BÀI TOÁN ĐẾM
lượt xem 46
download
Tài liệu tham khảo dành cho giáo viên, sinh viên các trường cao đẳng, đại học chuyên môn Toán - Bài toán đếm.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: BÀI TOÁN ĐẾM
- http://ebook.here.vn T i mi n phí ð thi, eBook, Tài li u h c t p CHƯƠNG II BÀI TOÁN ð M Lý thuy t t h p là m t ph n quan tr ng c a toán h c r i r c chuyên nghiên c u s phân b các ph n t vào các t p h p. Thông thư ng các ph n t này là h u h n và vi c phân b chúng ph i tho mãn nh ng ñi u ki n nh t ñ nh nào ñó, tùy theo yêu c u c a bài toán c n nghiên c u. M i cách phân b như v y g i là m t c u hình t h p. Ch ñ này ñã ñư c nghiên c u t th k 17, khi nh ng câu h i v t h p ñư c nêu ra trong nh ng công trình nghiên c u các trò chơi may r i. Li t kê, ñ m các ñ i tư ng có nh ng tính ch t nào ñó là m t ph n quan tr ng c a lý thuy t t h p. Chúng ta c n ph i ñ m các ñ i tư ng ñ gi i nhi u bài toán khác nhau. Hơn n a các k thu t ñ m ñư c dùng r t nhi u khi tính xác su t c a các bi n c . 2.1. CƠ S C A PHÉP ð M. 2.1.1. Nh ng nguyên lý ñ m cơ b n: 1) Quy t c c ng: Gi s có k công vi c T1, T2, ..., Tk. Các vi c này có th làm tương ng b ng n1, n2, ..., nk cách và gi s không có hai vi c nào có th làm ñ ng th i. Khi ñó s cách làm m t trong k vi c ñó là n1+n2+ ... + nk. Thí d 1: 1) M t sinh viên có th ch n bài th c hành máy tính t m t trong ba danh sách tương ng có 23, 15 và 19 bài. Vì v y, theo quy t c c ng có 23 + 15 + 19 = 57 cách ch n bài th c hành. 2) Giá tr c a bi n m b ng bao nhiêu sau khi ño n chương trình sau ñư c th c hi n? m := 0 for i1 := 1 to n1 m := m+1 for i2 :=1 to n2 m := m+1 ....................... for ik := 1 to nk m := m+1 Giá tr kh i t o c a m b ng 0. Kh i l nh này g m k vòng l p khác nhau. Sau m i bư c l p c a t ng vòng l p giá tr c a k ñư c tăng lên m t ñơn v . G i Ti là vi c thi hành vòng l p th i. Có th làm Ti b ng ni cách vì vòng l p th i có ni bư c l p. Do các vòng l p không th th c hi n ñ ng th i nên theo quy t c c ng, giá tr cu i cùng c a m b ng s cách th c hi n m t trong s các nhi m v Ti, t c là m = n1+n2+ ... + nk. Quy t c c ng có th phát bi u dư i d ng c a ngôn ng t p h p như sau: N u A1, A2, ..., Ak là các t p h p ñôi m t r i nhau, khi ñó s ph n t c a h p các t p h p này b ng t ng s các ph n t c a các t p thành ph n. Gi s Ti là vi c ch n m t ph n t t 22
- http://ebook.here.vn T i mi n phí ð thi, eBook, Tài li u h c t p t p Ai v i i=1,2, ..., k. Có |Ai| cách làm Ti và không có hai vi c nào có th ñư c làm cùng m t lúc. S cách ch n m t ph n t c a h p các t p h p này, m t m t b ng s ph n t c a nó, m t khác theo quy t c c ng nó b ng |A1|+|A2|+ ... +|Ak|. Do ñó ta có: |A1 ∪ A2 ∪...∪ Ak| = |A1| + |A2| + ... + |Ak|. 2) Quy t c nhân: Gi s m t nhi m v nào ñó ñư c tách ra thành k vi c T1, T2, ..., Tk. N u vi c Ti có th làm b ng ni cách sau khi các vi c T1, T2, ... Ti-1 ñã ñư c làm, khi ñó có n1.n2....nk cách thi hành nhi m v ñã cho. Thí d 2: 1) Ngư i ta có th ghi nhãn cho nh ng chi c gh trong m t gi ng ñư ng b ng m t ch cái và m t s nguyên dương không vư t quá 100. B ng cách như v y, nhi u nh t có bao nhiêu chi c gh có th ñư c ghi nhãn khác nhau? Th t c ghi nhãn cho m t chi c gh g m hai vi c, gán m t trong 26 ch cái và sau ñó gán m t trong 100 s nguyên dương. Quy t c nhân ch ra r ng có 26.100=2600 cách khác nhau ñ gán nhãn cho m t chi c gh . Như v y nhi u nh t ta có th gán nhãn cho 2600 chi c gh . 2) Có bao nhiêu xâu nh phân có ñ dài n. M i m t trong n bit c a xâu nh phân có th ch n b ng hai cách vì m i bit ho c b ng 0 ho c b ng 1. B i v y theo quy t c nhân có t ng c ng 2n xâu nh phân khác nhau có ñ dài b ng n. 3) Có th t o ñư c bao nhiêu ánh x t t p A có m ph n t vào t p B có n ph n t ? Theo ñ nh nghĩa, m t ánh x xác ñ nh trên A có giá tr trên B là m t phép tương ng m i ph n t c a A v i m t ph n t nào ñó c a B. Rõ ràng sau khi ñã ch n ñư c nh c a i - 1 ph n t ñ u, ñ ch n nh c a ph n t th i c a A ta có n cách. Vì v y theo quy t c nhân, ta có n.n...n=nm ánh x xác ñ nh trên A nh n giá tr trên B. 4) Có bao nhiêu ñơn ánh xác ñ nh trên t p A có m ph n t và nh n giá tr trên t p B có n ph n t ? N u m > n thì v i m i ánh x , ít nh t có hai ph n t c a A có cùng m t nh, ñi u ñó có nghĩa là không có ñơn ánh t A ñ n B. Bây gi gi s m ≤ n và g i các ph n t c a A là a1,a2,...,am. Rõ ràng có n cách ch n nh cho ph n t a1. Vì ánh x là ñơn ánh nên nh c a ph n t a2 ph i khác nh c a a1 nên ch có n - 1 cách ch n nh cho ph n t a2. Nói chung, ñ ch n nh c a ak ta có n - k + 1 cách. Theo quy t c nhân, ta có n! n(n − 1)(n − 2)...(n − m + 1) = ( n − m)! ñơn ánh t t p A ñ n t p B. 5) Giá tr c a bi n k b ng bao nhiêu sau khi chương trình sau ñư c th c hi n? m := 0 for i1 := 1 to n1 for i2 := 1 to n2 23
- http://ebook.here.vn T i mi n phí ð thi, eBook, Tài li u h c t p ....................... for ik := 1 to nk k := k+1 Giá tr kh i t o c a k b ng 0. Ta có k vòng l p ñư c l ng nhau. G i Ti là vi c thi hành vòng l p th i. Khi ñó s l n ñi qua vòng l p b ng s cách làm các vi c T1, T2, ..., Tk. S cách th c hi n vi c Tj là nj (j=1, 2,..., k), vì vòng l p th j ñư c duy t v i m i giá tr nguyên ij n m gi a 1 và nj. Theo quy t c nhân vòng l p l ng nhau này ñư c duy t qua n1.n2....nk l n. Vì v y giá tr cu i cùng c a k là n1.n2....nk. Nguyên lý nhân thư ng ñư c phát bi u b ng ngôn ng t p h p như sau. N u A1, A2,..., Ak là các t p h u h n, khi ñó s ph n t c a tích Descartes c a các t p này b ng tích c a s các ph n t c a m i t p thành ph n. Ta bi t r ng vi c ch n m t ph n t c a tích Descartes A1 x A2 x...x Ak ñư c ti n hành b ng cách ch n l n lư t m t ph n t c a A1, m t ph n t c a A2, ..., m t ph n t c a Ak. Theo quy t c nhân ta có: |A1 x A2 x ... x Ak| = |A1|.|A2|...|Ak|. 2.1.2. Nguyên lý bù tr : Khi hai công vi c có th ñư c làm ñ ng th i, ta không th dùng quy t c c ng ñ tính s cách th c hi n nhi m v g m c hai vi c. ð tính ñúng s cách th c hi n nhi m v này ta c ng s cách làm m i m t trong hai vi c r i tr ñi s cách làm ñ ng th i c hai vi c. Ta có th phát bi u nguyên lý ñ m này b ng ngôn ng t p h p. Cho A1, A2 là hai t p h u h n, khi ñó |A1 ∪ A2| = |A1| + |A2| − |A1 ∩ A2|. T ñó v i ba t p h p h u h n A1, A2, A3, ta có: |A1 ∪ A2 ∪ A3| = |A1| + |A2| + |A3| − |A1 ∩ A2| − |A2 ∩ A3| − |A3 ∩ A1| + |A1 ∩ A2 ∩ A3|, và b ng quy n p, v i k t p h u h n A1, A2, ..., Ak ta có: | A1 ∪ A2 ∪ ... ∪ Ak| = N1 − N2 + N3 − ... + (−1)k-1Nk, trong ñó Nm (1 ≤ m ≤ k) là t ng ph n t c a t t c các giao m t p l y t k t p ñã cho, nghĩa là Nm = ∑ | Ai1 ∩ Ai2 ∩ ... ∩ Aim | 1≤i1
- http://ebook.here.vn T i mi n phí ð thi, eBook, Tài li u h c t p Thí d 3: Có n lá thư và n phong bì ghi s n ñ a ch . B ng u nhiên các lá thư vào các phong bì. H i xác su t ñ x y ra không m t lá thư nào ñúng ñ a ch . M i phong bì có n cách b thư vào, nên có t t c n! cách b thư. V n ñ còn l i là ñ m s cách b thư sao cho không lá thư nào ñúng ñ a ch . G i U là t p h p các cách b thư và Am là tính ch t lá thư th m b ñúng ñ a ch . Khi ñó theo công th c v nguyên lý bù tr ta có: N = n! − N1 + N2 − ... + (−1) Nn, n trong ñó Nm (1 ≤ m ≤ n) là s t t c các cách b thư sao cho có m lá thư ñúng ñ a ch . Nh n xét r ng, Nm là t ng theo m i cách l y m lá thư t n lá, v i m i cách l y m lá thư, có (n-m)! cách b ñ m lá thư này ñúng ñ a ch , ta nh n ñư c: m n! 1 1 1 Nm = C n (n - m)! = và N = n!(1 − + − ... + (−1)n ), k! 1! 2! n! m n! trong ñó C n = là t h p ch p m c a t p n ph n t (s cách ch n m ñ i m!(n − m)! 1 1 tư ng trong n ñ i tư ng ñư c cho). T ñó xác su t c n tìm là: 1 − + − ... + (−1)n 1! 2! 1 - 1 . M t ñi u lý thú là xác su t này d n ñ n e 1 (nghĩa là còn > ) khi n khá l n. n! 3 S N trong bài toán này ñư c g i là s m t th t và ñư c ký hi u là Dn. Dư i ñây là m t vài giá tr c a Dn, cho ta th y Dn tăng nhanh như th nào so v i n: n 2 3 4 5 6 7 8 9 10 11 Dn 1 2 9 44 265 1854 14833 133496 1334961 14684570 2.2. NGUYÊN LÝ DIRICHLET. 2.2.1. M ñ u: Gi s có m t ñàn chim b câu bay vào chu ng. N u s chim nhi u hơn s ngăn chu ng thì ít nh t trong m t ngăn có nhi u hơn m t con chim. Nguyên lý này dĩ nhiên là có th áp d ng cho các ñ i tư ng không ph i là chim b câu và chu ng chim. M nh ñ (Nguyên lý): N u có k+1 (ho c nhi u hơn) ñ v t ñư c ñ t vào trong k h p thì t n t i m t h p có ít nh t hai ñ v t. Ch ng minh: Gi s không có h p nào trong k h p ch a nhi u hơn m t ñ v t. Khi ñó t ng s v t ñư c ch a trong các h p nhi u nh t là b ng k. ði u này trái gi thi t là có ít nh t k + 1 v t. Nguyên lý này thư ng ñư c g i là nguyên lý Dirichlet, mang tên nhà toán h c ngư i ð c th k 19. Ông thư ng xuyên s d ng nguyên lý này trong công vi c c a mình. Thí d 4: 1) Trong b t kỳ m t nhóm 367 ngư i th nào cũng có ít nh t hai ngư i có ngày sinh nh t gi ng nhau b i vì ch có t t c 366 ngày sinh nh t khác nhau. 25
- http://ebook.here.vn T i mi n phí ð thi, eBook, Tài li u h c t p 2) Trong kỳ thi h c sinh gi i, ñi m bài thi ñư c ñánh giá b i m t s nguyên trong kho ng t 0 ñ n 100. H i r ng ít nh t có bao nhiêu h c sinh d thi ñ cho ch c ch n tìm ñư c hai h c sinh có k t qu thi như nhau? Theo nguyên lý Dirichlet, s h c sinh c n tìm là 102, vì ta có 101 k t qu ñi m thi khác nhau. 3) Trong s nh ng ngư i có m t trên trái ñ t, ph i tìm ñư c hai ngư i có hàm răng gi ng nhau. N u xem m i hàm răng g m 32 cái như là m t xâu nh phân có chi u dài 32, trong ñó răng còn ng v i bit 1 và răng m t ng v i bit 0, thì có t t c 232 = 4.294.967.296 hàm răng khác nhau. Trong khi ñó s ngư i trên hành tinh này là vư t quá 5 t , nên theo nguyên lý Dirichlet ta có ñi u c n tìm. 2.2.2. Nguyên lý Dirichlet t ng quát: M nh ñ : N u có N ñ v t ñư c ñ t vào trong k h p thì s t n t i m t h p ch a ít nh t ]N/k[ ñ v t. ( ñây, ]x[ là giá tr c a hàm tr n t i s th c x, ñó là s nguyên nh nh t có giá tr l n hơn ho c b ng x. Khái ni m này ñ i ng u v i [x] – giá tr c a hàm sàn hay hàm ph n nguyên t i x – là s nguyên l n nh t có giá tr nh hơn ho c b ng x.) Ch ng minh: Gi s m i h p ñ u ch a ít hơn ]N/k[ v t. Khi ñó t ng s ñ v t là N N ≤ k (] [ − 1) < k = N. k k ði u này mâu thu n v i gi thi t là có N ñ v t c n x p. Thí d 5: 1) Trong 100 ngư i, có ít nh t 9 ngư i sinh cùng m t tháng. X p nh ng ngư i sinh cùng tháng vào m t nhóm. Có 12 tháng t t c . V y theo nguyên lý Dirichlet, t n t i m t nhóm có ít nh t ]100/12[= 9 ngư i. 2) Có năm lo i h c b ng khác nhau. H i r ng ph i có ít nh t bao nhiêu sinh viên ñ ch c ch n r ng có ít ra là 6 ngư i cùng nh n h c b ng như nhau. G i N là s sinh viên, khi ñó ]N/5[ = 6 khi và ch khi 5 < N/5 ≤ 6 hay 25 < N ≤ 30. V y s N c n tìm là 26. 3) S mã vùng c n thi t nh nh t ph i là bao nhiêu ñ ñ m b o 25 tri u máy ñi n tho i trong nư c có s ñi n tho i khác nhau, m i s có 9 ch s (gi s s ñi n tho i có d ng 0XX - 8XXXXX v i X nh n các giá tr t 0 ñ n 9). Có 107 = 10.000.000 s ñi n tho i khác nhau có d ng 0XX - 8XXXXX. Vì v y theo nguyên lý Dirichlet t ng quát, trong s 25 tri u máy ñi n tho i ít nh t có ]25.000.000/10.000.000[ = 3 có cùng m t s . ð ñ m b o m i máy có m t s c n có ít nh t 3 mã vùng. 2.2.3. M t s ng d ng c a nguyên lý Dirichlet. Trong nhi u ng d ng thú v c a nguyên lý Dirichlet, khái ni m ñ v t và h p c n ph i ñư c l a ch n m t cách khôn khéo. Trong ph n nay có vài thí d như v y. 26
- http://ebook.here.vn T i mi n phí ð thi, eBook, Tài li u h c t p Thí d 6: 1) Trong m t phòng h p có n ngư i, bao gi cũng tìm ñư c 2 ngư i có s ngư i quen trong s nh ng ngư i d h p là như nhau. S ngư i quen c a m i ngư i trong phòng h p nh n các giá tr t 0 ñ n n − 1. Rõ ràng trong phòng không th ñ ng th i có ngư i có s ngư i quen là 0 (t c là không quen ai) và có ngư i có s ngư i quen là n − 1 (t c là quen t t c ). Vì v y theo s lư ng ngư i quen, ta ch có th phân n ngư i ra thành n −1 nhóm. V y theo nguyên lý Dirichlet t n tai m t nhóm có ít nh t 2 ngư i, t c là luôn tìm ñư c ít nh t 2 ngư i có s ngư i quen là như nhau. 2) Trong m t tháng g m 30 ngày, m t ñ i bóng chuy n thi ñ u m i ngày ít nh t 1 tr n nhưng chơi không quá 45 tr n. Ch ng minh r ng tìm ñư c m t giai ño n g m m t s ngày liên t c nào ñó trong tháng sao cho trong giai ño n ñó ñ i chơi ñúng 14 tr n. G i aj là s tr n mà ñ i ñã chơi t ngày ñ u tháng ñ n h t ngày j. Khi ñó 1 ≤ a1 < a2 < ... < a30 < 45 15 ≤ a1+14 < a2+14 < ... < a30+14 < 59. Sáu mươi s nguyên a1, a2, ..., a30, a1+ 14, a2 + 14, ..., a30+14 n m gi a 1 và 59. Do ñó theo nguyên lý Dirichlet có ít nh t 2 trong 60 s này b ng nhau. Vì v y t n t i i và j sao cho ai = aj + 14 (j < i). ði u này có nghĩa là t ngày j + 1 ñ n h t ngày i ñ i ñã chơi ñúng 14 tr n. 3) Ch ng t r ng trong n + 1 s nguyên dương không vư t quá 2n, t n t i ít nh t m t s chia h t cho s khác. k Ta vi t m i s nguyên a1, a2,..., an+1 dư i d ng aj = 2 j qj trong ñó kj là s nguyên không âm còn qj là s dương l nh hơn 2n. Vì ch có n s nguyên dương l nh hơn 2n nên theo nguyên lý Dirichlet t n t i i và j sao cho qi = qj = q. Khi ñó ai= 2 ki q và aj = k 2 j q. Vì v y, n u ki ≤ kj thì aj chia h t cho ai còn trong trư ng h p ngư c l i ta có ai chia h t cho aj. Thí d cu i cùng trình bày cách áp d ng nguyên lý Dirichlet vào lý thuy t t h p mà v n quen g i là lý thuy t Ramsey, tên c a nhà toán h c ngư i Anh. Nói chung, lý thuy t Ramsey gi i quy t nh ng bài toán phân chia các t p con c a m t t p các ph n t . Thí d 7. Gi s trong m t nhóm 6 ngư i m i c p hai ho c là b n ho c là thù. Ch ng t r ng trong nhóm có ba ngư i là b n l n nhau ho c có ba ngư i là k thù l n nhau. G i A là m t trong 6 ngư i. Trong s 5 ngư i c a nhóm ho c là có ít nh t ba ngư i là b n c a A ho c có ít nh t ba ngư i là k thù c a A, ñi u này suy ra t nguyên lý Dirichlet t ng quát, vì ]5/2[ = 3. Trong trư ng h p ñ u ta g i B, C, D là b n c a A. n u trong ba ngư i này có hai ngư i là b n thì h cùng v i A l p thành m t b ba ngư i b n l n nhau, ngư c l i, t c là n u trong ba ngư i B, C, D không có ai là b n ai c thì ch ng t h là b ba ngư i thù l n nhau. Tương t có th ch ng minh trong trư ng h p có ít nh t ba ngư i là k thù c a A. 27
- http://ebook.here.vn T i mi n phí ð thi, eBook, Tài li u h c t p 2.3. CH NH H P VÀ T H P SUY R NG. 2.3.1. Ch nh h p có l p. M t cách s p x p có th t k ph n t có th l p l i c a m t t p n ph n t ñư c g i là m t ch nh h p l p ch p k t t p n ph n t . N u A là t p g m n ph n t ñó thì m i ch nh h p như th là m t ph n t c a t p Ak. Ngoài ra, m i ch nh h p l p ch p k t t p n ph n t là m t hàm t t p k ph n t vào t p n ph n t . Vì v y s ch nh h p l p ch p k t t p n ph n t là nk. 2.3.2. T h p l p. M t t h p l p ch p k c a m t t p h p là m t cách ch n không có th t k ph n t có th l p l i c a t p ñã cho. Như v y m t t h p l p ki u này là m t dãy không k th t g m k thành ph n l y t t p n ph n t . Do ñó có th là k > n. k M nh ñ 1: S t h p l p ch p k t t p n ph n t b ng C n+ k −1 . Ch ng minh. M i t h p l p ch p k t t p n ph n t có th bi u di n b ng m t dãy n−1 thanh ñ ng và k ngôi sao. Ta dùng n − 1 thanh ñ ng ñ phân cách các ngăn. Ngăn th i ch a thêm m t ngôi sao m i l n khi ph n t th i c a t p xu t hi n trong t h p. Ch ng h n, t h p l p ch p 6 c a 4 ph n t ñư c bi u th b i: **| * | |*** mô t t h p ch a ñúng 2 ph n t th nh t, 1 ph n t th hai, không có ph n t th 3 và 3 ph n t th tư c a t p h p. M i dãy n − 1 thanh và k ngôi sao ng v i m t xâu nh phân ñ dài n + k − 1 v i k s 1. Do ñó s các dãy n − 1 thanh ñ ng và k ngôi sao chính là s t h p ch p k t t p n + k − 1 ph n t . ðó là ñi u c n ch ng minh. Thi d 8: 1) Có bao nhiêu cách ch n 5 t gi y b c t m t két ñ ng ti n g m nh ng t 1000ñ, 2000ñ, 5000ñ, 10.000ñ, 20.000ñ, 50.000ñ, 100.000ñ. Gi s th t mà các t ti n ñư c ch n là không quan tr ng, các t ti n cùng lo i là không phân bi t và m i lo i có ít nh t 5 t . Vì ta không k t i th t ch n t ti n và vì ta ch n ñúng 5 l n, m i l n l y m t t 1 trong 7 lo i ti n nên m i cách ch n 5 t gi y b c này chính là m t t h p l p ch p 5 t 5 7 ph n t . Do ñó s c n tìm là C 7 +5−1 = 462. 2) Phương trình x1 + x2 + x3 = 15 có bao nhiêu nghi m nguyên không âm? Chúng ta nh n th y m i nghi m c a phương trình ng v i m t cách ch n 15 ph n t t m t t p có 3 lo i, sao cho có x1 ph n t lo i 1, x2 ph n t lo i 2 và x3 ph n t lo i 3 ñư c ch n. Vì v y s nghi m b ng s t h p l p ch p 15 t t p có 3 ph n t và 15 b ng C3+15−1 = 136. 2.3.3. Hoán v c a t p h p có các ph n t gi ng nhau. Trong bài toán ñ m, m t s ph n t có th gi ng nhau. Khi ñó c n ph i c n th n, tránh ñ m chúng hơn m t l n. Ta xét thí d sau. 28
- http://ebook.here.vn T i mi n phí ð thi, eBook, Tài li u h c t p Thí d 9: Có th nh n ñư c bao nhiêu xâu khác nhau b ng cách s p x p l i các ch cái c a t SUCCESS? Vì m t s ch cái c a t SUCCESS là như nhau nên câu tr l i không ph i là s hoán v c a 7 ch cái ñư c. T này ch a 3 ch S, 2 ch C, 1 ch U và 1 ch E. ð xác ñ nh s xâu khác nhau có th t o ra ñư c ta nh n th y có C(7,3) cách ch n 3 ch cho 3 ch S, còn l i 4 ch tr ng. Có C(4,2) cách ch n 2 ch cho 2 ch C, còn l i 2 ch tr ng. Có th ñ t ch U b ng C(2,1) cách và C(1,1) cách ñ t ch E vào xâu. Theo nguyên lý nhân, s các xâu khác nhau có th t o ñư c là: 7!4!2!1! 7! C 7 . C 4 . C 1 . C1 = 3 2 2 1 = = 420. 3!.4!.2!.2!.1!.1!.1!.0! 3!.2 !.1!.1! M nh ñ 2: S hoán v c a n ph n t trong ñó có n1 ph n t như nhau thu c lo i 1, n2 ph n t như nhau thu c lo i 2, ..., và nk ph n t như nhau thu c lo i k, b ng n! . n1!.n 2 !....n k ! n Ch ng minh. ð xác ñ nh s hoán v trư c tiên chúng ta nh n th y có C n1 cách gi n1 n ch cho n1 ph n t lo i 1, còn l i n - n1 ch tr ng. Sau ñó có C n −n cách ñ t n2 ph n t 2 1 lo i 2 vào hoán v , còn l i n - n1 - n2 ch tr ng. Ti p t c ñ t các ph n t lo i 3, lo i 4,..., k n lo i k - 1vào ch tr ng trong hoán v . Cu i cùng có C n− n −...−n cách ñ t nk ph n t lo i 1 k −1 k vào hoán v . Theo quy t c nhân t t c các hoán v có th là: n n2 nk n! C n1 . C n −n .... C n − n −...− n = . 1 1 k −1 n1!.n 2 !....n k ! 2.3.4. S phân b các ñ v t vào trong h p. Thí d 10: Có bao nhiêu cách chia nh ng x p bài 5 quân cho m i m t trong 4 ngư i chơi t m t c bài chu n 52 quân? 5 Ngư i ñ u tiên có th nh n ñư c 5 quân bài b ng C52 cách. Ngư i th hai có th 5 ñư c chia 5 quân bài b ng C 47 cách, vì ch còn 47 quân bài. Ngư i th ba có th nh n 5 ñư c 5 quân bài b ng C 42 cách. Cu i cùng, ngư i th tư nh n ñư c 5 quân bài b ng 5 C37 cách. Vì v y, theo nguyên lý nhân t ng c ng có 5 5 5 5 52! C52 . C 47 . C 42 . C37 = 5!.5!.5!.5!.32! cách chia cho 4 ngư i m i ngư i m t x p 5 quân bài. Thí d trên là m t bài toán ñi n hình v vi c phân b các ñ v t khác nhau vào các h p khác nhau. Các ñ v t là 52 quân bài, còn 4 h p là 4 ngư i chơi và s còn l i ñ trên bàn. S cách s p x p các ñ v t vào trong h p ñư c cho b i m nh ñ sau M nh ñ 3: S cách phân chia n ñ v t khác nhau vào trong k h p khác nhau sao cho có ni v t ñư c ñ t vào trong h p th i, v i i = 1, 2, ..., k b ng 29
- http://ebook.here.vn T i mi n phí ð thi, eBook, Tài li u h c t p n! . n1!.n2 !....nk !.(n − n1 − ... − nk )! 2.4. SINH CÁC HOÁN V VÀ T H P. 2.4.1. Sinh các hoán v : Có nhi u thu t toán ñã ñư c phát tri n ñ sinh ra n! hoán v c a t p {1,2,...,n}. Ta s mô t m t trong các phương pháp ñó, phương pháp li t kê các hoán v c a t p {1,2,...,n} theo th t t ñi n. Khi ñó, hoán v a1a2...an ñư c g i là ñi trư c hoán v b1b2...bn n u t n t i k (1 ≤ k ≤ n), a1 = b1, a2 = b2,..., ak-1 = bk-1 và ak < bk. Thu t toán sinh các hoán v c a t p {1,2,...,n} d a trên th t c xây d ng hoán v k ti p, theo th t t ñi n, t hoán v cho trư c a1 a2 ...an. ð u tiên n u an-1 < an thì rõ ràng ñ i ch an-1 và an cho nhau thì s nh n ñư c hoán v m i ñi li n sau hoán v ñã cho. N u t n t i các s nguyên aj và aj+1 sao cho aj < aj+1 và aj+1 > aj+2 > ... > an, t c là tìm c p s nguyên li n k ñ u tiên tính t bên ph i sang bên trái c a hoán v mà s ñ u nh hơn s sau. Sau ñó, ñ nh n ñư c hoán v li n sau ta ñ t vào v trí th j s nguyên nh nh t trong các s l n hơn aj c a t p aj+1, aj+2, ..., an, r i li t kê theo th t tăng d n c a các s còn l i c a aj, aj+1, aj+2, ..., an vào các v trí j+1, ..., n. D th y không có hoán v nào ñi sau hoán v xu t phát và ñi trư c hoán v v a t o ra. Thí d 11: Tìm hoán v li n sau theo th t t ñi n c a hoán v 4736521. C p s nguyên ñ u tiên tính t ph i qua trái có s trư c nh hơn s sau là a3 = 3 và a4 = 6. S nh nh t trong các s bên ph i c a s 3 mà l i l n hơn 3 là s 5. ð t s 5 vào v trí th 3. Sau ñó ñ t các s 3, 6, 1, 2 theo th t tăng d n vào b n v trí còn l i. Hoán v li n sau hoán v ñã cho là 4751236. procedure Hoán v li n sau (a1, a2, ..., an) (hoán v c a {1,2,...,n} khác (n, n−1, ..., 2, 1)) j := n − 1 while aj > aj+1 j := j − 1 {j là ch s l n nh t mà aj < aj+1} k := n while aj > ak k := k - 1 {ak là s nguyên nh nh t trong các s l n hơn aj và bên ph i aj} ñ i ch (aj, ak) r := n s := j + 1 while r > s ñ i ch (ar, as) r := r - 1 ; s := s + 1 {ði u này s x p ph n ñuôi c a hoán v sau v trí th j theo th t tăng d n.} 30
- http://ebook.here.vn T i mi n phí ð thi, eBook, Tài li u h c t p 2.4.2. Sinh các t h p: Làm th nào ñ t o ra t t c các t h p các ph n t c a m t t p h u h n? Vì t h p chính là m t t p con, nên ta có th dùng phép tương ng 1-1 gi a các t p con c a {a1,a2,...,an} và xâu nh phân ñ dài n. Ta th y m t xâu nh phân ñ dài n cũng là khai tri n nh phân c a m t s nguyên n m gi a 0 và 2n − 1. Khi ñó 2n xâu nh phân có th li t kê theo th t tăng d n c a s nguyên trong bi u di n nh phân c a chúng. Chúng ta s b t ñ u t xâu nh phân nh nh t 00...00 (n s 0). M i bư c ñ tìm xâu li n sau ta tìm v trí ñ u tiên tính t ph i qua trái mà ñó là s 0, sau ñó thay t t c s 1 bên ph i s này b ng 0 và ñ t s 1 vào chính v trí này. procedure Xâu nh phân li n sau (bn-1bn-2...b1b0): xâu nh phân khác (11...11) i := 0 while bi = 1 begin bi := 0 i := i + 1 end bi := 1 Ti p theo chúng ta s trình bày thu t toán t o các t h p ch p k t n ph n t {1,2,...,n}. M i t h p ch p k có th bi u di n b ng m t xâu tăng. Khi ñó có th li t kê các t h p theo th t t ñi n. Có th xây d ng t h p li n sau t h p a1a2...ak b ng cách sau. Trư c h t, tìm ph n t ñ u tiên ai trong dãy ñã cho k t ph i qua trái sao cho ai ≠ n − k + i. Sau ñó thay ai b ng ai + 1 và aj b ng ai + j − i + 1 v i j = i + 1, i + 2, ..., k. Thí d 12: Tìm t h p ch p 4 t t p {1, 2, 3, 4, 5, 6} ñi li n sau t h p {1, 2, 5, 6}. Ta th y t ph i qua trái a2 = 2 là s h ng ñ u tiên c a t h p ñã cho th a mãn ñi u ki n ai ≠ 6 − 4 + i. ð nh n ñư c t h p ti p sau ta tăng ai lên m t ñơn v , t c a2 = 3, sau ñó ñ t a3 = 3 + 1 = 4 và a4 = 3 + 2 = 5. V y t h p li n sau t h p ñã cho là {1,3,4,5}. Th t c này ñư c cho dư i d ng thu t toán như sau. procedure T h p li n sau ({a1, a2, ..., ak}: t p con th c s c a t p {1, 2, ..., n} không b ng {n − k + 1, ..., n} v i a1 < a2 < ... < ak) i := k while ai = n − k + i i := i − 1 ai := ai + 1 for j := i + 1 to k aj := ai + j − i 31
- http://ebook.here.vn T i mi n phí ð thi, eBook, Tài li u h c t p 2.5. H TH C TRUY H I. 2.5.1. Khái ni m m ñ u và mô hình hóa b ng h th c truy h i: ðôi khi ta r t khó ñ nh nghĩa m t ñ i tư ng m t cách tư ng minh. Nhưng có th d dàng ñ nh nghĩa ñ i tư ng này qua chính nó. K thu t này ñư c g i là ñ quy. ð nh nghĩa ñ quy c a m t dãy s ñ nh rõ giá tr c a m t hay nhi u hơn các s h ng ñ u tiên và quy t c xác ñ nh các s h ng ti p theo t các s h ng ñi trư c. ð nh nghĩa ñ quy có th dùng ñ gi i các bài toán ñ m. Khi ñó quy t c tìm các s h ng t các s h ng ñi trư c ñư c g i là các h th c truy h i. ð nh nghĩa 1: H th c truy h i (hay công th c truy h i) ñ i v i dãy s {an} là công th c bi u di n an qua m t hay nhi u s h ng ñi trư c c a dãy. Dãy s ñư c g i là l i gi i hay nghi m c a h th c truy h i n u các s h ng c a nó th a mãn h th c truy h i này. Thí d 13 (Lãi kép): 1) Gi s m t ngư i g i 10.000 ñô la vào tài kho n c a mình t i m t ngân hàng v i lãi su t kép 11% m i năm. Sau 30 năm anh ta có bao nhiêu ti n trong tài kho n c a mình? G i Pn là t ng s ti n có trong tài kho n sau n năm. Vì s ti n có trong tài kho n sau n năm b ng s có sau n − 1 năm c ng lãi su t c a năm th n, nên ta th y dãy {Pn} tho mãn h th c truy h i sau: Pn = Pn-1 + 0,11Pn-1 = (1,11)Pn-1 v i ñi u ki n ñ u P0 = 10.000 ñô la. T ñó suy ra Pn = (1,11)n.10.000. Thay n = 30 cho ta P30 = 228922,97 ñô la. 2) Tìm h th c truy h i và cho ñi u ki n ñ u ñ tính s các xâu nh phân ñ dài n và không có hai s 0 liên ti p. Có bao nhiêu xâu nh phân như th có ñ dài b ng 5? G i an là s các xâu nh phân ñ dài n và không có hai s 0 liên ti p. ð nh n ñư c h th c truy h i cho {an}, ta th y r ng theo quy t c c ng, s các xâu nh phân ñ dài n và không có hai s 0 liên ti p b ng s các xâu nh phân như th k t thúc b ng s 1 c ng v i s các xâu như th k t thúc b ng s 0. Gi s n ≥ 3. Các xâu nh phân ñ dài n, không có hai s 0 liên ti p k t thúc b ng s 1 chính là xâu nh phân như th , ñ dài n − 1 và thêm s 1 vào cu i c a chúng. V y chúng có t t c là an-1. Các xâu nh phân ñ dài n, không có hai s 0 liên ti p và k t thúc b ng s 0, c n ph i có bit th n − 1 b ng 1, n u không thì chúng có hai s 0 hai bit cu i cùng. Trong trư ng h p này chúng có t t c là an-2. Cu i cùng ta có ñư c: an = an-1 + an-2 v i n ≥ 3. ði u ki n ñ u là a1 = 2 và a2 = 3. Khi ñó a5 = a4 + a3 = a3 + a2 + a3 = 2(a2 + a1) + a2 = 13. 2.5.2. Gi i các h th c truy h i. ð nh nghĩa 2: M t h th c truy h i tuy n tính thu n nh t b c k v i h s h ng s là h th c truy h i có d ng: 32
- http://ebook.here.vn T i mi n phí ð thi, eBook, Tài li u h c t p an = c1an-1 + c2an-2 + ... + ckan-k , trong ñó c1, c2, ..., ck là các s th c và ck ≠ 0. Theo nguyên lý c a quy n p toán h c thì dãy s th a mãn h th c truy h i nêu trong ñ nh nghĩa ñư c xác ñ nh duy nh t b ng h th c truy h i này và k ñi u ki n ñ u: a0 = C0, a1 = C1, ..., ak-1 = Ck-1. Phương pháp cơ b n ñ gi i h th c truy h i tuy n tính thu n nh t là tìm nghi m dư i d ng an = rn, trong ñó r là h ng s . Chú ý r ng an = rn là nghi m c a h th c truy h i an = c1an-1 + c2an-2 + ... + ckan-k n u và ch n u - - - - - rn = c1rn 1 + c2rn 2 + ... + ckrn k hay rk − c1rk 1 − c2rk 2 − ... − ck-1r – ck = 0. Phương trình này ñư c g i là phương trình ñ c trưng c a h th c truy h i, nghi m c a nó g i là nghi m ñ c trưng c a h th c truy h i. M nh ñ : Cho c1, c2, ..., ck là các s th c. Gi s r ng phương trình ñ c trưng - - rk − c1rk 1 − c2rk 2 − ... − ck-1r – ck = 0 có k nghi m phân bi t r1, r2, ..., rk. Khi ñó dãy {an} là nghi m c a h th c truy h i an = c1an-1 + c2an-2 + ... + ckan-k n u và ch n u an = α1r1n + α2r2n + ... + αkrkn, v i n = 1, 2, ... trong ñó α1, α2, ..., αk là các h ng s . Thí d 14: 1) Tìm công th c hi n c a các s Fibonacci. Dãy các s Fibonacci th a mãn h th c fn = fn-1 + fn-2 và các ñi u ki n ñ u f0 = 0 1+ 5 1− 5 và f1 = 1. Các nghi m ñ c trưng là r1 = và r2 = . Do ñó các s Fibonacci 2 2 1+ 5 n 1− 5 n ñư c cho b i công th c fn = α1( ) + α2( ) . Các ñi u ki n ban ñ u f0 = 0 = 2 2 1+ 5 1− 5 1 α1 + α2 và f1 = 1 = α1( ) + α2( ). T hai phương trình này cho ta α1 = , 2 2 5 1 α2 = - . Do ñó các s Fibonacci ñư c cho b i công th c hi n sau: 5 1 1+ 5 n 1 1− 5 n fn = ( ) - ( ). 5 2 5 2 2) Hãy tìm nghi m c a h th c truy h i an = 6an-1 - 11an-2 + 6an-3 v i ñi u ki n ban ñ u a0 = 2, a1 = 5 và a2 = 15. ða th c ñ c trưng c a h th c truy h i này là r3 - 6r2 + 11r - 6. Các nghi m ñ c trưng là r = 1, r = 2, r = 3. Do v y nghi m c a h th c truy h i có d ng an = α11n + α22n + α33n. Các ñi u ki n ban ñ u a0 = 2 = α1 + α2 + α3 a1 = 5 = α1 + α22 + α33 a2 = 15 = α1 + α24 + α39. Gi i h các phương trình này ta nh n ñư c α1= 1, α2 = −1, α3 = 2. Vì th , nghi m duy nh t c a h th c truy h i này và các ñi u ki n ban ñ u ñã cho là dãy {an} v i 33
- http://ebook.here.vn T i mi n phí ð thi, eBook, Tài li u h c t p an = 1 − 2n + 2.3n. 2.6. QUAN H CHIA ð TR . 2.6.1. M ñ u: Nhi u thu t toán ñ quy chia bài toán v i các thông tin vào ñã cho thành m t hay nhi u bài toán nh hơn. S phân chia này ñư c áp d ng liên ti p cho t i khi có th tìm ñư c l i gi i c a bài toán nh m t cách d dàng. Ch ng h n, ta ti n hành vi c tìm ki m nh phân b ng cách rút g n vi c tìm ki m m t ph n t trong m t danh sách t i vi c tìm ph n t ñó trong m t danh sách có ñ dài gi m ñi m t n a. Ta rút g n liên ti p như v y cho t i khi còn l i m t ph n t . M t ví d khác là th t c nhân các s nguyên. Th t c này rút g n bài toán nhân hai s nguyên t i ba phép nhân hai s nguyên v i s bit gi m ñi m t n a. Phép rút g n này ñư c dùng liên ti p cho t i khi nh n ñư c các s nguyên có m t bit. Các th t c này g i là các thu t toán chia ñ tr . 2.6.2. H th c chia ñ tr : Gi s r ng m t thu t toán phân chia m t bài toán c n thành a bài toán nh , n trong ñó m i bài toán nh có c (ñ ñơn gi n gi s r ng n chia h t cho b; trong th c b n n t các bài toán nh thư ng có c [ ] ho c ] [). Gi s r ng t ng các phép toán thêm b b vào khi th c hi n phân chia bài toán c n thành các bài toán có c nh hơn là g(n). Khi ñó, n u f(n) là s các phép toán c n thi t ñ gi i bài toán ñã cho thì f th a mãn h th c truy h i sau: n f(n) = af( ) + g(n) b H th c này có tên là h th c truy h i chia ñ tr . Thí d 15: 1) Thu t toán tìm ki m nh phân ñưa bài toán tìm ki m c n v bài toán tìm ki m ph n t này trong dãy tìm ki m c n/2, khi n ch n. Khi th c hi n vi c rút g n c n hai phép so sánh. Vì th , n u f(n) là s phép so sánh c n ph i làm khi tìm ki m m t ph n t trong danh sách tìm ki m c n ta có f(n) = f(n/2) + 2, n u n là s ch n. 2) Có các thu t toán hi u qu hơn thu t toán thông thư ng ñ nhân hai s nguyên. ñây ta s có m t trong các thu t toán như v y. ðó là thu t toán phân nhanh, có dùng k thu t chia ñ tr . Trư c tiên ta phân chia m i m t trong hai s nguyên 2n bit thành hai kh i m i kh i n bit. Sau ñó phép nhân hai s nguyên 2n bit ban ñ u ñư c thu v ba phép nhân các s nguyên n bit c ng v i các phép d ch chuy n và các phép c ng. Gi s a và b là các s nguyên có các bi u di n nh phân ñ dài 2n là a = (a2n-1 a2n-2 ... a1 a0)2 và b = (b2n-1 b2n-2 ... b1 b0)2. Gi s a = 2 A1 + A0 , b = 2nB1 + B0 , trong ñó n A1 = (a2n-1 a2n-2 ... an+1 an)2 , A0 = (an-1 ... a1 a0)2 B1 = (b2n-1 b2n-2 ... bn+1 bn)2 , B0 = (bn-1 ... b1 b0)2. Thu t toán nhân nhanh các s nguyên d a trên ñ ng th c: 34
- http://ebook.here.vn T i mi n phí ð thi, eBook, Tài li u h c t p ab = (22n + 2n)A1B1 + 2n(A1 - A0)(B0 - B1) + (2n + 1)A0B0. ð ng th c này ch ra r ng phép nhân hai s nguyên 2n bit có th th c hi n b ng cách dùng ba phép nhân các s nguyên n bit và các phép c ng, tr và phép d ch chuy n. ði u ñó có nghĩa là n u f(n) là t ng các phép toán nh phân c n thi t ñ nhân hai s nguyên n bit thì f(2n) = 3f(n) + Cn. Ba phép nhân các s nguyên n bit c n 3f(n) phép toán nh phân. M i m t trong các phép c ng, tr hay d ch chuy n dùng m t h ng s nhân v i n l n các phép toán nh phân và Cn là t ng các phép toán nh phân ñư c dùng khi làm các phép toán này. n M nh ñ 1: Gi s f là m t hàm tăng tho mãn h th c truy h i f(n) = af( ) + c v i b m i n chia h t cho b, a ≥ 1, b là s nguyên l n hơn 1, còn c là s th c dương. Khi ñó O( n logb a ), a > 1 f(n) = . O(log n), a = 1 n M nh ñ 2: Gi s f là hàm tăng tho mãn h th c truy h i f(n) = af( ) + cnd v i m i b n = bk, trong ñó k là s nguyên dương, a ≥ 1, b là s nguyên l n hơn 1, còn c và d là các s th c dương. Khi ñó O(n logb a ), a > b d f(n) = O(n d log n), a = b d . d d O(n ) , a < b Thí d 16: Hãy ư c lư ng s phép toán nh phân c n dùng khi nhân hai s nguyên n bit b ng thu t toán nhân nhanh. Thí d 15.2 ñã ch ra r ng f(n) = 3f(n/2) + Cn, khi n ch n. Vì th , t M nh ñ 2 ta suy ra f(n) = O( n log 2 3 ). Chú ý là log23 ≈ 1,6. Vì thu t toán nhân thông thư ng dùng O(n2) phép toán nh phân, thu t toán nhân nhanh s th c s t t hơn thu t toán nhân thông thư ng khi các s nguyên là ñ l n. BÀI T P CHƯƠNG II: 1. Trong t ng s 2504 sinh viên c a m t khoa công ngh thông tin, có 1876 theo h c môn ngôn ng l p trình Pascal, 999 h c môn ngôn ng Fortran và 345 h c ngôn ng C. Ngoài ra còn bi t 876 sinh viên h c c Pascal và Fortran, 232 h c c Fortran và C, 290 h c c Pascal và C. N u 189 sinh viên h c c 3 môn Pascal, Fortran và C thì trong trư ng h p ñó có bao nhiêu sinh viên không h c môn nào trong 3 môn ngôn ng l p trình k trên. 35
- http://ebook.here.vn T i mi n phí ð thi, eBook, Tài li u h c t p 2. M t cu c h p g m 12 ngư i tham d ñ bàn v 3 v n ñ . Có 8 ngư i phát bi u v v n ñ I, 5 ngư i phát bi u v v n ñ II và 7 ngư i phát bi u v v n ñ III. Ngoài ra, có ñúng 1 ngư i không phát bi u v n ñ nào. H i nhi u l m là có bao nhiêu ngư i phát bi u c 3 v n ñ . 3. Ch ra r ng có ít nh t 4 ngư i trong s 25 tri u ngư i có cùng tên h vi t t t b ng 3 ch cái sinh cùng ngày trong năm (không nh t thi t trong cùng m t năm). 4. M t tay ñô v t tham gia thi ñ u giành ch c vô ñ ch trong 75 gi . M i gi anh ta có ít nh t m t tr n ñ u, nhưng toàn b anh ta có không quá 125 tr n. Ch ng t r ng có nh ng gi liên ti p anh ta ñã ñ u ñúng 24 tr n. 5. Cho n là s nguyên dương b t kỳ. Ch ng minh r ng luôn l y ra ñư c t n s ñã cho m t s s h ng thích h p sao cho t ng c a chúng chia h t cho n. 6. Trong m t cu c l y ý ki n v 7 v n ñ , ngư i ñư c h i ghi vào m t phi u tr l i s n b ng cách ñ nguyên ho c ph ñ nh các câu tr l i tương ng v i 7 v n ñ ñã nêu. Ch ng minh r ng v i 1153 ngư i ñư c h i luôn tìm ñư c 10 ngư i tr l i gi ng h t nhau. 7. Có 17 nhà bác h c vi t thư cho nhau trao ñ i 3 v n ñ . Ch ng minh r ng luôn tìm ñư c 3 ngư i cùng trao ñ i m t v n ñ . 8. Trong kỳ thi k t thúc h c ph n toán h c r i r c có 10 câu h i. Có bao nhiêu cách gán ñi m cho các câu h i n u t ng s ñi m b ng 100 và m i câu ít nh t ñư c 5 ñi m. 9. Phương trình x1 + x2 + x3 + x4 + x5 = 21 có bao nhiêu nghi m nguyên không âm? 10. Có bao nhiêu xâu khác nhau có th l p ñư c t các ch cái trong t MISSISSIPI, yêu c u ph i dùng t t c các ch ? 11. M t giáo sư c t b sưu t p g m 40 s báo toán h c vào 4 chi c ngăn t , m i ngăn ñ ng 10 s . Có bao nhiêu cách có th c t các t báo vào các ngăn n u: 1) M i ngăn ñư c ñánh s sao cho có th phân bi t ñư c; 2) Các ngăn là gi ng h t nhau? 12. Tìm h th c truy h i cho s m t th t Dn. 13. Tìm h th c truy h i cho s các xâu nh phân ch a xâu 01. 14. Tìm h th c truy h i cho s cách ñi lên n b c thang n u m t ngư i có th bư c m t, hai ho c ba b c m t l n. 15. 1) Tìm h th c truy h i mà Rn tho mãn, trong ñó Rn là s mi n c a m t ph ng b phân chia b i n ñư ng th ng n u không có hai ñư ng nào song song và không có 3 ñư ng nào cùng ñi qua m t ñi m. b) Tính Rn b ng phương pháp l p. 16. Tìm nghi m c a h th c truy h i an = 2an-1 + 5an-2 - 6an-3 v i a0 = 7, a1 = -4, a2 = 8. 36
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Toán rời rạc - Chương 2: Bài toán đếm
15 p | 548 | 158
-
Giáo trình toán rời rạc - BÀI TOÁN ĐẾM
16 p | 1183 | 142
-
Bài 2: Bài toán đếm và bài toán tồn tại tổ hợp
36 p | 527 | 106
-
CHƯƠNG II: BÀI TOÁN ĐẾM
16 p | 244 | 70
-
Bài giảng Chương II: Các phương pháp đếm và nguyên lý Dirichlet (Phần 1) - GVC ThS. Võ Minh Đức
35 p | 325 | 70
-
[Giáo trình Toán rời rạc] - Chương2 - Bài Toán Đếm
15 p | 149 | 57
-
Bài giảng Lý thuyết tổ hợp - Chương 1: Bài toán đếm
178 p | 287 | 43
-
BÀI TOÁN ĐẾM – PHẦN 1
15 p | 97 | 11
-
Bài giảng Toán ứng dụng: Bài 2 - Bài toán đếm và bài toán tồn tại
36 p | 96 | 8
-
BÀI TOÁN ĐẾM – PHẦN 3
7 p | 113 | 6
-
Bài giảng Nhập môn lý thuyết tổng hợp: Chương 2 - Nguyễn Anh Thi
103 p | 93 | 6
-
Bài giảng Toán rời rạc: Hàm sinh - Trần Vĩnh Đức
51 p | 56 | 5
-
Bài giảng Toán rời rạc: Chương 3 - Dr. Ngô Hữu Phúc
58 p | 10 | 4
-
Bài giảng Toán rời rạc: Bài toán đếm - ThS. Hoàng Thị Thanh Hà
41 p | 27 | 4
-
Bài giảng Chương 3: Bài toán đếm
11 p | 180 | 4
-
Một số dạng toán đếm tập sinh bởi hàm số qua các đề thi Olympic
11 p | 26 | 2
-
Bài giảng Toán rời rạc 1: Chương 0 - ThS. Võ Văn Phúc
7 p | 40 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn