intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi học kì 1 môn Toán lớp 10 năm 2020-2021 - Trường THPT Thường Tín

Chia sẻ: Yunmengshuangjie Yunmengshuangjie | Ngày: | Loại File: PDF | Số trang:2

29
lượt xem
2
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Nhằm giúp các bạn có thêm tài liệu phục vụ nhu cầu học tập và ôn thi học kì, mời các bạn cùng tham khảo nội dung Đề thi học kì 1 môn Toán 10 năm 2020-2021 - Trường THPT Thường Tín dưới đây. Hi vọng đề thi sẽ giúp các bạn tự tin hơn trong kì thi sắp tới. Chúc các bạn ôn tập kiểm tra đạt kết quả cao!

Chủ đề:
Lưu

Nội dung Text: Đề thi học kì 1 môn Toán lớp 10 năm 2020-2021 - Trường THPT Thường Tín

  1. SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI ĐỀ KIỂM TRA CUỐI KÌ I NĂM HỌC 2020 – 2021 TRƯỜNG THPT THƯỜNG TÍN MÔN: TOÁN LỚP 10 Thời gian làm bài: 90 phút, không kể thời gian phát đề (Đề thi gồm 02 trang) MÃ ĐỀ 101 Họ và tên học sinh :................................................................ Lớp:............................................... A. PHẦN TRẮC NGHIỆM (3,0 điểm): Câu 1: Cho các tập hợp sau: A   6; 2 , B   4;   , C   2; 4  . Chọn mệnh đề đúng: A. B  C   4; 4 B. C C   ; 2  C. A  B   6;   D. C B   ; 4 Câu 2: Chọn khẳng định đúng trong các khẳng định sau: A. n   : n2  n B. x  : x 2  2 C. x  : 2 x  1 D. x  : x2  x Câu 3: Trong hệ tọa độ Oxy, cho A(2;6), B(8; 2) . Tọa độ trung điểm đoạn AB là: A. (3; 4) B. (5; 2) C. (5; 4) D. (5;2) Câu 4: Cho parabol (P): y  ax  bx  c đi qua ba điểm A(1; 4), B(1; 4) và C (2; 11) . Tọa độ đỉnh của 2 (P) là: A. (1; 4) B. (2; 5) C. (3; 6) D. (2; 11) Câu 5: Cho hai tập hợp khác tập rỗng: A   m  1; 4 ; B   2; 2m  6 ( m ). Số giá trị nguyên của m để A  B là: A. 1 B. 3 C. 4 D. 2 Câu 6: Cho hình vuông ABCD cạnh a. Tính AB.CA theo a: a2 2 a2 a2 A.  a 2 B. C. D. 2 3 2 Câu 7: Cho tam giác ABC có trọng tâm G, biết A(1;1), B(1; 2), G(2; 3) . Tọa độ điểm C là: 4  4 2 A.  ; 2  B. (4; 2) C. (4; 10) D.  ;  3  3 3 Câu 8: Cho tam giác ABC đều cạnh a, H là trung điểm của BC. Tính CA  HC . 2 3a a a 7 3a A. B. C. D. 3 2 2 2 Câu 9: Chọn cặp phương trình tương đương trong các cặp phương trình sau: A. x(x+2) = x và x + 2 = 1 B. x ( x  2)  x và x + 2 = 1 C. x  x  2  1  x  2 và x = 1 D. x  x  1  1  x  1 và x = 1 Câu 10: Cho a  (0;5), b  (2;1) . Khi đó cos(a, b) bằng: 5  5 1 2 A. B. C. D. 5 5 5 5 Câu 11: Đường thẳng  d  : y  ax  b đi qua điểm I  2; 3 và tạo với hai tia Ox, Oy một tam giác vuông cân. Khi đó giá trị của a  b là: A. 6 B. 4 C. 4 D. 6 Câu 12: Phương trình x  2 x  3  m có 4 nghiệm phân biệt khi đó: 2 A. m  0 B. 0  m  4 C. m  4 D. 0  m  4 Câu 13: Cho tam giác ABC. Tập hợp điểm M thỏa mãn: MA  2MB  3 MC  MB  MC là: A. Đường tròn bán kính BC B. Đường trung trực của đoạn BC Trang 1/2 - Mã đề 101
  2. BC C. Trung điểm của BC D. Đường tròn bán kính 6 Câu 14:  10;10 để phương trình Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn  (m2  9) x  3m(m  3) có nghiệm duy nhất: A. 19 B. 2 C. 20 D. 21 (2m  1) x  m Câu 15: Tìm tổng tất cả các giá trị của m để phương trình:  x  m là có nghiệm duy nhất: x 1 A. 3 B. 2 C. 2 D. 0 B. PHẦN TỰ LUẬN (7,0 điểm): Bài 1 (2,0 điểm): Giải các phương trình sau x 2  7 x  10  1 a) 2 x  5  3x  2 b) 3 x Bài 2 (1,5 điểm): a) Cho 00    1800 và tan   3 . Tính sin  , cos  , cot  ? b) Một sợi dây có chiều dài là 6 mét được chia thành hai phần .Phần thứ nhất được uốn thành hình tam giác đều, phần thứ hai uốn thành hình vuông. Hỏi độ dài của cạnh hình tam giác đều bằng bao nhiêu mét để tổng diện tích hai hình thu được là nhỏ nhất ? c) Giải phương trình : (3x  4)( x2  2 x  4  x)  4 x  8 Bài 3 (1,5 điểm): Cho tam giác ABC có A 1; 3 , B  1; 2  , C  3;  5  . a) Tính chu vi tam giác ABC . b) Tìm tọa độ trực tâm H của tam giác ABC . Bài 4 (1,5 điểm): Cho tam giác ABC có điểm M thuộc cạnh AC sao cho MA  2 MC , điểm N thuộc cạnh BM sao cho NB  3 NM , điểm P thuộc cạnh BC sao cho PB  k PC . a) Hãy phân tích véc tơ AN theo hai véc tơ AB, AC . b) Tìm giá trị của k để ba điểm A, N , P thẳng hàng. Bài 5 (0,5 điểm):Cho x 2  y 2  xy  1 . Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: P  x4  y 4  x2 y 2  1 ---------------------------------------- Hết ---------------------------------------- (Cán bộ coi thi không giải thích gì thêm !) Trang 2/2 - Mã đề 101
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
3=>0