤ 2 −1, x ≥ 2 +1. 2 1+ x XÐt x < 0 ⇒ cosy + sin y ≤ − ⇒ 2x 1 + x2 ⇒ 2≤− ⇒ x2 + 2 2x + 1 ≥ 0 ⇒ x ≤ − 2 − 1 , 2x − 2 +1≤ x < 0 . Tãm l¹i c¸c gi¸ trÞ ph¶i t×m lµ : x ≤ − 2 − 1 , − 2 + 1 ≤ x ≤ 2 − 1, 2 +1≤ x hay : | x | ≥ 2 +1 , | x | ≤ 2 −1 π 2) §iÒu kiÖn : x ≠ + kπ ( k ∈ Z). Chia hai vÕ cho cos2 x ta ®−îc ph−¬ng tr×nh t−¬ng ®−¬ng : 2 tg2 x(tgx + 1) = 3tgx(1 − tgx) + 3(1 + tg2 x) ⇔ tg2 x(tgx + 1) − 3(tgx + 1) = 0 ⇔ (tgx + 1)(tg2 x − 3) = 0 π tgx = −1 x = − 4 + kπ ⇔ ⇔ ( k ∈ Z) tgx = ± 3 x = ± π + kπ 3
- ________________________________________________________________________________ C©u IVa. CÇn ®Ó ý r»ng c¸c ®ûêng th¼ng (D), (D’) vu«ng gãc víi nhau vµ chóng cã phû¬ng tr×nh tham sè x = bt x = at' (D) : (D’) : y = at y = −bt' 1) Thay biÓu thøc cña (D) vµo phû¬ng tr×nh cña (E), ta ®ûîc c¸c gi¸ trÞ cña tham sè t øng víi c¸c giao ®iÓm M, N. Tõ ®ã suy ra ch¼ng h¹n (do cã sù trao ®æi vai trß cña M, N): 6b 6a 6b 6a M , , N - ,- . 2 9a 2 + 4b 2 9a 2 + 4b 2 9a 2 + 4b 2 2 9a + 4b Tû¬ng tù: 6a 6b 6a 6b P ,- , Q - , . 2 4a 2 + 9b 2 4a 2 + 9b 2 4a 2 + 9b 2 2 4a + 9b 2) Tø gi¸c MPNQ lµ h×nh thoi, víi diÖn tÝch 72(a 2 + b 2 ) S = 2OM.OP = . (1) (9a 2 + 4b 2 )(4a 2 + 9b 2 ) 3) §Ó ý r»ng c¸c phû¬ng tr×nh cña (D) vµ (D’) cã d¹ng thuÇn nhÊt (hay ®¼ng cÊp) ®èi víi a, b, tøc lµ thay cho a vµ b, ta viÕt ka vµ kb víi k ¹ 0. Do vËy, cã thÓ coi r»ng a 2 + b 2 = 1. Khi ®ã (1) trë thµnh 72 72 72 S= = ≤ = 12, 2 (4 + 5a )(4 + 5b ) 2 36 + 25a b 2 2 6 dÊu = chØ cã thÓ x¶y ra khi ab = 0, tøc lµ hoÆc a = 0 hoÆc b = 0. (Khi ®ã cÆp ®ûêng th¼ng (D) vµ (D’) trïng víi cÆp hÖ trôc täa ®é). 4) VÉn víi gi¶ thiÕt a 2 + b 2 = 1, theo trªn ta cã 72 S= 36 + 25a 2 b 2
- ________________________________________________________________________________ 1 72 144 V× 2|ab| £ a 2 + b 2 = 1 suy ra a 2 b 2 £ , dÊu = chØ x¶y ra khi |a| = |b|, vËy S ³ = , 4 25 13 36 + 4 144 suy ra min S = , x¶y ra khi |a| = |b|, tøc lµ cÆp ®ûêng th¼ng (D), (D’) lµ cÆp c¸c ph©n gi¸c y ⊄ x = 0 cña hÖ 13 trôc täa ®é Oxy. C©u IVb. (H×nh bªn) 1) BK ⊥ AC, BK ⊥ AM ÞBK⊥(ACM)ÞBK⊥CM. Cïng víi BH ⊥ CM, suy ra (BKH) ⊥ CM Þ BN ⊥ CM. 2) Do (BKH) ⊥ CM Þ KH ⊥ CM. VËy K lµ trùc t©m tam gi¸c CMN, vµ ta ®ûîc MK ⊥ CN. Cïng víi BK ⊥ CN Þ (BMK)⊥ CN Þ BM ⊥ CN. 3) V× K lµ trùc t©m tam gi¸c CMN, nªn AM.AN = AK.AC VËy khi M di chuyÓn trªn d, tÝch AM.AN kh«ng ®æi Þ MN = = AM + AN nhá nhÊt khi AM = AN. Khi ®ã AM 2 = AK.AC, AM lµ ®ûêng cao trong tam gi¸c vu«ng CMK’, c¹nh huyÒn CK’, K’ lµ ®iÓm ®èi xøng cña K qua A.
- _______________________________________________________________ C©u I. 1) Gi¶ sö phû¬ng tr×nh x2 + ax + b = 0 cã nghiÖm x1 vµ x2, phû¬ng tr×nh x2 + cx + d = 0 cã nghiÖm x3 vµ x4. Chûáng tá r»ng 2(x1 + x3)(x1 + x4)(x2 + x3)(x2 + x4) = = 2(b - d)2 - (a2 - c2)(b - d) + (a + c)2(b + d). 2) a, b, c lµ 3 sè tïy ý thuéc ®o¹n [0 ; 1]. Chûáng minh : a b c + + + (1 - a)(1 - b)(1 - c) ≤ 1. b + c +1 a + c +1 a + b +1 C©u II. 1) Gi¶i phû¬ng tr×nh sin3x + cos3x = 2 - sin4x. 2) k, l, m lµ ®é dµi c¸c trung tuyÕn cña tam gi¸c ABC, R lµ b¸n kÝnh ®ûêng trßn ngo¹i tiÕp tam gi¸c ®ã. Chøng minh r»ng 9R k+l+m≤ . 2 C©u III. Trªn mÆt ph¼ng täa ®é cho ®iÓm A(3, 0) vµ parabol (P) cã phû¬ng tr×nh y = x2. 1) M lµ mét ®iÓm thuéc parabol (P), cã hoµnh ®é xM = a. TÝnh ®é dµi ®o¹n AM, x¸c ®Þnh a ®Ó AM ng¾n nhÊt. 2) Chûáng tá r»ng nÕu ®o¹n AM ng¾n nhÊt, th× AM vu«ng gãc víi tiÕp tuyÕn t¹i M cña parabol (P). C©u IVa. Cho hai sè nguyªn dû¬ng p vµ q kh¸c nhau. 2π TÝnh tÝch ph©n I = ∫ cospx cosqx dx. 0
- _______________________________________________________________ C©u Va. Cho hai ®ûêng trßn (C1) x2 + y2 - 6x + 5 = 0, (C2) x2 + y2 - 12x - 6y + 44 = 0. X¸c ®Þnh phû¬ng tr×nh c¸c ®Ûêng th¼ng tiÕp xóc víi c¶ 2 ®ûêng trßn trªn. C©u IVb. H×nh chãp S.ABCD cã ®¸y ABCD lµ h×nh thoi víi c¸c ®ûêng chÐo AC = 4a, BD = 2a, chóng c¾t nhau t¹i O. §ûêng cao cña h×nh chãp lµ SO = h. MÆt ph¼ng qua A, vu«ng gãc víi SC, c¾t SB, SC, SD lÇn lûúåt t¹i B’, C’, D’. 1) X¸c ®Þnh h ®Ó B’C’D’ lµ tam gi¸c ®Òu. 2) TÝnh b¸n kÝnh r cña h×nh cÇu néi tiÕp h×nh chãp theo a vµ h. C©u Vb. Hai gãc nhän A, B cña tam gi¸c ABC tháa m·n ®iÒu kiÖn A+B tg2A + tg2B = 2tg2 . 2 Chûáng tá r»ng ABC lµ mét tam gi¸c c©n.
