intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề ôn thi tuyển sinh môn toán vào lớp 10 THPT - Đề số 22

Chia sẻ: F F | Ngày: | Loại File: PDF | Số trang:3

70
lượt xem
9
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Các bạn học sinh và quý thầy cô tham khảo miễn phí Đề ôn thi tuyển sinh môn toán vào lớp 10 THPT - Đề số 22 để hệ thống kiến thức học tập cũng như trau dồi kinh nghiệm ra đề thi

Chủ đề:
Lưu

Nội dung Text: Đề ôn thi tuyển sinh môn toán vào lớp 10 THPT - Đề số 22

  1. ĐỀ ÔN THI TUYỂN SINH LỚP 10 THPT ĐỀ SỐ 22 Câu 1: 1) Giải phương trình: x2 - 2x - 15 = 0 2) Trong hệ trục toạ độ Oxy, biết đường thẳng y = ax - 1 đi qua điểm M (- 1; 1). Tìm hệ số a.  a 1  a  a a  a  Câu 2: Cho biểu thức: P =      2 2 a  a  1  a  1  với a > 0, a  1 1) Rút gọn    biểu thức P 2) Tìm a để P > - 2 Câu 3: Tháng giêng hai tổ sản xuất được 900 chi tiết máy; tháng hai do cải tiến kỹ thuật tổ I vượt mức 15% và tổ II vượt mức 10% so với tháng giêng, vì vậy hai tổ đã sản xuất được 1010 chi tiết máy. Hỏi tháng giêng mỗi tổ sản xuất được bao nhiêu chi tiết máy? Câu 4: Cho điểm C thuộc đoạn thẳng AB. Trên cùng một nửa mp bờ AB vẽ hai tia Ax, By vuông góc với AB. Trên tia Ax lấy một điểm I, tia vuông góc với CI tại C cắt tia By tại K . Đường tròn đường kính IC cắt IK tại P. 1) Chứng minh tứ giác CPKB nội tiếp đường tròn. 2) Chứng minh rằng AI.BK = AC.BC. 3) Tính APB . Câu 5: Tìm nghiệm nguyên của phương trình x2 + px + q = 0 biết p + q = 198.
  2. ĐỀ SỐ 22 Câu 1: 1) x2 - 2x - 15 = 0 , ' = 1 - (-15) = 16 ,  ' = 4 Vậy phương trình có 2 nghiệm x1 = 1 - 4 = - 3; x2 = 1 + 4 = 5 2. Đường thẳng y = ax - 1 đi qua điểm M (- 1; 1) khi và chỉ khi: 1 = a (-1) -1 a = - 2. Vậy a = - 2 Câu 2: 1) P =  a 1 a  a .    a 1  a  a  a  1 2 a  a  1 a  1 = a  1a a aa a a a  a  a  a   4 a. a   2 a. 2 a (a  1) 2 a Vậy P = - 2 a . 2) Ta có: P  2  - 2 a > - 2  a < 1  0 < a < 1 Kết hợp với điều kiện để P có nghĩa, ta có: 0 < a < 1 Vậy P > -2 a khi và chỉ khi 0 < a < 1 Câu 3: Gọi x, y số chi tiết máy của tổ 1, tổ 2 sản xuất trong tháng giêng (x, y  N* ), ta có x + y = 900 (1) (vì tháng giêng 2 tổ sản xuất được 900 chi tiết). Do cải tiến kỹ thuật nên tháng hai tổ 1 sản xuất được: x + 15%x, tổ 2 sản xuất được: y + 10%y. Cả hai tổ sản xuất được: 1,15x + 1,10y = 1010 (2) Từ (1), (2) ta có hệ phương trình: x  y  900 1,1x  1,1y  990 0, 05x  20    1,15x  1,1y  1010 1,15x  1,1y  1010  x  y  900 x = 400 và y = 500 (thoả mãn) Vậy trong tháng giêng tổ 1 sản xuất được 400 chi tiết máy, tổ 2 sản xuất được 500 chi tiết máy. Câu 4: 1) Ta có IPC = 900 (vì góc nội tiếp y chắn nửa đường tròn) => CPK = 900. x K 0 0 0 Xét tứ giác CPKB có: K  B = 90 + 90 = 180 => CPKB là tứ giác nội tiếp đường tròn (đpcm) 2) Xét  AIC và  BCK có A  B = 900; P I ACI  BKC (2 góc có cạnh tương ứng vuông góc) AI AC =>  AIC ~  BCK (g.g) =>  BC BK A C B => AI.BK = AC.BC. 3) Ta có: PAC  PIC (vì 2 góc nội tiếp cùng chắn cung PC ) PBC  PKC (vì 2 góc nội tiếp cùng chắn cung PC )
  3. Suy ra PAC  PBC  PIC  PKC  900 (vì  ICK vuông tại C).=> APB = 900 . Câu 5: Tìm nghiệm nguyên của phương trình x2 + px + q = 0 biết p + q= 198. Phương trình có nghiệm khi   0 p2 + 4q  0; gọi x1, x2 là 2 nghiệm. - Khi đó theo hệ thức Viét có x1+ x2 = - p và x1x2 = q mà p + q = 198 => x1x2 - (x1+ x2) = 198 (x1 - 1)(x2 - 1) = 199 = 1 . 199 = (- 1)(-199) ( Vì x1, x2  Z ) Nên ta có : x1 - 1 1 -1 199 -199 x2 - 1 199 -199 1 -1 x1 2 0 200 -198 x2 200 -198 2 0 Vậy phương trình có các nghiệm nguyên: (2; 200); (0; -198); (200; 2); (-198; 0)
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2