ĐỀ ÔN THI CAO ĐẲNG, ĐẠI HỌC NĂM 2011 MÔN TOÁN HỌC - MÃ ĐỀ 009
lượt xem 8
download
Tham khảo tài liệu 'đề ôn thi cao đẳng, đại học năm 2011 môn toán học - mã đề 009', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: ĐỀ ÔN THI CAO ĐẲNG, ĐẠI HỌC NĂM 2011 MÔN TOÁN HỌC - MÃ ĐỀ 009
- ĐỀ ÔN THI CAO ĐẲNG, ĐẠI HỌC NĂM 2011 MÔN TOÁN HỌC – MÃ ĐỀ 009 Thời gian làm bài: 180 phút (Không kể thời gian giao đề) PHẦN A : DÀNH CHO TẤT CẢ CÁC THI SINH . Câu I (2,0 điểm) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số : y = x3 – 3x2 + 2 m 2 2) Biện luận theo m số nghiệm của phương trình : x 2 x 2 x 1 5 Câu II (2,0 điểm ) 1) Giải phương trình : 2 2 cos x sin x 1 12 log 2 x y 3log8 ( x y 2) 2) Giải hệ phương trình: . x 2 y 2 1 x2 y 2 3 /4 sin x Câu III(1,0 điểm ) Tính tích phân: I dx 2 1 x x /4 Câu IV ( 1,0 điểm ) : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a , AD = 2a . Cạnh SA vuông góc với mặt phẳng đáy , cạnh bên SB tạo với mặt phắng đáy một góc a3 600 .Trên cạnh SA lấy điểm M sao cho AM = , mặt phẳng ( BCM) cắt cạnh SD tại N .Tính 3 thể tích khối chóp S.BCNM -x -y -z Câu V (1,0 điểm ) Cho x , y , z là ba số thực thỏa mãn : 5 + 5 +5 = 1 .Chứng minh rằng 25x 25y 25z 5 x 5y 5z 25x 5yz 5y 5zx 5z 5xy 4 PHẦN B ( THÍ SINH CHỈ ĐƯỢC LÀM MỘT TRONG HAI PHẦN ( PHẦN 1 HOẶC PHẦN 2) PHẦN 1 ( Dành cho học sinh học theo chương trình chuẩn ) Câu VI.a 1.( 1,0 điểm ) Trong mặt phẳng Oxy cho tam giác ABC với A(1; -2), đường cao CH : x y 1 0 , phân giác trong BN : 2 x y 5 0 .Tìm toạ độ các đỉnh B,C và tính diện tích tam giác ABC x 2 y z 1 2.( 1,0 điểm ) Trong không gian với hệ tọa độ 0xyz cho đường thẳng d 6 8 4 và hai điểm A(1;-1;2) ,B(3 ;- 4;-2).Tìm điểm I trên đường thẳng d sao cho IA +IB đạt giá trị nhỏ nhất z2 Câu VII.a (1 điểm): Giải phương trình sau trên tập số phức C: z 4 z 3 z 1 0 2 PHẦN 2 ( Dành cho học sinh học chương trình nâng cao ) Câu VI.b 1. (1.0 điểm) Trong mặt phẳng với hệ trục toạ độ Oxy cho hình chữ nhật ABCD có diện tích bằng 12, tâm I là giao điểm của đường thẳng d1 : x y 3 0 và d 2 : x y 6 0 . Trung điểm của một cạnh là giao điểm của d1 với trục Ox. Tìm toạ độ