- ________________________________________________________________________________ C©u I. 1) §Æt A = (x 1 + x 3 )(x 1 + x 4 )(x 2 + x 3 )(x 2 + x 4 ) 2 Ta cã (x1 + x3)(x1 + x4) = x1 + x1 (x 3 + x 4 ) + x 3 x 4 = -(ax1 + b) - cx1 + d = (d - b) - (a +c)x1, (x 2 + x 3 )(x 2 + x 4 ) = (d - b) - (a + c)x 2 , do ®ã A = [(d - b) - (a + c)x 1 ][(d - b) - (a + c)x 2 ] = (d - b) 2 + (a + c)(b - d)(x 1 + x 2 ) + (a + c) 2 x 1 x 2 = = (b - d)2 - (a + c)(b - d)a + (a + c)2b. Vai trß hai phû¬ng tr×nh lµ nhû nhau trong biÓu thøc cña A, nªn ta còng cã: A = (b - d) 2 - (a + c)(b - d)a + (a + c) 2 b. Céng hai biÓu thøc nµy cña A th× suy ra kÕt qu¶. 2) Kh«ng gi¶m tæng qu¸t cã thÓ xem a £ b £ c khi ®ã theo b®t C«si ta cã a + b + 1 + 1 - a + 1 - b (a + b + 1)(1 - a)(1 - b) £ = 1 3 1 1 - c Suy ra (1 - a)(1 - b) £ Þ (1 - a)(1 - b)(1 - c) £ a + b + 1 a + b + 1 a b c Tõ ®ã + + + (1 - a)(1 - b)(1 - c) ≤ b + c +1 a + c +1 a + b +1 a b c 1 - c £ + + + = 1. a + b +1 a + b +1 a + b +1 a + b +1 C©u II. 1) Ta cã sin 3 x + cos 3 x £ sin 2 x + cos 2 x = 1, 2 - sin 4 x ³ 1. VËy dÊu = chØ cã thÓ x¶y ra khi ta cã ®ång thêi sin 3 x + cos 3 x = 1 π Û sinx = 1 Þ x = + 2kπ (k Î Z). 2 − sin x = 1 4 2 2) Gi¶ sö k, l, m lµ ®é dµi c¸c trung tuyÕn kÎ tõ c¸c ®Ønh A, B, C thÕ th×
- ________________________________________________________________________________ a2 2k2 + = b2 + c2 , 2 b2 3 2 2l + = a 2 + c2 , Þ k2 + l2 + m2 = (a2 + b2 + c2). 2 4 c2 2m + = a2 + b2 2 2 MÆt kh¸c a 2 + b 2 + c 2 = 4R 2 (sin 2 A + sin 2 B + sin 2 C), 4sin 2 A + 4sin 2 B + 4sin 2 C = 2(1 - cos2A) + 2(1 - cos2B) + 4(1 - cos 2 C) = = 8 + 4cosCcos(A - B) - 4cos 2 C = 8 + cos 2 (A - B) - [2cosC - cos(A - B)] 2 £ 9, k 2 + l2 + m2 9R 2 suy ra: ≤ . 3 4 2 k + l + m k 2 + l 2 + m 2 9R 2 9R Nh vËy: ≤ ≤ Þk+l+m£ . 3 3 4 2 C©u III. 1) V× M thuéc P, nªn M cã tung ®é a 2 , vËy AM = (x M - x A ) 2 + (y M - y A ) 2 = a 4 + (a - 3) 2 . 2 Hµm f(a) =a 4 + (a - 3) 2 cã ®¹o hµm f’(a) = 4a 3 + 2(a - 3) = 2(a - 1)(2a 2 + 2a + 3), suy ra khi a = 1, f(a) ®¹t gi¸ trÞ nhá nhÊt. VËy ®o¹n AM ng¾n nhÊt khi M ƒ M (1 , 1). 2) Víi M (1 , 1) ®ûêng th¼ng AM cã hÖ sè gãc y - yA 1 k= M = - . xM - xA 2 V× P cã phû¬ng tr×nh y = x 2 Þ y’ = 2x, nªn t¹i M tiÕp tuyÕn cña P cã hÖ sè gãc k’ = 2, suy ra tiÕp tuyÕn Êy vu«ng gãc víi ®ûêng th¼ng AM.
- _______________________________________________________ C©u IVa. XÐt hai tr−êng hîp sau : 2π a) p = q : I = ∫ cos2 pxdx o 1 2π 1 sin 2px 2π = ∫ 2 o (1 + cos2px)dx = x + 2 2p o =π 1 2π b) p ≠ q : I= 2 o ∫[cos(p + q)x + cos(p − q)x]dx 1 sin(p + q)x sin(p − q)x 2π = + =0 2 p+q p−q o C©u Va. Ph−¬ng tr×nh (C1 ) vµ (C2 ) lÇn l−ît ®−îc viÕt l¹i d−íi d¹ng : (C1 : (x − 3)2 + y2 = 22 , (C2 ) : (x − 6)2 + (y − 3)2 = 12 VËy (C1 ) cã t©m I1 (3, 0) , b¸n kÝnh R1 = 2 , (C2 ) cã t©m I 2 (6, 3) , b¸n kÝnh R2 = 1 . Ta t×m ®−êng th¼ng tiÕp xóc víi (C1 ) vµ (C2 ) d−íi d¹ng x = m. Tõ ®iÒu kiÖn tiÕp xóc ta cã hÖ : | 3 − m |= 2 ⇒ m = 5. | 6 − m |= 1 VËy ®−êng th¼ng ®óng x = 5 lµ ®−êng th¼ng tiÕp xóc víi (C1 ) vµ (C2 ) . Mäi ®−êng th¼ng tiÕp xóc víi (C1 ) vµ (C2 ) kh¸c víi ®−êng th¼ng ®øng ®Òu cã d¹ng ax − y + b = 0 Theo ®iÒu kiÖn tiÕp xóc, ta cã 3a + b =2 a2 + 1 (3a + b)2 = 4(a 2 + 1) ⇒ 6a − 3 + b | 3a + b |= 2 | 6a − 3 + b | =1 a2 + 1 (3a + b)2 = 4(a 2 + 1) ⇔ 3a + b = 2(6a − 3 + b) (3a + b)2 = 4(a 2 + 1) hoÆc 3a + b = −2(6a − 3 + b) 9 + 17 −33 − 9 17 a = , b= 8 8 9 − 17 −33 + 9 17 ⇔ a = , b= 8 8 a = 0, b = 2 VËy ph−¬ng tr×nh c¸c ®−êng th¼ng tiÕp xóc víi hai ®−êng trßn (C1 ) , (C2 ) trong tr−êng hîp nµy lµ :
- _______________________________________________________ 9 + 17 33 + 9 17 (d1 ) : y = x− , 8 8 9 − 17 33 − 9 17 (d2 ) : y = x− 8 8 (d3 ) : y = 2 . Tãm l¹i, ta cã 4 ®−êng th¼ng tiÕp xóc víi (C1 ) vµ (C2 ) lµ (d1 ),(d2 ),(d3 ) vµ x = 5. C©u IVb. 1) AC'lµ ®−êng cao trong tam gi¸c c©n SAC, do ®ã ®Ó C' thuéc ®o¹n SC, S ph¶i lµ gãc nhän, muèn vËy ph¶i cã OC < SO ⇒ h > 2a. Tø gi¸c AB'C'D' cã c¸c ®−êng chÐo AC' vµ B'D' vu«ng gãc víi nhau. Gäi K lµ giao ®iÓm c¸c ®−êng chÐo Êy. Ta cã : 4ah = 2dt(SAC) = AC'.SC = AC'. h2 + 4a 2 ⇒ 4ah ⇒ AC' = h + 4a 2 2 MÆt ph¼ng (AB'C'D') c¾t BC t¹i B1 víi AB1 // BD , AB1 = 2a . NÕu B'C'D' lµ tam gi¸c ®Òu th× B'KC' lµ nöa tam gi¸c ®Òu, vËy B1AC' lµ nöa tam gi¸c ®Òu, suy ra : 4ah = AC' = AB1. 3 2 2 h + 4a = 2a 3 ⇒ h = 2a 3 . Khi ®ã SO = h = 3OA , suy ra SAC lµ tam gi¸c ®Òu, vËy C' lµ trung ®iÓm cña SC. 2) H×nh chãp S.ABCD cã thÓ tÝch : 1 4 V = SO.dt(ABCD) = ha 2 . 3 3 Tam gi¸c SAB cã c¹nh AB = a 5 vµ ®−êng cao h¹ tõ ®Ønh S 4a 2 + 5h2 SH = , 5 a do ®ã cã diÖn tÝch s = 4a 2 + 5h2 . Tõ ®ã suy ra diÖn tÝch toµn phÇn h×nh chãp S.ABCD : 2 S = 4s + dt (ABCD) = 4a 2 + 2a 4a 2 + 5h2 , thµnh thö : 3V 2ah r= = . S 2a + 4a 2 + 5h2 C©u Vb. Tr−íc hÕt ta h·y chøng minh r»ng : A+B 2tg ≤ tgA + tgB 2 dÊu = chØ x¶y ra khi A = B. Qu¶ vËy : sin(A + B) 2sin(A + B) tgA + tgB = = ≥ cosA cosB cos(A + B) + cos(A − B)
- _______________________________________________________ A+B A+B 4sin cos 2sin(A + B) 2 2 = 2tg A + B ≥ = cos(A + B) + 1 A+B 2 2 cos2 2 §Ó ý r»ng kÕt qu¶ nµy chØ ®óng víi gi¶ thiÕt A, B lµ gãc nhän, v× khi ®ã : 0 < 2cosA cosB = cos (A + B) + cos (A − B) ≤ cos (A + B) + 1. Trë vÒ víi ®iÒu kiÖn cña bµi to¸n : A+B 1 tg2 A + tg2 B = 2tg2 ≤ (tgA + tgB)2 ⇒ 2 2 ⇒ (tgA − tgB)2 ≤ 0 ⇒ tgA = tgB ⇒ A = B
- _______________________________________________________________ C©u I. Cho m lµ mét sè nguyªn dû¬ng, h·y t×m cûåc trÞ cña hµm sè y = xm(4 - x)2. Kh¶o s¸t sûå biÕn thiªn vµ vÏ ®å thÞ cña hµm sè khi m = 1. C©u II. 1) ABC lµ mét tam gi¸c bÊt k×. Chûáng minh r»ng víi mäi sè x ta ®Òu cã 1 2 1+ x ³ cosA + x(cosB + cosC). 2 2) Gi¶i phû¬ng tr×nh 1 1 10 cosx + + sinx + = . cosx sinx 3 C©u III. 1) Gi¶i vµ biÖn luËn theo a, b phû¬ng tr×nh ax + b x- b = . x- a x+a 2) Cho 3 sè a, b, c tháa m·n ®iÒu kiÖn a2 + b2 + c2 = 1. Chûáng minh r»ng: abc + 2(1 + a + b + c + ab + ac + bc) ≥ 0. C©u IVa. 1) Chûáng tá r»ng hµm sè F(x) = x − ln(1 + x ) x lµ mét nguyªn hµm trªn R cña hµm sè f(x) = . 1 + | x|
- _______________________________________________________________ 2) TÝnh tÝch ph©n e I=∫ xln 2 xdx. 1 C©u IVb. H×nh chãp S.ABCD cã ®¸y ABCD lµ h×nh b×nh hµnh. Gäi K lµ trung ®iÓm cña c¹nh SC. MÆt ph¼ng qua AK c¾t c¸c c¹nh SB, SD lÇn lûúåt t¹i M vµ N. Chøng minh: SB SD 1) + =3; SM SN 1 V1 3 2) £ £ , 3 V 8 trong ®ã V lµ thÓ tÝch h×nh chãp S.ABCD, V1 lµ thÓ tÝch h×nh chãp S.AMKN.
- _________________________________________________________ C©u I. 1) y' = mx m−1(4 − x)2 − 2(4 − x)x m = = x m −1 (4 − x)[4m − (m + 2)x] . 4m a) XÐt tr−êng hîp m ≥ 2. Khi ®ã ph−¬ng tr×nh y' = 0 cã ba nghiÖm x1 = 0 , x2 = vµ m+2 x3 = 4 . NÕu m − 1 ch½n (tøc m = 3, 5, 7, ...) th× y' sÏ cïng dÊu víi (4 − x) [4m − (m + 2)x] vµ do ®ã : y min (4) = 0 vµ m m 4m + 4 y max (x2 ) = = M. (m + 2)m +2 NÕu m - 1 lÎ (tøc m = 2, 4, 6, ...) th× dÊu cña y' lµ dÊu cña x(4 − x)[4m − (m + 2) x] LËp b¶ng xÐt dÊu sÏ cã kÕt qu¶ y min (0) = 0 ; y max (x2 ) = M , y min (4) = 0 b) §Ò nghÞ b¹n ®äc tù lµm cho tr−êng hîp m = 1 (y = x(4 − x)2 ) . 2) Kh¶o s¸t, vÏ ®å thÞ hµm sè y = x(4 − x)2 dµnh cho b¹n ®äc. C©u II. 1) x2 − 2(cosB + cosC)x + 2(1 − cosA) ≥ 0 . (1) ∆ ' = (cosB + cosC)2 − 2(1 − cosA) = C+ B 2 B−C A = 4 cos2 cos − 4sin2 = 2 2 2 A B−C = 4sin2 cos2 − 1 ≤ 0 2 2 VËy (1) ®óng víi mäi x. sin x + cosx 10 2) cosx + sin x + = sin x cosx 3 §Æt t = cosx + sin x(− 2 ≤ t ≤ 2) (2) 2t 10 th× t 2 = 1 + 2sin x cosx vµ ta ®−îc t + = t2 − 1 3 §Æt ®iÒu kiÖn t ≠ ±1 sÏ tíi 3t 3 − 10t 2 + 3t + 10 = 0 tøc lµ : 1 + a + b + c + ab + ac + bc ≥ 0 (2) Céng (1) vµ (2) ta cã : abc + 2 (1 + a + b + c + ac + bc + ac) ≥ 0. hay (t − 2)(3t 2 − 4t − 5) = 0 . Ph−¬ng tr×nh nµy cã ba nghiÖm 2 − 19 2 + 19 t1 = 2 ; t 2 = ; t3 = 3 3
- _________________________________________________________ ChØ cã t 2 lµ thÝch hîp. Thay vµo (2) ta cã ph−¬ng tr×nh π 2 − 19 cos x − = . 4 3 2 2 − 19 §Æt cos α = th× ®−îc hai hä nghiÖm : 3 2 π π x1 = + α + 2kπ ; x2 = − α + 2mπ 4 4 C©u III. 1) §Æt ®iÒu kiÖn x - a ≠ 0 ; x + a ≠ 0 th× (1) ®−îc biÕn ®æi vÒ d¹ng : x[a − 1)x + a 2 + a + 2b] = 0 (2) Víi ∀a, b (2) ®Òu cã nghiÖm x1 = 0 . Gi¶i (a − 1)x + a 2 + a + 2b = 0 . a 2 + a + 2b NÕu a ≠ 1 cã nghiÖm x2 = 1− a NÕu a = 1 ta cã : 0x = − 2(1 + b). (3) Víi b ≠ − 1 th× (3) v« nghiÖm ; víi b = -1 th× (3) nghiÖm ®óng víi ∀x. KiÓm tra x2 cã tháa m·n ®iÒu kiÖn x2 ≠ ±a ? a 2 + a + 2b x2 ≠ a ⇔ ≠ a ⇔ a 2 + a + 2b ≠ 1− a ≠ a − a 2 ⇔ 2(a 2 + b) ≠ 0 ⇔ b ≠ −a 2 a 2 + a + 2b x 2 ≠ −a ⇔ ≠ −a ⇔ a 2 + a + 2b ≠ a 2 − a ⇔ b ≠ −a . 1− a KÕt luËn : víi b ≠ −1 , (1) cã nghiÖm duy nhÊt x1 = 0 . NÕu a = 1 th× : víi b = − 1, (1) cã nghiÖm lµ ∀x ≠ ± 1. NÕu a ≠ 1 ; 0 th× : 2 víi b ≠ −a , b ≠ - a, (1) cã hai nghiÖm x1 = 0, a 2 + a + 2b x2 = 1− a víi b = −a 2 hoÆc b = - a th× (1) cã mét nghiÖm x1 = 0 . NÕu a = 0 th× (1) cã mét nghiÖm x2 = 2b nÕu b ≠ 0 ; (1) sÏ v« nghiÖm nÕu b = 0. 2) V× a 2 + b2 + c2 = 1 nªn - 1 ≤ a, b, c ≤ 1. Do ®ã 1 + a ≥ 0 , 1 + b ≥ 0, 1 + c ≥ 0 ⇒ (1 + a) (1 + b) (1 + c) ≥ 0 ⇒ ⇒ 1 + a + b + c + ab + ac + bc + abc ≥ 0. (1) MÆt kh¸c : (1 + a + b + c)2 a 2 + b2 + c2 + a + b + c + ab + ac + bc = ≥0, 2
- ________________________________________________________________________________ C©u IVa. 1) Víi x > 0 ta cã 1 x F(x) = x - ln(1 + x) Þ F’(x) = 1 - = ; 1 + x 1 + x víi x < 0 ta cã 1 x F(x) = - x - ln(1 - x) Þ F’(x) = - 1 + = . 1 - x 1 - x Tõ ®ã suy ra víi x ¹ 0 x F’(x) = . 1 + | x| Ta chØ cßn ph¶i chøng minh r»ng F’(0) = 0. Qu¶ vËy 1 1 F’(0) = lim (F( ∆x) - F(0)) = lim ∆x → 0 ∆x ( ∆x - ln(1 + ∆x)) = ∆x → 0 ∆x ln(1 + ∆x) = lim 1 - = 0, ∆x →0 ∆x ln(1 + ∆x) v× lim = 1. ∆x → 0 ∆x e 2) I = ∫ xln2xdx. 1 ln x du = 2 dx u = ln x 2 x §æt ⇒ dv = xdx 1 v = x 2, 2 e e e2 e ∫ - J, víi J = ∫ xlnxdx. 1 suy ra I = x 2 ln 2 x - xlnxdx = 2 1 1 2 1 §Ó tÝnh J, ®Æt du = ux u = ln x x ⇒ dv = xdx 1 v = 2
- ________________________________________________________________________________ e2 x ln x − ∫1 xdx = − 1 2 e 1 e 1 suy ra J = . 2 1 2 2 4( e − 1) 2 VËy 1 I = (e2 - 1). 4 C©u Ivb. 1) V× K lµ trung®iÓm cña SC, nªn theo h×nhbªn, trong tam gi¸c SAC, SO vµ AK lµ hai ®ûêng trungtuyÕn c¾t nhau t¹i trängt©m H, vËy SH 2 = . SO 3 SN SH Theo h×nh bªn , ta cã dt(SNH) = . . dt(SDO) = SD SO SN 2 1 SH SM = . . dt(SDB),dt(SHM) = . . dt(SOB) SD 3 2 SO SB 2 SM 1 = . . dt (SDB). 3 SB 2 SN SM §ång thêi dt(SNH) + dt(SHM) = dt(SNM) = . dt(SDB). SD SB 1 SN 1 SM SN SM Tõ c¸c hÖ thøc trªn, suy ra . + . = . 3 SD 3 SB SD SD SB SD Û + = 3. SM SN SM SN 1 1 2) §Æt = x, = y, theo hÖ thøc trªn ta cã + = 3. §ång thêi, do ý nghÜa h×nh häc, ph¶i cã 0 < x £ 1, SB SD x y 0 < y £ 1. V× 1 1 x = 3 - ⇒ y = , y x 3x - 1 x nªn 0 < ≤ 1 3x - 1 1 Þ ≤ x ≤ 1. 0
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Rèn luyện kỹ năng giải toán sự tương giao của đồ thị hàm số bậc 3
1 p | 534 | 81
-
Rèn luyện kỹ năng giải toán sự tương giao của đồ thị hàm số trùng phương
1 p | 291 | 46
-
Rèn luyện kỹ năng giải toán sự tương giao của đồ thị hàm số hữu tỷ
2 p | 168 | 39
-
Chuyên đề 1: Ứng dụng đạo hàm để xét tính biên thiên và vẽ đồ thị hàm số - Chủ đề 1.5
36 p | 268 | 39
-
Toán 12: Các bài toán về tiếp tuyến của đồ thị hàm số (Đáp án Bài tập tự luyện) - GV. Lê Bá Trần Phương
5 p | 190 | 38
-
Bài giảng Đại số 7 chương 2 bài 7: Đồ thị hàm số y=ax (a#0)
24 p | 222 | 24
-
Bài tập về khảo sát và vẽ đồ thị hàm số
6 p | 179 | 14
-
Toán 12: Các bài toán về tiếp tuyến của đồ thị hàm số (Bài tập tự luyện) - GV. Lê Bá Trần Phương
1 p | 130 | 11
-
Một số dạng đồ thị hàm số khó
3 p | 107 | 9
-
Giáo án Đại số 7 chương 2 bài 7: Đồ thị hàm số y=ax (a#0)
26 p | 277 | 9
-
43 Bài tập Tiếp tuyến của đồ thị hàm số (Phần 2)
17 p | 150 | 6
-
Bài giảng môn Đại số lớp 9 - Bài 3: Đồ thị hàm số y = ax+b (a≠0)
12 p | 34 | 4
-
Bài giảng Toán 9 - Bài 2: Đồ thị hàm số y=a(x^2)
19 p | 58 | 4
-
50 câu hỏi trắc nghiệm chuyên đề đồ thị - hàm số
5 p | 17 | 3
-
Giải bài tập Hàm số y=ax (a # 0) SGK Đại số 7 tập 1
3 p | 126 | 3
-
Giải bài tập Đồ thị của hàm số y = ax + b (a ≠ 0) SGK Toán 9 tập 1
7 p | 291 | 3
-
Bài giảng Đại số lớp 9 bài 3: Đồ thị hàm số ax + b (a # 0)
16 p | 30 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn