intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Chuyên Đề : bất đẳng thức lượng giác

Chia sẻ: Nguyễn Đăng Khoa | Ngày: | Loại File: PDF | Số trang:101

610
lượt xem
155
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tài liệu tham khảo và tuyển tập các Chuyên đề ôn thi đại học môn toán học giúp các bạn ôn thi tuyển sinh đại học , cao đẳng tốt hơn. Chuyên đề Bất đẳng thức lượng giác sẽ đưa bạn từ những bài toán dễ chứng minh đến những bài toán gay go phức tạp, từ các kĩ thuật cổ điển đến hiện đại. Tài liệu hệ thống các...

Chủ đề:
Lưu

Nội dung Text: Chuyên Đề : bất đẳng thức lượng giác

  1. z  Chuyên Đề : bất đẳng thức lượng giác
  2. www.laisac.page.tl  Chuyên Đề :  B  T Đ  N  T  Ứ  L  Ợ  G G  Á  BẤ  ĐẲ  G  TH  C LƯ  N  GI  C  Ấ ẲN HỨ ƯỢN IÁ THPT Chuyên Lý Tự Trọng. Cần Thơ : Chương 1 CÁC BƯ C ð U CƠ S ð b t ñ u m t cu c hành trình, ta không th không chu n b hành trang ñ lên ñư ng. Toán h c cũng v y. Mu n khám phá ñư c cái hay và cái ñ p c a b t ñ ng th c lư ng giác, ta c n có nh ng “v t d ng” ch c ch n và h u d ng, ñó chính là chương 1: “Các bư c ñ u cơ s ”. Chương này t ng quát nh ng ki n th c cơ b n c n có ñ ch ng minh b t ñ ng th c lư ng giác. Theo kinh nghi m cá nhân c a mình, tác gi cho r ng nh ng ki n th c này là ñ y ñ cho m t cu c “hành trình”. Trư c h t là các b t ñ ng th c ñ i s cơ b n ( AM – GM, BCS, Jensen, Chebyshev …) Ti p theo là các ñ ng th c, b t ñ ng th c liên quan cơ b n trong tam giác. Cu i cùng là m t s ñ nh lý khác là công c ñ c l c trong vi c ch ng minh b t ñ ng th c (ñ nh lý Largare, ñ nh lý v d u c a tam th c b c hai, ñ nh lý v hàm tuy n tính …) M cl c: 1.1. Các b t ñ ng th c ñ i s cơ b n…………………………………………… 4 1.1.1. B t ñ ng th c AM – GM…...……………............................................ 4 1.1.2. B t ñ ng th c BCS…………………………………………………….. 8 1.1.3. B t ñ ng th c Jensen……………………………………………….... 13 1.1.4. B t ñ ng th c Chebyshev…………………………………………..... 16 1.2. Các ñ ng th c, b t ñ ng th c trong tam giác…………………………….. 19 1.2.1. ð ng th c……………………………………………………………... 19 1.2.2. B t ñ ng th c………………………………………………………..... 21 1.3. M t s ñ nh lý khác………………………………………………………. 22 1.3.1. ð nh lý Largare ………………………..……………………………. 22 1.3.2. ð nh lý v d u c a tam th c b c hai………………………………….. 25 1.3.3. ð nh lý v hàm tuy n tính…………………………………………….. 28 1.4. Bài t p…………………………………………………………………….. 29 The Inequalities Trigonometry 3
  3. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s 1.1. Các b t ñ ng th c ñ i s cơ b n : 1.1.1. B t ñ ng th c AM – GM : V i m i s th c không âm a1 , a 2 ,..., a n ta luôn có a1 + a 2 + ... + a n n ≥ a1 a 2 ...a n n B t ñ ng th c AM – GM (Arithmetic Means – Geometric Means) là m t b t ñ ng th c quen thu c và có ng d ng r t r ng rãi. ðây là b t ñ ng th c mà b n ñ c c n ghi nh rõ ràng nh t, nó s là công c hoàn h o cho vi c ch ng minh các b t ñ ng th c. Sau ñây là hai cách ch ng minh b t ñ ng th c này mà theo ý ki n ch quan c a mình, tác gi cho r ng là ng n g n và hay nh t. Ch ng minh : Cách 1 : Quy n p ki u Cauchy V i n = 1 b t ñ ng th c hi n nhiên ñúng. Khi n = 2 b t ñ ng th c tr thành a1 + a 2 ( ) 2 ≥ a1 a 2 ⇔ a1 − a 2 ≥ 0 (ñúng!) 2 Gi s b t ñ ng th c ñúng ñ n n = k t c là : a1 + a 2 + ... + a k k ≥ a1a 2 ...a k k Ta s ch ng minh nó ñúng v i n = 2k . Th t v y ta có : (a1 + a 2 + ... + ak ) + (a k +1 + ak +2 + ... + a 2k ) (a1 + a 2 + ... + ak )(ak +1 + ak +2 + ... + a2k ) ≥ 2k k (k )( ) a1 a 2 ...a k k k a k +1 a k + 2 ...a 2 k k ≥ k = 2 k a1 a 2 ...a k a k +1 ...a 2 k Ti p theo ta s ch ng minh v i n = k − 1 . Khi ñó : a1 + a 2 + ... + a k −1 + k −1 a1a 2 ...a k =1 ≥ k k a1 a 2 ...a k −1 k −1 a1a 2 ...a k −1 = k k −1 a1 a 2 ...a k −1 ⇒ a1 + a 2 + ... + a k −1 ≥ (k − 1)k −1 a1 a 2 ...a k −1 Như v y b t ñ ng th c ñư c ch ng minh hoàn toàn. ð ng th c x y ra ⇔ a1 = a 2 = ... = a n Cách 2 : ( l i gi i c a Polya ) The Inequalities Trigonometry 4
  4. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s a 1 + a 2 + ... + a n GiA= n Khi ñó b t ñ ng th c c n ch ng minh tương ñương v i a1 a 2 ...a n ≤ A n (*) Rõ ràng n u a1 = a 2 = ... = a n = A thì (*) có d u ñ ng th c. Gi s chúng không b ng nhau. Như v y ph i có ít nh t m t s , gi s là a1 < A và m t s khác, gi s là a 2 > A t c là a1 < A < a 2 . Trong tích P = a1 a 2 ...a n ta hãy thay a1 b i a'1 = A và thay a 2 b i a' 2 = a1 + a 2 − A . Như v y a'1 + a' 2 = a1 + a 2 mà a'1 a' 2 −a 2 a 2 = A(a1 + a 2 − A) − a1a 2 = (a1 − A)(a 2 − A) > 0 ⇒ a'1 a' 2 > a1 a 2 ⇒ a1 a 2 a3 ...a n < a'1 a' 2 a3 ...a n Trong tích P ' = a '1 a' 2 a3 ...a n có thêm th a s b ng A . N u trong P ' còn th a s khác A thì ta ti p t c bi n ñ i ñ có thêm m t th a s n a b ng A . Ti p t c như v y t i ña n − 1 l n bi n ñ i ta ñã thay m i th a s P b ng A và ñư c tích A n . Vì trong quá trình bi n ñ i tích các th a s tăng d n. ⇒ P < A n . ⇒ ñpcm. Ví d 1.1.1.1. Cho A,B,C là ba góc c a m t tam giác nh n. CMR : tan A + tan B + tan C ≥ 3 3 L i gi i : tan A + tan B Vì tan ( A + B ) = − tan C ⇔ = − tan C 1 − tan A tan B ⇒ tan A + tan B + tan C = tan A tan B tan C Tam giác ABC nh n nên tanA,tanB,tanC dương. Theo AM – GM ta có : tan A + tan B + tan C ≥ 33 tan A tan B tan C = 33 tan A + tan B + tan C ⇒ (tan A + tan B + tan C ) ≥ 27(tan A + tan B + tan C ) 2 ⇒ tan A + tan B + tan C ≥ 3 3 ð ng th c x y ra ⇔ A = B = C ⇔ ∆ABC ñ u. Ví d 1.1.1.2. Cho ∆ABC nh n. CMR : cot A + cot B + cot C ≥ 3 The Inequalities Trigonometry 5
  5. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s L i gi i : Ta luôn có : cot ( A + B ) = − cot C cot A cot B − 1 ⇔ = − cot C cot A + cot B ⇔ cot A cot B + cot B cot C + cot C cot A = 1 Khi ñó : (cot A − cot B )2 + (cot B − cot C )2 + (cot C − cot A)2 ≥ 0 ⇔ (cot A + cot B + cot C ) ≥ 3(cot A cot B + cot B cot C + cot C cot A) = 3 2 ⇒ cot A + cot B + cot C ≥ 3 D u b ng x y ra khi và ch khi ∆ABC ñ u. Ví d 1.1.1.3. CMR v i m i ∆ABC nh n và n ∈ N * ta luôn có : n −1 tan n A + tan n B + tan n C ≥3 2 tan A + tan B + tan C L i gi i : Theo AM – GM ta có : tan n A + tan n B + tan n C ≥ 33 (tan A tan B tan C ) = 33 (tan A + tan B + tan C ) n n n −1 tan n A + tan n B + tan n C () n −3 ≥ 33 (tan A + tan B + tan C ) ≥ 33 3 3 n −3 ⇒ =3 2 tan A + tan B + tan C ⇒ ñpcm. Ví d 1.1.1.4. Cho a,b là hai s th c th a : cos a + cos b + cos a cos b ≥ 0 CMR : cos a + cos b ≥ 0 L i gi i : Ta có : cos a + cos b + cos a cos b ≥ 0 ⇔ (1 + cos a )(1 + cos b ) ≥ 1 Theo AM – GM thì : The Inequalities Trigonometry 6
  6. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s (1 + cos a ) + (1 + cos b ) ≥ (1 + cos a )(1 + cos b ) ≥ 1 2 ⇒ cos a + cos b ≥ 0 Ví d 1.1.1.5. Ch ng minh r ng v i m i ∆ABC nh n ta có : 2 A cos A cos B cos B cos C cos C cos A 3 A B B C C  sin sin + sin sin + sin sin  + + + ≤ 3 2 2 A B B C C A 2 2 2 2 2 cos cos cos cos cos cos 2 2 2 2 2 2 L i gi i : Ta có cos A A A = sin cot A 2 2 2 cos 2 3 cos A cos B  B  3  A 4 =  sin sin  cot A cot B  B 2  4  A 2 4 cos cos 2 2 Theo AM – GM thì : 2   3 B3 A cos A cos B  sin sin + cot A cot B  4 2 24 ≤  B  A 2   4 cos cos 2  2 2  cos A cos B B3 A ⇒  sin sin + cot A cot B  ≤ 3  A B 2 24 cos cos 2 2 Tương t ta có : 2  cos B cos C C3 B  sin sin + cot B cot C  ≤ 3  B C 2 24 cos cos 2 2 2 C  cos C cos A 3 A  sin sin + cot C cot A  ≤ 3  C A 2 2 4 cos cos 2 2 C ng v theo v các b t ñ ng th c trên ta ñư c: The Inequalities Trigonometry 7
  7. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s cos A cos B cos B cos C cos C cos A + + A B B C C A cos cos cos cos cos cos 2 2 2 2 2 2 2 A 3 A B B C C (cot A cot B + cot B cot C + cot C cot A)  sin sin + sin sin + sin sin  + ≤ 3 2 2 2 2 2 2 2 2 A 3 A B B C C ⇒ ñpcm.  sin sin + sin sin + sin sin  + = 3 2 2 2 2 2 2 2 Bư c ñ u ta m i ch có b t ñ ng th c AM – GM cùng các ñ ng th c lư ng giác nên s c nh hư ng ñ n các b t ñ ng th c còn h n ch . Khi ta k t h p AM – GM cùng BCS, Jensen hay Chebyshev thì nó th c s là m t vũ khí ñáng g m cho các b t ñ ng th c lư ng giác. 1.1.2. B t ñ ng th c BCS : (a1 , a2 ,..., an ) và (b1 , b2 ,..., bn ) ta luôn có : V i hai b s (a1b1 + a2 b2 + ... + a n bn )2 ≤ (a1 2 + a2 2 + ... + an 2 )(b12 + b2 2 + ... + bn 2 ) N u như AM – GM là “cánh chim ñ u ñàn” trong vi c ch ng minh b t ñ ng th c thì BCS (Bouniakovski – Cauchy – Schwartz) l i là “cánh tay ph i” h t s c ñ c l c. V i AM – GM ta luôn ph i chú ý ñi u ki n các bi n là không âm, nhưng ñ i v i BCS các bi n không b ràng bu c b i ñi u ki n ñó, ch c n là s th c cũng ñúng. Ch ng minh b t ñ ng th c này cũng r t ñơn gi n. Ch ng minh : Cách 1 : Xét tam th c : f ( x) = (a1 x − b1 ) + (a 2 x − b2 ) + ... + (a n x − bn ) 2 2 2 Sau khi khai tri n ta có : ( ) ( ) f ( x) = a1 + a 2 + ... + a n x 2 − 2(a1b1 + a 2 b2 + ... + a n bn )x + b1 + b2 + ... + bn 2 2 2 2 2 2 M t khác vì f ( x) ≥ 0∀x ∈ R nên : ( )( ) ∆ f ≤ 0 ⇔ (a1b1 + a 2 b2 + ... + a n bn ) ≤ a1 + a 2 + ... + a n b1 + b2 + ... + bn ⇒ ñpcm. 2 2 2 2 2 2 2 a a1 a 2 = ... = n (quy ư c n u bi = 0 thì ai = 0 ) ð ng th c x y ra ⇔ = b1 b2 bn Cách 2 : The Inequalities Trigonometry 8
  8. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s S d ng b t ñ ng th c AM – GM ta có : 2 2 2 ai bi ai bi +2 ≥ (a )( ) 2 2 2 2 2 a1 + a 2 + ... + a n b1 + b2 + ... + bn 2 2 2 2 2 2 + a 2 + ... + a n b1 + b2 + ... + bn 1 Cho i ch y t 1 ñ n n r i c ng v c n b t ñ ng th c l i ta có ñpcm. ðây cũng là cách ch ng minh h t s c ng n g n mà b n ñ c nên ghi nh ! Bây gi v i s ti p s c c a BCS, AM – GM như ñư c ti p thêm ngu n s c m nh, như h m c thêm cánh, như r ng m c thêm vây, phát huy hi u qu t m nh hư ng c a mình. Hai b t ñ ng th c này bù ñ p b sung h tr cho nhau trong vi c ch ng minh b t ñ ng th c. Chúng ñã “lư ng long nh t th ”, “song ki m h p bích” công phá thành công nhi u bài toán khó. “Trăm nghe không b ng m t th y”, ta hãy xét các ví d ñ th y rõ ñi u này. Ví d 1.1.2.1. CMR v i m i a, b, α ta có : 2 (sin α + a cos α )(sin α + b cos α ) ≤ 1 +  a + b    2 L i gi i : Ta có : (sin α + a cos α )(sin α + b cos α ) = sin 2 α + (a + b )sin α cos α + ab cos 2 α 1 − cos 2α (a + b ) 1 + cos 2α sin 2α + ab = + 2 2 2 1 = (1 + ab + (a + b )sin 2α + (ab − 1) cos 2α ) (1) 2 Theo BCS ta có : (2) A2 + B 2 A sin x + B cos x ≤ Áp d ng (2) ta có : (a )( ) (3) (a + b )sin 2α + (ab − 1) cos 2α ≤ (a + b )2 + (ab − 1)2 2 +1 b2 +1 = Thay (3) vào (1) ta ñư c : )) (4) (sin α + a cos α )(sin α + b cos α ) ≤ 1 (1 + ab + (a )( 2 +1 b2 +1 2 Ta s ch ng minh b t ñ ng th c sau ñây v i m i a, b : 2 ( )) a+b 1 (a )( (5) 2 +1 b2 +1 ≤ 1 +   1 + ab + 2 2 The Inequalities Trigonometry 9
  9. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s Th t v y : a 2 + b 2 ab 1 ab 1 (a )( ) (5) 2 +1 b2 +1 ≤ 1+ ⇔ + + + 222 4 2 a2 + b2 + 2 ( )( ) a 2 +1 b2 +1 ≤ ⇔ 2 )( )( ) a +1 + b2 +1 2 ( )( (6) 2 2 ⇔ a +1 b +1 ≤ 2 Theo AM – GM thì (6) hi n nhiên ñúng ⇒ (5) ñúng. T (1) và (5) suy ra v i m i a, b, α ta có : 2 (sin α + a cos α )(sin α + b cos α ) ≤ 1 +  a + b    2 ð ng th c x y ra khi x y ra ñ ng th i d u b ng (1) và (6) a = b a = b a 2 = b 2    ⇔  a+b ab − 1 ⇔  a+b ⇔  π a+b 1 (k ∈ Z ) tgα = α = arctg = +k   sin 2α cos 2α   ab − 1 ab − 1 2 2 Ví d 1.1.2.2. Cho a, b, c > 0 và a sin x + b cos y = c . CMR : cos 2 x sin 2 y 1 1 c2 + ≤ +−3 a b a + b3 a b L i gi i : B t ñ ng th c c n ch ng minh tương ñương v i : 1 − sin 2 x 1 − cos 2 y 1 1 c2 + ≤ +−3 a b a + b3 a b sin 2 x cos 2 y c2 (*) ⇔ + ≥3 a + b3 a b Theo BCS thì : ( )( ) (a1b1 + a 2 b2 )2 ≤ a12 + a 2 2 b1 2 + b2 2  sin x cos y a1 = ; a2 =  a b vi b = a a ; b = b b 1 2  sin 2 x cos 2 y  3 ( )  a + b  a + b ≥ (a sin x + b cos y ) ⇒ 2 3    do a + b > 0 và a sin x + b cos y = c ⇒ (*) ñúng ⇒ ñpcm. 3 3 The Inequalities Trigonometry 10
  10. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s a1 a 2 sin x cos y ð ng th c x y ra ⇔ = ⇔ 2= 2 b1 b2 a b  sin x cos y  =2 ⇔  a2 b a sin x + b cos y = c   a 2c sin x = 3   a + b3 ⇔ 2 cos y = b c   a3 + b3 Ví d 1.1.2.3. CMR v i m i ∆ABC ta có : a2 + b2 + c2 x+ y+ z≤ 2R v i x, y, z là kho ng cách t ñi m M b t kỳ n m bên trong ∆ABC ñ n ba c nh BC , CA, AB . A L i gi i : Ta có : P S ABC = S MAB + S MBC + S MCA y Q z S MAB S MBC S MCA ha M ⇔ + + =1 S ABC S ABC S ABC x C B z y x N ⇔ ++ =1 hc hb ha x z y ⇒ ha + hb + hc = (ha + hb + hc ) + +  h   a hb hc  Theo BCS thì : x z y x z y (ha + hb + hc ) + +  = ha + hb + hc x + y + z = ha + hb + hc ≤    ha hb hc  ha hb hc 1 1 aha = ab sin C ⇒ ha = b sin C , hb = c sin A , hc = a sin B mà S = 2 2 ab bc ca ⇒ ha + hb + hc = (a sin B + b sin C + c sin A) = + + 2R 2R 2R T ñó suy ra : a2 + b2 + c2 ab + bc + ca ⇒ ñpcm. x+ y+ z≤ ≤ 2R 2R The Inequalities Trigonometry 11
  11. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s a = b = c ð ng th c x y ra khi và ch khi  ⇔ ∆ABC ñ u và M là tâm n i ti p ∆ABC . x = y = z Ví d 1.1.2.4. Ch ng minh r ng :  π cos x + sin x ≤ 4 8 ∀x ∈  0 ;   2 L i gi i : Áp d ng b t ñ ng th c BCS liên ti p 2 l n ta có : ( ) ≤ ((1 ) ) 4 2 + 12 (cos x + sin x ) 2 cos x + sin x ≤ (1 + 1 ) (1 )( ) 22 2 2 + 12 cos 2 x + sin 2 x = 8 ⇒ cos x + sin x ≤ 8 4 π ð ng th c x y ra khi và ch khi x = . 4 Ví d 1.1.2.5. Ch ng minh r ng v i m i s th c a và x ta có ( ) 1 − x 2 sin a + 2 x cos a ≤1 1+ x2 L i gi i : Theo BCS ta có : (( ) + (2 x ) )(sin ((1 − x )sin a + 2 x cos a ) ) 2 2 2 2 ≤ 1− x2 2 a + cos 2 a 2 4 2 2 4 = 1 − 2x + x + 4x = 1 + 2x + x (( ) ) ≤ (1 + x ) 2 22 ⇒ 1 − x 2 sin a + 2 x cos a (1 − a )sin a + 2 x cos a ≤ 1 2 ⇔ 1+ x2 ⇒ ñpcm. The Inequalities Trigonometry 12
  12. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s 1.1.3. B t ñ ng th c Jensen : Hàm s y = f ( x) liên t c trên ño n [a, b] và n ñi m x1 , x 2 ,..., x n tùy ý trên ño n [a, b] ta có : i) f ' ' ( x) > 0 trong kho ng (a, b ) thì :  x + x 2 + ... + x n  f ( x1 ) + f ( x 2 ) + ... + f ( x n ) ≥ nf  1    n ii) f ' ' ( x) < 0 trong kho ng (a, b ) thì :  x + x 2 + ... + x n  f ( x1 ) + f ( x 2 ) + ... + f ( x n ) ≥ nf  1    n B t ñ ng th c AM – GM và b t ñ ng th c BCS th t s là các ñ i gia trong vi c ch ng minh b t ñ ng th c nói chung. Nhưng riêng ñ i v i chuyên m c b t ñ ng th c lư ng giác thì ñó l i tr thành sân chơi riêng cho b t ñ ng th c Jensen. Dù có v hơi khó tin nhưng ñó là s th t, ñ n 75% b t ñ ng th c lư ng giác ta ch c n nói “theo b t ñ ng th c Jensen hi n nhiên ta có ñpcm”. Trong phát bi u c a mình, b t ñ ng th c Jensen có ñ c p ñ n ñ o hàm b c hai, nhưng ñó là ki n th c c a l p 12 THPT. Vì v y nó s không thích h p cho m t s ñ i tư ng b n ñ c. Cho nên ta s phát bi u b t ñ ng th c Jensen dư i m t d ng khác : x+ y Cho f : R + → R th a mãn f ( x) + f ( y ) ≥ 2 f  +  ∀x, y ∈ R Khi ñó v i m i 2 + x1 , x 2 ,..., x n ∈ R ta có b t ñ ng th c :  x + x 2 + ... + x n  f ( x1 ) + f ( x 2 ) + ... + f ( x n ) ≥ nf  1    n S th t là tác gi chưa t ng ti p xúc v i m t ch ng minh chính th c c a b t ñ ng th c Jensen trong phát bi u có f ' ' ( x) . Còn vi c ch ng minh phát bi u không s d ng ñ o hàm thì r t ñơn gi n. Nó s d ng phương pháp quy n p Cauchy tương t như khi ch ng minh b t ñ ng th c AM – GM. Do ñó tác gi s không trình bày ch ng minh ñây. Ngoài ra, m t s tài li u có th b n ñ c g p khái ni m l i lõm khi nh c t i b t ñ ng th c Jensen. Nhưng hi n nay trong c ng ñ ng toán h c v n chưa quy ư c rõ ràng ñâu là l i, ñâu là lõm. Cho nên b n ñ c không nh t thi t quan tâm ñ n ñi u ñó. Khi ch ng minh ta ch c n xét f ' ' ( x) là ñ ñ s d ng b t ñ ng th c Jensen. Ok! M c dù b t ñ ng th c Jensen không ph i là m t b t ñ ng th c ch t, nhưng khi có d u hi u manh nha c a nó thì b n ñ c c tùy nghi s d ng . The Inequalities Trigonometry 13
  13. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s Ví d 1.1.3.1. Ch ng minh r ng v i m i ∆ABC ta có : 33 sin A + sin B + sin C ≤ 2 L i gi i : Xét f ( x) = sin x v i x ∈ (0 ; π ) Ta có f ' ' ( x) = − sin x < 0 ∀x ∈ (0 ; π ) . T ñó theo Jensen thì :  A+ B+C  π 33 f ( A) + f (B ) + f (C ) ≤ 3 f  ⇒ ñpcm.  = 3 sin =   3 3 2 ð ng th c x y ra khi và ch khi ∆ABC ñ u. Ví d 1.1.3.2. Ch ng minh r ng v i m i ∆ABC ñ u ta có : A B C tan + tan + tan ≥ 3 2 2 2 L i gi i :  π Xét f ( x ) = tan x v i x ∈  0 ;   2  π 2 sin x Ta có f ' ' ( x ) = > 0 ∀x ∈  0 ;  . T ñó theo Jensen thì : 3  2 cos x A B C ++  A  B  C π f   + f   + f   ≥ 3 f  2 2 2  = 3 sin = 3 ⇒ ñpcm.   2 2 2 3 6     ð ng th c x y ra khi và ch khi ∆ABC ñ u. Ví d 1.1.3.3. Ch ng minh r ng v i m i ∆ABC ta có : 22 22 22  A  B  C ≥ 31− 2  tan  +  tan  +  tan   2  2  2 L i gi i : The Inequalities Trigonometry 14
  14. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s  π Xét f ( x ) = (tan x ) 22 v i x ∈  0;   2 ( ) ( ) Ta có f ' ( x ) = 2 2 1 + tan 2 x (tan x ) = 2 2 (tan x ) + (tan x ) 2 2 −1 2 2 −1 2 2 +1 (( ) )( ( )( ) ) f ' ' ( x ) = 2 2 2 2 − 1 1 + tan 2 x (tan x ) + 2 2 + 1 1 + tan 2 x (tan x ) 2 2 −2 22 >0 Theo Jensen ta có : A B C ++ 22  A B C  π f   + f   + f   ≥ 3 f  2 2 2  = 3 tg  = 31− 2 ⇒ ñpcm.    6 2 2 2 3     ð ng th c x y ra khi và ch khi ∆ABC ñ u. Ví d 1.1.3.4. Ch ng minh r ng v i m i ∆ABC ta có : C3 A B C A B sin + sin + sin + tan + tan + tan ≥ + 3 2 2 2 2 2 22 L i gi i :  π Xét f ( x ) = sin x + tan x v i x ∈  0 ;   2 ( )  π 4 sin x 1 − cos x f ' ' (x ) = > 0 ∀x ∈  0 ;  Ta có 4  2 cos x Khi ñó theo Jensen thì : A B C ++  A B C  π π 3 f   + f   + f   ≥ 3 f  2 2 2  = 3 sin + tan  = + 3 ⇒ ñpcm.   2 2 2 6 2 3 6     ð ng th c x y ra khi và ch khi ∆ABC ñ u. Ví d 1.1.3.5. Ch ng minh r ng v i m i ∆ABC nh n ta có : 33 2 2 (sin A) (sin B ) (sin C ) sin A sin B sin C ≥  3 L i gi i : Ta có The Inequalities Trigonometry 15
  15. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s sin 2 A + sin 2 B + sin 2 C = 2 + 2 cos A cos B cos C   sin A + sin B + sin C ≥ sin 2 A + sin 2 B + sin 2 C  33 và sin A + sin B + sin C ≤ 2 33 ⇒ 2 < sin A + sin B + sin C ≤ 2 Xét f ( x ) = x ln x v i x ∈ (0 ;1] Ta có f ' ( x ) = ln x + 1 1 f ' ' ( x ) = > 0 ∀x ∈ (0 ;1] x Bây gi v i Jensen ta ñư c : sin A + sin B + sin C  sin a + sin B + sin C  sin A(ln sin A) + sin B(ln sin B ) + sin C (ln sin C ) ln ≤   3 3 3 sin A+ sin B + sin C  sin A + sin B + sin C  ≤ ln(sin A) + ln(sin B ) + ln(sin C ) sin A sin B sin C ⇔ ln    3  sin A + sin B + sin C  sin A+sin B +sin C  [ ]  ≤ ln (sin A) (sin B ) (sin C ) sin A sin B sin C ⇔ ln      3   (sin A + sin B + sin C )sin A+sin B +sin C ≤ (sin A)sin A (sin B )sin B (sin C )sin C ⇔ sin A+ sin B + sin C 3 33 sin A + sin B + sin C 2 sin A+sin B +sin C  2  2 2 ⇒ (sin A) (sin B ) (sin C ) sin A sin B sin C ≥ sin A+sin B +sin C =   ≥  3 3 3 ⇒ ñpcm. 1.1.4. B t ñ ng th c Chebyshev : V i hai dãy s th c ñơn ñi u cùng chi u a1 , a 2 ,..., a n và b1 , b2 ,..., bn thì ta có : 1 a1b1 + a 2 b2 + ... + a n bn ≥ (a1 + a 2 + ... + a n )(b1 + b2 + ... + bn ) n Theo kh năng c a mình thì tác gi r t ít khi s d ng b t ñ ng th c này. Vì trư c h t ta c n ñ ý t i chi u c a các bi n, thư ng ph i s p l i th t các bi n. Do ñó bài toán c n có yêu c u ñ i x ng hoàn toàn gi a các bi n, vi c s p x p th t s không làm m t tính t ng quát c a bài toán. Nhưng không vì th mà l i ph nh n t m nh hư ng c a b t ñ ng th c Chebyshev trong vi c ch ng minh b t ñ ng th c lư ng giác, m c dù nó có m t ch ng minh h t s c ñơn gi n và ng n g n. The Inequalities Trigonometry 16
  16. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s Ch ng minh : B ng phân tích tr c ti p, ta có ñ ng th c : n ∑ (a − a )(b − b ) ≥ 0 n(a1b1 + a 2 b2 + ... + a n bn ) − (a1 + a 2 + ... + a n )(b1 + b2 + ... + bn ) = i j i j i , j =1 u nên (a − a )(b − b ) ≥ 0 Vì hai dãy a1 , a 2 ,..., a n và b1 , b2 ,..., bn ñơn ñi u cùng chi i j i j N u 2 dãy a1 , a 2 ,..., a n và b1 , b2 ,..., bn ñơn ñi u ngư c chi u thì b t ñ ng th c ñ i chi u. Ví d 1.1.4.1. Ch ng minh r ng v i m i ∆ABC ta có : aA + bB + cC π ≥ a+b+c 3 L i gi i : Không m t tính t ng quát gi s : a≤b≤c⇔ A≤ B≤C Theo Chebyshev thì :  a + b + c  A + B + C  aA + bB + cC   ≤    3 3 3 aA + bB + cC A + B + C π ⇒ ≥ = a+b+c 3 3 ð ng th c x y ra khi và ch khi ∆ABC ñ u. Ví d 1.1.4.2. Cho ∆ABC không có góc tù và A, B, C ño b ng radian. CMR :  sin A sin B sin C  3(sin A + sin B + sin C ) ≤ ( A + B + C )  + + A C B L i gi i :  π sin x Xét f ( x ) = v i x ∈  0;   2 x cos x( x − tan x )  π Ta có f ' ( x ) = ≤ 0 ∀x ∈  0 ;  2  2 x The Inequalities Trigonometry 17
  17. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s V y f ( x ) ngh ch bi n trên  0 ; π     2 Không m t t ng quát gi s : sin A sin B sin C A≥ B≥C⇒ ≤ ≤ A B C Áp d ng b t ñ ng th c Chebyshev ta có : ( A + B + C ) sin A + sin B + sin C  ≥ 3(sin A + sin B + sin C ) ⇒ ñpcm.   A C B ð ng th c x y ra khi và ch khi ∆ABC ñ u. Ví d 1.1.4.3. Ch ng minh r ng v i m i ∆ABC ta có : sin A + sin B + sin C tan A tan B tan C ≤ cos A + cos B + cos C 3 L i gi i : Không m t t ng quát gi s A ≥ B ≥ C tan A ≥ tan B ≥ tan C ⇒ cos A ≤ cos B ≤ cos C Áp d ng Chebyshev ta có :  tan A + tan B + tan C  cos A + cos B + cos C  tan A cos A + tan B cos B + tan C cos C   ≥    3 3 3 sin A + sin B + sin C tan A + tan B + tan C ⇔ ≤ cos A + cos B + cos C 3 Mà ta l i có tan A + tan B + tan C = tan A tan B tan C ⇒ ñpcm. ð ng th c x y ra khi và ch khi ∆ABC ñ u. Ví d 1.1.4.4. Ch ng minh r ng v i m i ∆ABC ta có : 3 sin 2 A + sin 2 B + sin 2C 2(sin A + sin B + sin C ) ≥ 2 cos A + cos B + cos C L i gi i : a≤b≤c Không m t t ng quát gi s The Inequalities Trigonometry 18
  18. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s sin A ≤ sin B ≤ sin C ⇒ cos A ≥ cos B ≥ cos C Khi ñó theo Chebyshev thì :  sin A + sin B + sin C  cos A + cos B + cos C  sin A cos A + sin B cos B + sin C cos C   ≥    3 3 3 3 sin 2 A + sin 2 B + sin 2C ⇔ 2(sin A + sin B + sin C ) ≥ 2 cos A + cos B + cos C ⇒ ñpcm. ð ng th c x y ra khi và ch khi ∆ABC ñ u. 1.2. Các ñ ng th c b t ñ ng th c trong tam giác : Sau ñây là h u h t nh ng ñ ng th c, b t ñ ng th c quen thu c trong tam giác và trong lư ng giác ñư c dùng trong chuyên ñ này ho c r t c n thi t cho quá trình h c toán c a b n ñ c. Các b n có th dùng ph n này như m t t ñi n nh ñ tra c u khi c n thi t.Hay b n ñ c cũng có th ch ng minh t t c các k t qu như là bài t p rèn luy n. Ngoài ra tôi cũng xin nh c v i b n ñ c r ng nh ng ki n th c trong ph n này khi áp d ng vào bài t p ñ u c n thi t ñư c ch ng minh l i. 1.2.1. ð ng th c : a b c = = = 2R sin A sin B sin C a 2 = b 2 + c 2 − 2bc cos A a = b cos C + c cos B b 2 = c 2 + a 2 − 2ca cos B b = c cos A + a cos C c = a cos B + b cos A c 2 = a 2 + b 2 − 2ab cos C 1 1 1 S= a.ha = b.hb = c.hc 2 2 2 1 1 1 = bc sin A = ca sin B = ab sin C 2 2 2 abc = 2 R 2 sin A sin B sin C = pr = 4R = ( p − a )ra = ( p − b )rb = ( p − c )rc p( p − a )( p − b )( p − c ) = The Inequalities Trigonometry 19
  19. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s A 2bc cos A 2 r = ( p − a ) tan la = 2b 2 + 2c 2 − a 2 2 b+c 2 = ma 4 B B = ( p − b ) tan 2ca cos 2c + 2a 2 − b 2 2 2 2 2 = lb = mb c+a C 4 = ( p − c ) tan 2a + 2b 2 − c 2 2 C 2 2 2ab cos = mc A B C 2 4 lc = = 4 R sin sin sin a+b 2 2 2  A− B tan  2 a−b =  A+ B a+b b2 + c2 − a2 tan  cot A = 2 4S  B−C  c + a2 − b2 2 tan  cot B = 2 b−c 4S = B+C a + b2 − c2 2 b+c tan  cot C = 2 4S C − A a2 + b2 + c2 tan  cot A + cot B + cot C = 2 c−a 4S = C + A c+a tan  2 ( p − b)( p − c ) ( p − b )( p − c ) p( p − a ) A A A = tan = = sin cos p( p − a ) 2 2 2 bc bc ( p − c )( p − a ) p( p − b ) ( p − c )( p − a ) B B B = = = sin cos tan p( p − b ) 2 2 2 ca ca ( p − a )( p − b) p( p − c ) ( p − a )( p − b ) C C C = = sin cos = tan p( p − c ) 2 2 ab ab 2 A B Cp sin A + sin B + sin C = 4 cos cos cos = 2 2 2R sin 2 A + sin 2 B + sin 2C = 4 sin A sin B sin C sin 2 A + sin 2 B + sin 2 C = 2(1 + cos A cos B cos C ) A B C r cos A + cos B + cos C = 1 + 4 sin sin sin = 1 + 2 2 2 R 2 2 2 cos A + cos B + cos C = 1 − 2 cos A cos B cos C The Inequalities Trigonometry 20
  20. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s tan A + tan B + tan C = tan A tan B tan C A B C A B C + cot + cot = cot cot cot cot 2 2 2 2 2 2 A B B C C A tan tan + tan tan + tan tan = 1 2 2 2 2 2 2 cot A cot B + cot B cot C + cot C cot A = 1 A B C sin (2k + 1) A + sin (2k + 1)B + sin (2k + 1)C = (− 1) 4 cos(2k + 1) cos(2k + 1) cos(2k + 1) k 2 2 2 sin 2kA + sin 2kB + sin 2kC = (− 1) k +1 4 sin kA sin kB sin kC A B C cos(2k + 1) A + cos(2k + 1)B + cos(2k + 1)C = 1 + (− 1) 4 sin (2k + 1) sin (2k + 1) sin (2k + 1) k 2 2 2 cos 2kA + cos 2kB + cos 2kC = −1 + (− 1) 4 cos kA cos kB cos kC k tan kA + tan kB + tan kC = tan kA tan kB tan kC cot kA cot kB + cot kB cot kC + cot kC cot kA = 1 A B B C C A tan (2k + 1) tan (2k + 1) + tan (2k + 1) tan (2k + 1) + tan (2k + 1) tan (2k + 1) = 1 2 2 2 2 2 2 A B C A B C cot (2k + 1) + cot (2k + 1) + cot (2k + 1) = cot (2k + 1) cot (2k + 1) cot (2k + 1) 2 2 2 2 2 2 cos kA + cos kB + cos kC = 1 + (− 1) 2 cos kA cos kB cos kC k 2 2 2 sin 2 kA + sin 2 kB + sin 2 kC = 2 + (− 1) k +1 2 cos kA cos kB cos kC 1.2.2. B t ñ ng th c : a−b < c < a+b a≤b⇔ A≤ B b−c < a
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
4=>1