- các đỉnh của hình chữ nhật. 2. (1,0điểm) Trong không gian với hệ tọa độ 0xyz cho hai đường thẳng : x 2 2t x 2 y 1 z D2 : y 3 , D1 : 1 1 2 z t Viết phương trình mặt cầu có đường kính là đoạn vuông góc chung của D1 và D2 0 4 8 2004 2008 CâuVII.b ( 1,0 điểm) Tính tổng: S C2009 C2009 C2009 ... C2009 C2009 …….Hết ....... ĐÁP ÁN Cõu I 2 điểm Khảo sát sự biến thiên và vẽ đồ thị của hàm số y x3 3 x 2 2. a) Tập xác định: Hàm số có tập xác định D R. 0,25 x 0 Sự biến thiờn: y' 3 x 2 6 x. Ta có y' 0 x 2 yCD y 0 2; yCT y 2 2. 0,25 Bảng biến thiên: 0,25 0 2 x y' 0 0 2 y 2 Đồ thị: y f(x)=(x^3)-3*(x)^2+2 5 x -8 -6 -4 -2 2 4 6 8 0,25 -5
- b) m Biện luận số nghiệm của phương trình x 2 2 x 2 theo tham số m. x 1 0,25 m x 2 2 x 2 x 1 m,x 1. Do đó số nghiệm của Ta có x 2 2 x 2 x 1 phương trình bằng số giao điểm của y x 2 2 x 2 x 1 , C' và đường thẳng y m,x 1. 0,25 f x khi x 1 Vỡ y x 2 2 x 2 x 1 nờn C' bao gồm: f x khi x 1 + Giữ nguyên đồ thị (C) bên phải đường thẳng x 1. + Lấy đối xứng đồ thị (C) bên trái đường thẳng x 1 qua Ox. y f(x)=abs(x-1)(x^2-2*x-2) 5 x -8 -6 -4 -2 2 4 6 8 0,25 -5 hình Dựa vào đồ thị ta có: + m 2 : Phương trình vụ nghiệm; + m 2 : Phương trình có 2 nghiệm kộp; 0,25 + 2 m 0 : Phương trình có 4 nghiệm phõn biệt; + m 0 : Phương trình có 2 nghiệm phõn biệt. 2) Đồ thị hàm số y = ( x 2 2 x 2) x 1 , với x 1 có dạng như hình vẽ : 1 2 1+ 3 1- 3
- 5 5 5 1) 2 2cos x sin x 1 2 sin 2 x II sin 1 12 12 12 1) 0.25 5 5 5 5 1 sin 2 x sin sin sin 2 x sin sin 12 12 4 12 4 12 2 2cos sin sin 3 12 12 0.25 5 2 x 12 12 k 2 x 6 k 5 k sin 2 x sin 2 x 5 13 k 2 x 3 k 12 12 12 12 4 0.5 2.) log 2 x y 3log8 ( x y 2) Giải hệ phương trình: . 2 2 2 2 x y 1 x y 3 Điều kiện: x+y>0, x-y>0 log 2 x y 3log8 (2 x y ) x y 2 x y 0,25đ x 2 y 2 1 x2 y 2 3 2 2 2 2 x y 1 x y 3 u v 2 (u v) u v 2 uv 4 u x y Đặt: ta có hệ: u 2 v 2 2 u 2 v2 2 v x y uv 3 uv 3 2 2 0,25đ u v 2 uv 4 (1) . Thế (1) vào (2) ta có: (u v )2 2uv 2 uv 3 (2) 2 uv 8 uv 9 uv 3 uv 8 uv 9 (3 uv ) 2 uv 0 . 0,25đ uv 0 Kết hợp (1) ta có: u 4, v 0 (vỡ u>v). Từ đó ta có: x =2; y =2.(T/m) 0,25đ u v 4 KL: Vậy nghiệm của hệ là: (x; y)=(2; 2). /4 sin x Câu III 1 Tính tích phân : I dx 1 x2 x /4 0.5đ /4 /4 /4 sin x 2 I dx 1 x sin xdx x sin xdx I1 I 2 2 1 x x /4 /4 /4 Áp dụng hàm lẻ, đặt x=-t thì I1 0 , tích phân từng phần I 2 được kết quả.
- 0.5đ Áp dụng hàm lẻ, đặt x=-t thì I1 0 , tích phân từng phần I 2 được kết quả. Câu IV : S N M D A 0,25đ Tính thể tích hình chóp SBCMN B C ( BCM)// AD nên mặt phẳng này cắt mp( SAD) theo giao tuyến MN // AD BC AB BC BM . Tứ giác BCMN là hình thang vuông có BM là đường Ta có : BC SA cao a3 0,25đ a 3 MN SM MN 3 2 0 Ta có SA = AB tan60 = a 3 , AD SA 2a 3 a3 2a 4a Diện tích hình thang BCMN là : Suy ra MN = . BM = 3 3 4a 2 a 3 2 a 10a 2 BC MN S= BM 0,25đ 2 2 3 33 0,25đ Hạ AH BM . Ta có SH BM và BC (SAB) BC SH . Vậy SH ( BCNM) SH là đường cao của khối chóp SBCNM AB AM 1 Trong tam giác SBA ta có SB = 2a , =. SB MS 2 Vậy BM là phân giác của góc SBA SBH 30 SH = SB.sin300 = a 0 10 3a3 1 Gọi V là thể tích chóp SBCNM ta có V = SH .( dtBCNM ) = 27 3 -x -y -z Câu V Cho x , y , z là ba số thực thỏa mãn : 5 + 5 +5 = 1 .Chứng minh rằng :
- 25x 25y 25z 5 x 5y 5z 25x 5yz 5y 5zx 5z 5xy 4 0,25đ Đặt 5x = a , 5y =b , 5z = c . Từ giả thiết ta có : ab + bc + ca = abc a2 b2 c2 abc Bất đẳng thức cần chứng minh có dạng : ( *) a bc b ca c ab 4 0,25đ a3 b3 c3 abc 2 2 ( *) 2 a abc b abc c abc 4 3 3 c3 abc a b ( a b)( a c) ( b c )(b a) (c a)(c b ) 4 0,25đ 3 ab ac 3 a a ( 1) ( Bất đẳng thức Cô si) Ta có ( a b)(a c) 8 8 4 b3 bc ba 3 b ( 2) Tương tự (b c)(b a) 8 8 4 0,25đ 3 ca cb 3 c c ( 3) . (c a)(c b) 8 8 4 Cộng vế với vế các bất đẳng thức ( 1) , ( 2) , (3) suy ra điều phải chứng minh Phần B. (Thí sinh chỉ được làm phần I hoặc phần II) Phần I. (Danh cho thí sinh học chương trình chuẩn) 1. Chương trình Chuẩn. Cõu Ph Nội dung Điểm ần A CâuVI 1(1 + Do AB CH nờn AB: x y 1 0 . H a. ,0) 2 x y 5 0 N Giải hệ: ta có (x; y)=(-4; 3). (1,0) x y 1 0 Do đó: AB BN B(4;3) . 0,25đ + Lấy A’ đối xứng A qua BN thỡ A ' BC . - Phương trình đường thẳng (d) qua A và B C Vuụng gúc với BN là (d): x 2 y 5 0 . Gọi I (d ) BN . Giải hệ: 2 x y 5 0 0,25đ . Suy ra: I(-1; 3) A '(3; 4) x 2y 5 0 7 x y 25 0 + Phương trình BC: 7 x y 25 0 . Giải hệ: x y 1 0 13 9 0,25đ Suy ra: C ( ; ) . 4 4 7.1 1(2) 25 450 0,25đ + BC (4 13 / 4) 2 (3 9 / 4)2 , d ( A; BC ) 3 2. 4 7 2 12 1 1 450 45 Suy ra: S ABC d ( A; BC ).BC .3 2. . 2 2 4 4 Câu 1) Véc tơ chỉ phương của hai đường thẳng lần lượt là: u1 (4; - 6; - 8) VIIA u2 ( - 6; 9; 12) 0,25đ
- +) u1 và u2 cùng phương +) M( 2; 0; - 1) d1; M( 2; 0; - 1) d2 0,25đ Vậy d1 // d2 *) Véc tơ pháp tuyến của mp (P) là n = ( 5; - 22; 19) (P): 5x – 22y + 19z + 9 = 0 2) AB = ( 2; - 3; - 4); AB // d1 0,25đ Gọi A1 là điểm đối xứng của A qua d1 .Ta có: IA + IB = IA1 + IB A1B IA + IB đạt giá trị nhỏ nhất bằng A1B Khi A1, I, B thẳng hàng I là giao điểm của A1B và d Do AB // d1 nên I là trung điểm của A1B. 36 33 15 *) Gọi H là hình chiếu của A lên d1. Tìm được H ; ; 29 29 29 43 95 28 A’ đối xứng với A qua H nên A’ ; ; 29 29 29 0,25đ 65 21 43 I là trung điểm của A’B suy ra I ; ; 29 58 29 A B H d1 I A1 Cõu Nội dung Điểm Cõu VII.a (1 điểm): Giải phương trình sau trờn tập số phức C: Câu VIIa (1,0) z2 z 4 z3 (1) z 1 0 2 Nhận xét z=0 không là nghiệm của phương trình (1) vậy z 0 0.25đ 1 11 Chia hai vế PT (1) cho z2 ta được : ( z 2 ) ( z ) 0 (2) 2 z 2 z 1 1 1 Đặt t=z- Khi đó t 2 z 2 2 2 z 2 2 t 2 2 z z z 5 Phương trình (2) có dạng : t2-t+ 0 (3) 2 0.25đ 5 1 4. 9 9i 2 2 1 3i 1 3i PT (3) có 2 nghiệm t= ,t= 2 2 1 3i 1 1 3i 2 z 2 (1 3i) z 2 0 (4) Với t= ta có z 2 z 2 0.25đ Có (1 3i ) 16 8 6i 9 6i i 2 (3 i) 2 2
- (1 3i ) (3 i) (1 3i ) (3 i ) i 1 PT(4) có 2 nghiệm : z= 1 i ,z= 4 4 2 1 3i 1 1 3i 2 z 2 (1 3i ) z 2 0 (4) Với t= ta có z 2 z 2 Có (1 3i) 2 16 8 6i 9 6i i 2 (3 i) 2 (1 3i) (3 i ) (1 3i) (3 i) i 1 PT(4) có 2 nghiệm : z= 1 i ,z= 0.25đ 4 4 2 i 1 i 1 Vậy PT đã cho có 4 nghiệm : z=1+i; z=1-i ; z= ; z= 2 2 Phần II. Câu VIb. 1) Ta có: d 1 d 2 I . Toạ độ của I là nghiệm của hệ: x y 3 0 x 9 / 2 9 3 . Vậy I ; 2 2 x y 6 0 y 3 / 2 0,25 Do vai trò A, B, C, D nên giả sử M là trung điểm cạnh AD M d 1 Ox Suy ra M( 3; 0) 2 2 9 3 Ta có: AB 2 IM 2 3 3 2 2 2 S ABCD 12 Theo giả thiết: S ABCD AB.AD 12 AD 2 2 AB 32 0,25 Vì I và M cùng thuộc đường thẳng d1 d 1 AD Đường thẳng AD đi qua M ( 3; 0) và vuông góc với d1 nhận n(1;1) làm VTPT nên có PT: 1(x 3) 1(y 0) 0 x y 3 0 . Lại có: MA MD 2 x y 3 0 Toạ độ A, D là nghiệm của hệ PT: x 3 y 2 2 2 0,25 y x 3 y x 3 y 3 x x 3 y 2 x 3 (3 x ) 2 2 2 2 2 x 3 1 x 2 x 4 hoặc . Vậy A( 2; 1), D( 4; -1) y 1 y 1 x 2 x I x A 9 2 7 9 3 Do I ; là trung điểm của AC suy ra: C 0,25 y C 2 y I y A 3 1 2 2 2 Tương tự I cũng là trung điểm của BD nên ta có B( 5; 4) Vậy toạ độ các đỉnh của hình chữ nhật là: (2; 1), (5; 4), (7; 2), (4; -1) Cõu Phần Nội dung Điể CâuVIb. 2.a) 0,25 Các véc tơ chỉ phương của D1 và D2 lần lượt là u1 ( 1; - 1; 2) (1,0) và u2 ( - 2; 0; 1) Có M( 2; 1; 0) D1; N( 2; 3; 0) D2 0,25 Xét u1 ; u2 .MN = - 10 0 Vậy D1 chéo D2 Gọi A(2 + t; 1 – t; 2t) D1 B(2 – 2t’; 3; t’) D2
- 0,25 1 AB.u1 0 t 3 AB.u2 0 t ' 0 5 4 2 A ; ; ; B (2; 3; 0) 3 3 3 Đường thẳng qua hai điểm A, B là đường vuông góc chung của D1 và D2. 0,25 x 2 t Ta có : y 3 5t z 2t PT mặt cầu nhận đoạn AB là đường kính có 0,25 2 2 2 11 13 1 5 dạng: x y z 6 6 3 6 CâuVIIb Ta có: (1 i ) C2009 iC2009 .. i 2009C2009 2009 0 1 2009 (1,0) 0 2 4 6 2006 2008 C2009 C2009 C2009 C2009 .... C2009 C2009 1 3 5 7 2007 2009 (C2009 C2009 C2009 C2009 ... C2009 C2009 )i 0,25 1 0 2 4 6 2006 2008 Thấy: S ( A B ) , với A C2009 C2009 C2009 C2009 .... C2009 C2009 2 0 2 4 6 2006 2008 B C2009 C2009 C2009 C2009 ...C2009 C2009 0,25 + Ta có: (1 i )2009 (1 i )[(1 i) 2 ]1004 (1 i).21004 21004 21004 i . Đồng nhất thức ta có A chớnh là phần thực của (1 i )2009 nờn A 21004 . + Ta có: (1 x )2009 C2009 xC2009 x 2C2009 ... x 2009C2009 0 1 2 2009 0 2 2008 1 3 2009 Cho x=-1 ta có: C2009 C2009 ... C2009 C2009 C2009 ... C2009 Cho x=1 ta có: 0,25 (C2009 C2009 ... C2009 ) (C2009 C2009 ... C2009 ) 22009 . 0 2 2008 1 3 2009 0,25 Suy ra: B 22008 . + Từ đó ta có: S 21003 22007 .
CÓ THỂ BẠN MUỐN DOWNLOAD
-
23 bộ đề ôn thi Cao đẳng và đại học môn Ngữ Văn 2010_2
8 p | 619 | 240
-
23 bộ đề ôn thi Cao đẳng và đại học môn Ngữ Văn 2010_3
8 p | 506 | 209
-
BỘ ĐỀ TRẮC NGHIỆM ÔN THI CAO ĐẲNG- ĐẠI HỌC MÔN VẬT LÝ 2011_ĐỀ 10
8 p | 267 | 84
-
BỘ ĐỀ TRẮC NGHIỆM ÔN THI CAO ĐẲNG- ĐẠI HỌC MÔN VẬT LÝ 2011_ĐỀ 1
16 p | 205 | 52
-
Đề ôn thi cao đẳng môn văn 2012 khối D
1 p | 393 | 50
-
BỘ ĐỀ TRẮC NGHIỆM ÔN THI CAO ĐẲNG- ĐẠI HỌC MÔN VẬT LÝ 2011_ĐỀ 4+5
19 p | 199 | 38
-
Đề ôn thi trắc nghiệm đại học môn tiếng trung 2012_2
5 p | 201 | 38
-
Đề ôn thi cao đẳng 2012_để số 9
3 p | 131 | 13
-
Đề ôn thi cao đẳng 2012_để số 11
3 p | 110 | 11
-
ĐỀ ÔN THI CAO ĐẲNG, ĐẠI HỌC NĂM 2011 MÔN TOÁN HỌC - MÃ ĐỀ 001
8 p | 79 | 10
-
ĐỀ ÔN THI CAO ĐẲNG, ĐẠI HỌC NĂM 2011 MÔN TOÁN HỌC - MÃ ĐỀ 002
6 p | 73 | 9
-
ĐỀ ÔN THI CAO ĐẲNG, ĐẠI HỌC NĂM 2011 MÔN TOÁN HỌC - MÃ ĐỀ 004
6 p | 74 | 9
-
ĐỀ ÔN THI CAO ĐẲNG, ĐẠI HỌC NĂM 2011 MÔN TOÁN HỌC - MÃ ĐỀ 005
7 p | 72 | 9
-
ĐỀ ÔN THI CAO ĐẲNG, ĐẠI HỌC NĂM 2011 MÔN TOÁN HỌC - MÃ ĐỀ 006
6 p | 64 | 8
-
ĐỀ ÔN THI CAO ĐẲNG, ĐẠI HỌC NĂM 2011 MÔN TOÁN HỌC - MÃ ĐỀ 008
4 p | 59 | 8
-
Đề ôn thi cao đẳng 2012_để số 13
3 p | 102 | 7
-
ĐỀ ÔN THI CAO ĐẲNG, ĐẠI HỌC NĂM 2011 MÔN TOÁN HỌC - MÃ ĐỀ 007
7 p | 69 | 7
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn