Báo cáo nghiên cứu khoa học: "Biểu diễn Doob - Mayer đối với Martingale trên thang thời gian"
lượt xem 3
download
Tuyển tập các báo cáo nghiên cứu khoa học hay nhất của trường đại học vinh năm 2009 tác giả: 2. Nguyễn Thanh Diệu, Biểu diễn Doob - Mayer đối với Martingale trên thang thời gian.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Báo cáo nghiên cứu khoa học: "Biểu diễn Doob - Mayer đối với Martingale trên thang thời gian"
- Doob - Meyer decoposition for submartingales on time scales Nguyen Thanh Dieu (a) Abstract. The aim of this paper is to study the Doob - Meyer decomposition for a submartingale on time scales. The obtained results can be considered as a generalization of the Doob - Meyer decomposition for submartingale in the discrete and continuous time. Introduction The Doob - Meyer decomposition theorem for a submartingale is one of the central topic in the probability theory. In [8], P.A. Meyer has proved that a submartingale belonging to the class D admits a unique decomposition into a sum of a uniformly integrable martingale and a predictable integrable increasing process. Later on, this result is considered in the continuous time in [10] by using the increasing natural process instead the concept of prediction. Moreover, in recent years, the theory of dynamic on time scales, which was intro- duced by Stefan Hilger in his PhD thesis [5], has been born in order to unify continu- ous and discrete analysis. Since then, this problem has received much attention from many research groups. Therefore, it is natural that we need to transfer this theory to the so-called stochastic calculus on the time scale. The first attempt of this topic is to consider the Doob - Meyer decomposition for submartingales indexed by a time scale and this is the aim of this paper. The obtained result can be considered as a common method to present Doob - Meyer decomposition in the discrete and continuous time. The organization of this paper is as follows. In section 1 we survey some basic notation and properties of the analysis on time scale. In section 2 we presents the main result of Doob - Meyer decomposition theorem for a submartingale on time scale. 1. Preliminaries on time scales This section surveys some notations on the theory of the analysis on time scales which was introduced by Stefan Hilger 1988 [5]. A time scale is a nonempty closed subset of the real numbers R, and we usually denote it by the symbol T. We assume throughout that a time scale T is endowed with the topology inherited from the real numbers with the standard topology. We define the forward jump operator and the backward jump operator σ, ρ : T → T by σ (t) = inf {s ∈ T : s > t} (supplemented by inf ∅ = sup T) and ρ(t) = sup{s ∈ T : s < t} (supplemented by sup ∅ = inf T). The graininess µ : T → R+ ∪ {0} is given by µ(t) = σ (t) − t. A point t ∈ T is said to be right- dense if σ (t) = t, right-scattered if σ (t) > t, left-dense if ρ(t) = t, left-scattered if ρ(t) < t, NhËn bµi ngµy 22/5/2009. Söa ch÷a xong 17/11/2009. 1
- and isolated if t is right-scattered and left-scattered. For every a, b ∈ T, by [a, b], we mean the set {t ∈ T : a t b}. The set Tk is defined to be T if T does not have a left-scattered maximum; otherwise it is T without this left-scattered maximum. Let f be a function defined on T, valued in Rm . We say that f is delta differentiable (or simply: differentiable) at t ∈ Tk provided there exists a vector f ∆ (t) ∈ Rm , called the derivative of f , such that for all > 0 there is a neighborhood V around t with |σ (t) − s| for all s ∈V. If f is differentiable for every f (σ (t)) − f (s) − f ∆ (t)(σ (t) − s) t ∈ Tk , then f is said to be differentiable on T. If T = R then delta derivative is f (t) from continuous calculus; if T = Z, the delta derivative is the forward difference, ∆f , from discrete calculus. A function f defined on T is rd−continuous if it is continuous at every right-dense point and if the left-sided limit exists at every left-dense point. The set of all rd−continuous function from T to a Banach space X is denoted by Crd (T, X ). A matrix function f from T to Rm × Rm is said to be regressive if det(I + µ(t)f (t)) = 0 for every t ∈ T. If f : T → R is a function, then we write f σ : T → R for the function f σ = f ◦ σ; i.e., ftσ = f (σ(t)) for all t ∈ T. Denote I = {t : right-scattered points of T}. 1.1. Proposition ([7]). The set I of all right-scattered points of T is at most countable. Let A be an increasing rd−contiuous function defined on T. Denote by F1 the family of all left close and right open interval of T: F1 = {[a; b) : a, b ∈ T}. is semiring of subsets of T. Let m1 be the set function defined on F1 by F1 m1 ([a, b)) = A(b) − A(a). It is easy to show that m1 is a countably additive measure on F1 . We write µA for the ∆ Caratheodory extension of the set function m1 , associated with the family F1 and call it the Stieljes - Lebesgue ∆−measure associated with A on T. Let E be an A∆ − measurable set of T\{max T, min T} and f : T → R, be an A∆ − measurable function. The integral of f associated with the measures µA on E is called ∆ Lebesgue - Stieljes ∆− integral and it is denoted by f (s)∆A(s). E 1.2. Example. If A(t) = t for all t ∈ T we have µA is Lebesgue ∆− measure on T and ∆ f (s)∆A(s) is Lesbesgue ∆− integral. E 1.3. Remark. By the definition of µA we see that ∆ (1) For each t0 ∈ Tk , the single- point set {t0 } is ∆A − measurable, and µA ({t0 }) = A(σ (t0 )) − A(t0 ) (1.1) ∆
- (2) If a, b ∈ T and a b, then µA ((a, b)) = A(b) − A(σ (a)) ∆ µA ((a, b]) = A(σ (b)) − A(σ (a)) ∆ µA ([a, b]) = A(σ (b)) − A(a) ∆ 2. Doob - Meyer decomposition Let a ∈ Tk . We denote Ta = {x ∈ T : x a}. Let (Ω, F, {Ft }t∈T , P) be a space probability with filtration {Ft }t∈T satisfing the usual conditions. The notions of con- a tinuous process, rd−continuous process, cadlag process, martingale, submartingale, a stopping time... for a stochastic processes X = {Xt : t ∈ Ta } on the space probability (Ω, F, {Ft }t∈T , P) are defined as usually. a 2.1. Definition. A process A = {At }t∈Ta is called increasing if it is Ft −adapted, Aa = 0 and the almost sure sample paths of A are increasing on Ta . 2.2. Proposition. If M is a right continuous bounded martingale, A is increasing then for any t ∈ Ta , then σ EMt At = E Ms ∆As . (2.1) [a,t) (n) (n) Proof. Fix a t ∈ Ta . For any n ∈ N, consider a partion π (n) = {a = t0 < t1 < ··· < (n) tkn = t} of [a, t]. Denote δπ(n) = maxti ∈π(n) |ti+1 − σ (ti )|. Let Mσ(a) if s=a (n) (n) (n) π = Mσ(t(n) ) if s ∈ (ti , ti+1 ] ∀i = 0, ..., kn − 2 Ns i+1 M (n) if s ∈ (tkn −1 , t). t σ Since M is right continuous, Ms is also right continuous. Therefore, (n) σ π Ms = lim Ns ∀s ∈ [a, t). δπ(n) →0 Hence, by the bounded convergence theorem we have (n) σ π E Ms ∆A(s) = E lim Ns ∆A(s) δπ(n) →0 [a,t) [a,t) (n) π = lim E Ns ∆A(s) = lim E Mσ(a) Aσ(a) δπ(n) →0 δπ(n) →0 [a,t) kn −1 + Mσ(t(n) ) (Aσ(t(n) ) − Aσ(t(n) ) ) + Mt (At − Aσ(t(n) ) kn −1 ) i i i−1 i=1
- kn −1 = lim E Mt At + Aσ(t(n) ) (Mσ(t(n) ) δπ(n) →0 i−1 i i=1 − Mσ(t(n) ) ) + Aσ(t(n) (Mt − Mσ(t(n) ) = EMt At . kn −1 ) kn −1 ) i−1 The proof is complete. For any cadlag function f : Ta → R, we define the function ft− by ft− = lims↑t f (s) for each t ∈ T \ {min T}. By convention we put fa− = f (a). 2.3. Definition. An increasing process A = (At )t∈Ta is said to be natural if for every bounded cadlag martingale M = (Mt )t∈Ta we have EMt At = E Ms− ∆As . (2.2) [a,t) 2.4. Proposition. The rd−continuous, increasing process (At )t∈Ta is natural iff Aσ is t Ft −measurable for t ∈ I ∩ Ta . Proof. Sufficient condition. Suppose that Aσ is Ft −measurable for t ∈ I ∩ Ta . Let Mt be a t Ft − cadlag martingale and t ∈ Ta arbitrary. For any n ∈ N, we consider a partition (n) (n) (n) (n) (n) π (n) = {a = t0 < t1 < · · · < tkn = t} of [a, t] such that δπ(n) = max |ti+1 − σ (ti )| 2−n . Let Ma if s=a (n) (n) (n) = Mσ(t(n) ) if s ∈ (ti ; ti+1 ] ∀i = 0, .., kn − 2. π (n) Ms i (n) M (n) if s ∈ (tkn −1 ; t) σ (t ) kn −1 Since M is a cadlag process, (n) π Ms− = lim Ms ∀s ∈ [a, t). δπ(n) →0 Therefore, by the bounded convergence theorem we have (n) π E Ms− ∆A(s) = E lim Ms ∆A(s) . δπ(n) →0 [a,t) [a,t) We have (n) (n) σ π π E (Ms − Ms− )∆As = E lim (Ns − Ms )∆As δπ(n) →0 [a,t) [a,t) = lim E (Mσ(a) − Ma )(Aσ(a) − Aa ) δπ(n) →0 (n) kn − 2 + (Mσ(t(n) ) − Mσ(t(n) ) (Aσ(t(n) ) − Aσ(t(n) ) ) + (Mt − Mσ(t(n) )(At − Aσ(t(n) ). kn −1 ) kn −1 ) i+1 i i+1 i i=0
- (n) (n) (n) Because σ (ti ) ti+1 σ (ti+1 ) , At is rd−continuous and Mt is right continuous we see that the above limit converges to (Ms − Ms )(Aσ − As ) . σ E s s∈I∩[a,t) On the other hand, Aσ is Fs − measurable for s ∈ I ∩ [a, t) then s E [(Ms − Ms )(Aσ − As )] = E [E(Ms − Ms )(Aσ − As )|Fs ] σ σ s s = E [(Aσ − As )E(Ms − Ms |Fs )] = 0. σ s Thus, σ E (Ms − Ms− )∆As = 0. [a,t) By using the proposition 2.2 we get σ E Ms ∆As = E Ms− ∆As = EMt tAt , [a,t) [a,t) i.e., (At ) is natural increasing processes Necessary condition. Let A = (At ) be a natural increasing process. We need drive that Aσ t is Ft −measurable for t ∈ I∩Ta . Let t ∈ I∩Ta . It is easy to see the process As = As −At , s t is also natural on Tt . Therefore, by (2.2), for any cadlad, bounded martingale Mt we have EMσ(t) (Aσ(t) − At ) = E Mτ − ∆Aτ = EMt (Aσ(t) − At ). [t,σ (t)) Or, E(Mσ(t) − Mt )(Aσ(t) − At ) = 0 =⇒ E(Mσ(t) − Mt )Aσ(t) = 0. Since EMt (Aσ(t) − E[Aσ(t) | Ft ]) = 0, E(Mσ(t) − Mt )(Aσ(t) − E[Aσ(t) | Ft ]) = 0. It is easy to see that Mτ = (Aσ(s) − E[Aσ(s) | Fs ]) a s
- Proof. i) If T = N, then any point t ∈ T right- scattered and σ (t) = t + 1. Therefore, by the proposition 2.4, At is natural if and only if At+1 is Ft −measurable, i.e., (An ) is a previsible process. ii) When T = R we have σ (t) = t for all t ∈ T. Since At is increaing, At is Ft −measurable. We recall the Dunford - Pettis theorem in [1]. 2.6. Theorem (Dunford - Pettis [1]). If (Yn )n∈N is uniformly integrable sequence of random variables, there exists an integrable random variable Y and a subsequence (Ynk )k∈N such that weak-limk→∞ Ynk = Y , i.e., for all bounded random variables ξ we have lim E(ξYnk ) = E (ξY ) k→∞ A process X is said to be: of class (D) if the set - {Xτ : τ is a stopping time satisfying a τ < ∞} is uniformly integrable. of class (DL) if for every t ∈ Ta the set - {Xτ : τ is a stopping time satisfying a τ t} is uniformly integrable. 2.7. Theorem (Doob-Meyer decomposition). Let X be a right continuous submartingale of class (DL). Then, there exist a right continuous martingale and a right continuous increasing process A such that Xt = Mt + At ∀t ∈ Ta a.s. If A is natural then M and A are uniquely determined up to indistinguishability. If X is of class (D) then M and A are uniformly integrable. Proof. First we proof uniqueness. Suppose there exist two right continuous martingales M , M and two right continuous natural increasing processes A, A such that Xt = Mt + At = Mt + At ∀t ∈ Ta a.s. This relation implies that Bt = At − At = Mt − Mt is right continuous martingale.
- Let ξt be an arbitrary right continuous bounded martingale. For each partition π (n) : a = (n) (n) (n) t0 < t1 < · · · < tn = t of [a, t], we set ξa if s=a (n) (n) (n) ξs = ξσ(t(n) ) if s ∈ (ti ; ti+1 ] ∀i = 0, 1, ..., n − 2 . π i (n) ξ (n) if s ∈ (t ; t) n−1 σ (tn−1 ) we have (n) π ξs− = lim ξs ∀s ∈ [a, t) δπ(n) →0 By the bounded convergence theorem we have (n) π E ξs− ∆A(s) = E lim ξs ∆A(s) δπ(n) →0 [a,t) [a,t) n−2 = E lim ξ0 (Aσ(0) − A0 ) + ξσ(ti ) (Aσ(ti+1 ) δπ(n) →0 i=0 − Aσ(ti ) ) + ξσ(tn−1 ) (At − Aσ(tn−1 ) ) Therefore, Eξt (At − At ) = E ξs− ∆A(s) − E ξs− ∆A (s) [a,t) [a,t) n−2 = E lim ξ0 (Bσ(0) − B0 ) + ξσ(ti ) (Bσ(ti+1 ) − Bσ(ti ) ) δπ(n) →0 i=0 + ξσ(tn−1 ) (Bt − Bσ(tn−1 ) ) = lim E ξ0 (Bσ(0) − B0 ) δπ(n) →0 n−2 + ξσ(ti ) (Bσ(ti+1 ) − Bσ(ti ) ) + ξσ(tn−1 ) (Bt − Bσ(tn−1 ) ) i=0 Thus Eξt (At − At ) = 0. Now let X be an arbitrary bounded random variable and let us define the bounded mar- tingale ξ by taking a right continuous version of E(X |Ft )t∈Ta . From the above, E(X (At − At )) = E E(X (At − At )|Ft ) = E (At − At )E(X |Ft ) = Eξt (At − At ) = 0. Since the choice of X was arbitrary, it follows that At = At almost surely for a fixed t > 0. By virtue of the right continuity of A and A , we conclude that A and A are indistinguishable. Hence, M = X − A and M = X − A are indistinguishable as well.
- Next, we prove the existence of the decomposition. By uniqueness, it suffices to prove the existence of the processes M and A on the interval [a; b] for fixed b ∈ Ta . Without loss (n) (n) (n) of generality we may assume that Xa = 0. Let π (n) : a = t0 < t1 < · · · < tN = b be 1 a partition of [a, b] such that δπ(n) = maxti ∈π(n) |ti − σ (ti−1 )| 2n . Consider the Doob - Meyer decomposition of the finite submartingale X (n) = (Xt(n) )t(n) ∈π(n) j j (n) (n) Xt(n) = M (n) + A (n) tj tj j (n) (n) (n) Thus, M (n) = {M (n) }t(n) ∈π(n) is a martingale satisfying Ma = Xa and A(n) = {A (n) }t(n) ∈π(n) tj tj j j is a previsible and increasing. Therefore, (n) (n) (n) M (n) = E(Mb |Ft(n) ) = E(Xb − Ab |Ft(n) ) tj j j (n) 2.8. Lemma. {Ab : n = 1, 2, · · · } is uniformly integrable. (n) Proof. Let λ > 0 be fix and define the random variable Tλ by min{t(n) : j = 1, 2, ..., N and A((n)) > λ} n j −1 tj (n) Tλ = . (n) (n) b if {tj −1 : j = 1, 2, ..., N and A (n) > λ} = ∅ t j Since A(n) is increasing, (n) (n) (n) {Tλ tj −1 } = {A (n) > λ}, tj (n) and this set belongs to Ft(n) by the previsibility of A(n) . It is easy to see that Tλ is a j −1 stopping time. By noting that (n) (n) {Tλ < b} = {Ab > λ} (n) and that A λ on this set, we obtain (n) Tλ 1 (n) (n) 0 Ab dP (Ab − λ)dP 2 (n) (n) Ab >2λ Ab >2λ (n) (n) (n) (n) (Ab −A )dP (Ab −A )dP (n) (n) Tλ Tλ (n) Ab >2λ Ω = (Xb − XT (n) )dP = (Xb − XT (n) )dP. (n) λ λ Ω {Ab >λ} By using Chebyshev inequality we have: (n) EAb EXb (n) P{Ab > λ} = → 0 where λ → ∞. λ λ
- Hence, limλ→∞ P(A(n) > λ) = 0 uniformly. Since X is assumed to be of class (DL), (Xb − XT (n) )dP → 0 where λ → ∞. (n) λ {Ab >λ} Therefore, (n) Ab dP → 0 where λ → ∞, A(n) >2λ (n) i.e., {Ab } is uniform integrability. Now we return to the proof of Theorem 2.8. By the Dunford - Pettis theorem, there (n ) is a subsequence (Ab k )k∈N converging weakly to an integrable random variable Ab . We claim that for any sub σ − algebra G of F, (nk ) weakly- lim E(Ab |G ) = E(Ab |G ). k→∞ To prove this, fix an arbitrary bounded random variable η . Then, (nk ) (nk ) lim E(η E(Ab |G )) = lim E(E(η E(Ab |G )|G )) k→∞ k→∞ (nk ) (nk ) = lim E(E(Ab |G )E(η |G )) = lim E(E(Ab E(η |G )|G )) k→∞ k→∞ (nk ) = lim E(Ab E(η |G )) = E(Ab E(η |G )) = E(η E(Ab |G )). k→∞ We now define the processes M and A by Mt = E(Xb − Ab |Ft ); At = Xt − Mt ; ∀t ∈ [a, b], (n) where Ab is the weak limit point of an appropriate subsequence of (Ab ). In the first definition we take a right continuous version of the martingale Mt which implies that the process A is right continuous, At is integrable for each t. We see that (nk ) Aa = Xa − E(Xb − Ab |Fa ) = Xa − weak- lim E(Xb − Ab |Fa ) k→∞ (nk ) = Xa − weak- lim Mank ) ( = Xa − weak- lim E(Mb |Fa ) k→∞ k→∞ = weak- lim A(nk ) = 0. a k→∞ π (n) . Let Π = If a s t b with s, t ∈ Π are fixed then n∈N At − As = Xt − Xs − E(Xb − Ab |Ft ) − E(Xb − Ab |Fs ) (nk ) (nk ) = Xt − Xs − weak- lim E(Xb − Ab |Ft ) − E(Xb − Ab |Fs ) k→∞ (nk ) (nk ) = Xt − Xs − weak- lim E(Mb |Ft ) − E(Mb |Fs ) k→∞ (nk ) − EA(nk ) weak- lim EAt 0. s k→∞
- Since Π is countable and A is right continuous, it follows that there is a version of At such that At As for all t > s in [a; b] almost surely. It follows that A is increasing. Next we check that A is natural. Let ξ be any right continuous bounded martingale. By the predictability of A(n) then (n) (n) (n) (n) = Eξb (Aσ(a) − Aan) ) + ( E ξb Ab Eξa (A −A ) (n) (n) σ (tk ) σ (tk−1 ) (n) tk ∈π (n) (n) (n) (n) = Eξσ(a) (Aσ(a) − Aan) ) + ( Eξσ(t(n) ) (A −A ). (n) (n) σ (tk ) σ (tk−1 ) k −1 (n) tk ∈π (n) Where n enough large the right hand of the obove relation equals to Eξσ(a) (Aσ(a) − Aa ) + Eξσ(t(n) ) (Aσ(t(n) ) − Aσ(t(n) ) ). k−1 k k−1 (n) tk ∈π (n) Letting n → ∞ we obtain Eξσ(a) (Aσ(a) − Aa ) + Eξσ(t(n) ) (Aσ(t(n) ) − Aσ(t(n) ) ) → E ξs− ∆A(s), k −1 k k−1 [a,b) (n) tk ∈π (n) and (n) E ξb Ab → E [ξb Ab ] . So, we have E [ξb Ab ] = E ξs− ∆A(s). [a,b) Replacing ξ = (ξs ) by ξ = ξt∧s for each t ∈ [a, b] it easy to conclude that E [ξt At ] = E ξs− ∆A(s). [a,t) Thus A = (At ) is natural. Finally, if X is of class (D), then X is uniformly integrable and the limit X∞ = limt→∞ Xt exists almost surely and this limit belongs to L1 . The Doob - Meyer decom- (n) positions of the discrete submartingales X (n) along the partitions π (n) = {tj : j ∈ N} of Ta , are then uniformly integrable as well, and we may define A∞ as the weak limit of an (n) (n) (n) appropriate subsequence of (A∞ )n∈N , where A∞ := limj →∞ A (n) . The details carry over tj almost verbatim. References 1. Lav Kallenberg, Foundations of Modern Probability, Springer Verlag, New York Berlin Heidelberg, 2001.
- 2. Doob. J.L. Stochastic processes, John Wiley and Sons, New York, 1953. 3. N. Ikeda and S. Wantanabe, Stochastic differential equations and diffusion pro- cesses, North Holland, Amstardam, 1981. 4. Peter Medvegyev, Stochastic Integration Theory, Oxford University Press Inc., New York, 2007. 5. S. Hilger, Ein Makettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten, a Ph.D. thesis, Universitaat Waurzburg, 1988. 6. S. Hilger, Analysis on measure chains a unified approach to continuous and discrete calculus, Results Math., 18 (1990), No. 1-2, 1856. 7. M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkhauser ¨ Boston, Massachusetts, 2001. 8. P.A. Meyer, A decomposition theorem for supermartingales, Illinois J. Math., 6 (1962), 193205. 9. P.A. Meyer, Decomposition of supermartingales: The uniqueness theorem, Illinois J. Math., 7 (1963), 117. 10. Kunita. H and Wantanabe. S, On square integrable martingales, Nagoya Math. J., 30 (1967), 209-245 11. Alberto Cabada, Dolores R. Vivero, Expression of the Lebesgue ∆-Integral on Time Scales as a usual Lebesgue Integral; Application to the calculus of ∆- Antiderivatives, Mathematical and Computer Modelling, 43, (2006)194207. 12. I.I . Gihman, A.V Skorokhod, The Theory of Stochastic processes III, Springer - Verlag New York Inc, 1979. Tãm t¾t BiÓu diÔn doob - Meyer ®èi víi martingale díi trªn thang thêi gian Môc ®Ých cña bµi b¸o nµy lµ nghiªn cøu biÓu diÔn Doob - Mayer ®èi víi Martingale díi trªn thang thêi gian. KÕt qu¶ ®¹t ®îc cã thÓ xem lµ sù tæng qu¸t hãa cña biÓu diÔn Doob - Mayer víi thêi gian rêi r¹c vµ thêi gian liªn tôc. (a) Department of Mathematics,Vinh University, Nghe An, Vietnam.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Báo cáo nghiên cứu khoa học: "NGHIÊN CỨU CHẤT LƯỢNG NƯỚC VÀ TÔM TỰ NHIÊN TRONG CÁC MÔ HÌNH TÔM RỪNG Ở CÀ MAU"
12 p | 1366 | 120
-
Báo cáo nghiên cứu khoa học: "Cái tôi trữ tình trong thơ Nguyễn Quang Thiều."
10 p | 614 | 45
-
Báo cáo nghiên cứu khoa học: "NGHIÊN CỨU PHỐI TRỘN CHI TOSAN – GELATI N LÀM MÀNG BAO THỰC PHẨM BAO GÓI BẢO QUẢN PHI LÊ CÁ NGỪ ĐẠI DƯƠNG"
7 p | 518 | 45
-
Báo cáo nghiên cứu khoa học: "Giọng điệu thơ trào phúng Tú Mỡ trong “Dòng nước ngược”"
8 p | 322 | 44
-
Báo cáo nghiên cứu khoa học: "NGHIÊN CỨU THỰC NGHIỆM ẢNH HƯỞNG CỦA MƯA AXÍT LÊN TÔM SÚ (PENAEUS MONODON)"
5 p | 454 | 44
-
Báo cáo nghiên cứu khoa học: "NGHIÊN CỨU ĐẶC ĐIỂM SINH HỌC DINH DƯỠNG VÀ SINH SẢN CỦA LƯƠN ĐỒNG (Monopterus albus)"
12 p | 305 | 43
-
Báo cáo nghiên cứu khoa học: "TÌNH HÌNH SỬ DỤNG THỨC ĂN TRONG NUÔI CÁ TRA VÀ BASA KHU VỰC ĐỒNG BẰNG SÔNG CỬU LONG"
8 p | 225 | 38
-
Báo cáo nghiên cứu khoa học: "ỨNG DỤNG PHƯƠNG PHÁP PCR-GENOTYPI NG (ORF94) TRONG NGHIÊN CỨU VI RÚT GÂY BỆNH ĐỐM TRẮNG TRÊN TÔM SÚ (Penaeus monodon)"
7 p | 379 | 35
-
Báo cáo nghiên cứu khoa học: "NGHIÊN CỨU CẢI TIẾN HỆ THỐNG NUÔI KẾT HỢP LUÂN TRÙNG (Brachionus plicatilis) VỚI BỂ NƯỚC XANH"
11 p | 386 | 29
-
Báo cáo nghiên cứu khoa học: "Vai trò của toán tử tình thái trong tác phẩm của Nguyễn Công Hoan (Qua phân tích truyện ngắn Mất cái ví)"
8 p | 268 | 24
-
Báo cáo nghiên cứu khoa học: "Quan hệ giữa cấu trúc và ngữ nghĩa câu văn trong tập truyện ngắn “Đêm tái sinh” của tác giả Trần Thuỳ Mai"
10 p | 436 | 24
-
Báo cáo nghiên cứu khoa học: " NGHIÊN CỨU TẠO KHÁNG THỂ ĐƠN DÒNG VI-RÚT GÂY BỆNH HOẠI TỬ CƠ QUAN TẠO MÁU VÀ DƯỚI VỎ (IHHNV) Ở TÔM PENAEID"
6 p | 354 | 23
-
Báo cáo nghiên cứu khoa học: "NGHIÊN CỨU DÙNG ARTEMIA ĐỂ HẠN CHẾ SỰ PHÁT TRIỂN CỦA TIÊM MAO TRÙNG (Ciliophora) TRONG HỆ THỐNG NUÔI LUÂN TRÙNG"
10 p | 367 | 18
-
Báo cáo nghiên cứu khoa học: " NGHIÊN CỨU THIẾT LẬP HỆ THỐNG NUÔI KẾT HỢP LUÂN TRÙNG (Brachionus plicatilis) VỚI BỂ NƯỚC XANH"
10 p | 373 | 16
-
Báo cáo nghiên cứu khoa học: " NGHIÊN CỨU PHÂN VÙNG THỦY VỰC DỰA VÀO QUẦN THỂ ĐỘNG VẬT ĐÁY"
6 p | 349 | 16
-
Báo cáo nghiên cứu khoa học: " NGHIÊN CỨU THAY THẾ THỨC ĂN SELCO BẰNG MEN BÁNH MÌ TRONG NUÔI LUÂN TRÙNG (Brachionus plicatilis) THÂM CANH"
10 p | 347 | 15
-
Báo cáo nghiên cứu khoa học: " CẬP NHẬT VỀ HỆ THỐNG ĐỊNH DANH TÔM BIỂN VÀ NGUỒN LỢI TÔM HỌ PENAEIDAE Ở VÙNG VEN BIỂN ĐỒNG BẰNG SÔNG CỬU LONG"
10 p | 194 | 14
-
Báo cáo nghiên cứu khoa học công nghệ: Kết quả nghiên cứu lúa lai viện cây lương thực và cây thực phẩm giai đoạn 2006 - 2010
7 p | 188 | 13
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn