intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi học sinh giỏi môn Vật lý lớp 10 cấp trường năm 2020-2021 có đáp án - Trường THPT Đồng Đậu

Chia sẻ: Kiều Anh | Ngày: | Loại File: PDF | Số trang:6

74
lượt xem
5
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Nhằm phục vụ quá trình học tập cũng như chuẩn bị cho kì thi học kì sắp đến. TaiLieu.VN gửi đến các bạn Đề thi học sinh giỏi môn Vật lý lớp 10 cấp trường năm 2020-2021 có đáp án - Trường THPT Đồng Đậu. Đây sẽ là tài liệu ôn tập hữu ích, giúp các bạn hệ thống lại kiến thức đã học đồng thời rèn luyện kỹ năng giải đề. Mời các bạn cùng tham khảo.

Chủ đề:
Lưu

Nội dung Text: Đề thi học sinh giỏi môn Vật lý lớp 10 cấp trường năm 2020-2021 có đáp án - Trường THPT Đồng Đậu

  1. TRƯỜNG THPT ĐỒNG ĐẬU KÌ THI CHỌN HSG LỚP 10 THPT NĂM HỌC 2020-2021 ĐỀ THI MÔN: VẬT LÝ Thời gian làm bài: 180 phút, không kể thời gian giao đề Câu 1(3 điểm): Hai xe ô tô bắt đầu chuyển động thẳng, nhanh dần đều hướng đến một ngã tư như hình vẽ 1. Tại thời điểm ban đầu, x 2 xe 1 ở A với OA  x01 và có gia tốc a1; xe 2 ở B với OB  x02 và có gia tốc a2. Cho a1 = 3m/s2, x01 = -15m; a2= 4m/s2, x02 = -30m A a) Tìm khoảng cách giữa chúng sau 5s kể từ thời điểm ban đầu. O x b) Sau bao lâu hai chất điểm lại gần nhau nhất? Tính khoảng 1 cách giữa chúng lúc đó. Hình 1 B Câu 2(2 điểm): Một ô tô chạy đều trên đường thẳng với vận tốc 36m/s thì vượt qua một viên cảnh sát giao thông đang đứng bên đường. Chỉ 1s sau khi ô tô vượt qua, viên cảnh sát phóng xe đuổi theo với gia tốc không đổi 3m/s2, vận tốc ban đầu bằng không. a) Sau bao lâu viên cảnh sát đuổi kịp ô tô kể từ khi cảnh sát bắt đầu xuất phát? b) Quãng đường mà viên cảnh sát đi được và vận tốc của anh khi đuổi kịp ô tô. Câu 3(1 điểm): Cần tác dụng lên vật m trên mặt phẳng nghiêng góc α một lực F bằng bao nhiêu để vật nằm yên, hệ số ma sát giữa vật và mặt phẳng nghiêng là k , khi biết vật có xu hướng trượt xuống(Hình 2). Hình 2 Câu 4(1,5 điểm): Một cái nêm khối lượng M = 2m có dạng như A hình vẽ 3. Biết góc  = 300. Vật nhỏ khối lượng m trượt không m vận tốc ban đầu, không ma sát từ đỉnh A trên mặt AB. a/ Cố định nêm, tính gia tốc của m. Lấy g = 9,8 m/s2. M b/ Nêm có thể trượt không ma sát trên mặt sàn ngang.  B Tính gia tốc của nêm. Hình 3 Câu 5( 2,5điểm): Một quả cầu nhỏ có khối lượng m = 500g được buộc vào 2 sợi dây không giãn, khối lượng không đáng kể. Hai đầu còn lại buộc vào hai đầu một thanh thẳng đứng. a Cho hệ quay xung quanh trục thẳng đứng qua thanh với tốc độ góc  . Khi quả cầu quay trong mặt phẳng nằm ngang và các sợi dây tạo thành một góc 900( hình vẽ 4). Chiều dài của dây trên là a = 30cm, của dây dưới là b = 40cm. Cho gia tốc rơi tự do g = 10m/s2.  Tính lực căng các sợi dây khi hệ quay với  = 8rad/s. b Hình 4 1
  2. Câu 6(1 điểm): Một quả cầu nặng đồng chất được treo bằng dây vào một điểm cố định trên tường thẳng đứng. Xác định hệ số ma sát giữa tường với quả cầu sao cho, khi cân bằng, điểm nối dây với quả cầu nằm trên đường thẳng đứng đi qua tâm quả cầu. Câu 7 (3 điểm): Thanh OA nhẹ gắn vào tường nhờ bản lề O. Đầu A có treo vật nặng với trọng lượng P. Để giữ cho thanh nằm ngang cân bằng thì C ta dùng dây treo điểm B của thanh lên. Biết OB=2AB (Hình 5). a. Tính lực căng T của dây và phản lực Q của bản lề theo góc α. Xác định lực căng nhỏ nhất và phản lực nhỏ nhất mà ta có thể nhận được α A khi thay đổi vị trí điểm treo C. O B b. Vì dây treo chỉ chịu được lực căng tối đa là 4P. Hãy xác định vị trí C Hình 5 P của dây treo để dây không bị đứt. Dây đặt ở vị trí nào thì lực căng của dây nhỏ nhất? Câu 8(1 điểm): Một con ếch khối lượng m = 150 g ngồi ở đầu một tấm ván có khối lượng M = 4,5 kg chiều dài L = 0,8 m nổi nằm yên trên mặt nước. Ếch bắt đầu nhảy lên theo hướng dọc chiều dài tấm ván. Hỏi nó phải nhảy với vận tốc ban đầu v0 bằng bao nhiêu để với một bước nhảy nó tới được mép cuối tấm ván, nếu góc nhảy hợp với phương ngang một góc   150 ? Bỏ qua lực cản của nước. Lấy g = 10 m/s2. Câu 9 (3 điểm): Một con lắc đơn gồm một hòn bi A có khối lượng m = 1000 g treo trên một sợi chỉ dài l = 1m (Hình 6). Kéo con lắc lệch khỏi phương thẳng đứng góc 𝛼 = 300 rồi thả ra không vận tốc đầu. Bỏ qua mọi lực cản môi trường và lực ma sát. a. Tìm vận tốc của hòn bi A khi qua vị trí cân bằng. Lấy g = 9,8 m/s 2. b. Khi đến vị trí cân bằng, viên bi A va chạm đàn hồi xuyên tâm với một bi B có khối lượng m1 = 500 g đang đứng yên trên mặt bàn. Tìm vận tốc của hai hòn bi ngay sau va chạm. c. Giả sử bàn cao 0,8 m so với sàn nhà và bi B nằm ở mép A bàn. Xác định quỹ đạo chuyển động của bi B. Sau bao lâu B thì bi B rơi đến sàn nhà và điểm rơi cách chân bàn O bao nhiêu? 0,8m Hình 6 Câu 10 (2 điểm): Cho một thanh gỗ thẳng dài có thể quay quanh một trục lắp cố định ở một giá thí nghiệm, một thước chia tới milimet, một bình hình trụ lớn đựng nước (đã biết khối lượng riêng của nước), một bình hình trụ lớn đựng dầu hoả, một lọ nhỏ rỗng, một lọ nhỏ chứa đầy cát có nút đậy kín, hai sợi dây. Hãy trình bày một phương án xác định khối lượng riêng của dầu hoả. .....................................Hết...................................... Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh:……………………………….Số báo danh:……………………………… 2
  3. HƯỚNG DẪN CHẤM Câu Đáp án Điểm 1 1 0,5 x1  x01  a1t 2  15  1,5t 2 a. Phương trình chuyển động của xe đi từ A: 2 1 0,5 x2  x02  a2 t 2  30  2t 2 Phương trình chuyển động của xe đi từ B: 2 Khoảng cách giữa hai xe tại thời điểm t 1 d 2  x12  x22  (a12  a22 )t 4  (a1 x01  a2 x02 )t 2  x01 2  x02 2 4 0,5     25 25 2   2 2 2 d 2  x12  x22  1,5t 2  15  2t 2  30  t 4  165t 2  1125  t  13, 2  36 4 4 Sau 5s, khoảng cách giữa chúng: d= 30,1 m 0,5 b. d  36  dmin  6 . 2 0,5 dmin  6  t  13, 2  3,63s 0,5 2 a. Chọn Ox cùng chiều chuyển động của ô tô, 0 ≡ vị trí đứng của cảnh sát, t =0 lúc cảnh sát xuất phát. Phương trình chuyển động của hai xe: ô tô: x1 = 36(t – 1) = 36t + 36 0,5 1 cảnh sát: x2 = 2 𝑎𝑡 2 = 1,5t2 - Khi cảnh sát đuổi kịp ô tô: x1 = x2 → t ≈ 25s 0,5 Sau khi chuyển động được 25s thì cảnh sát đuổi kịp ô tô. b. Vận tốc cảnh sát khi đuổi kịp ô tô: v = at = 25.3 ≈ 75(m/s) 0,5 Quãng đường cảnh sát đi được: 1 0,5 s = 2at2 ≈ 935,5m 3 HV (0,25) Chọn hệ trục Oxy như hình vẽ. Áp dụng định luật II Niu-tơn ta có:     F P N  Fms  0 0,25 3
  4. Chiếu phương trình lên trục Oy: N - Pcos α - Fsin α = 0 => N = Pcos α + F sin α 0,25 Fms = kN = k(mgcos α + F sin α ) Chiếu phương trình lên trục Ox : Psin α - F cos α - Fms = 0 => F cos α = Psin α - Fms = mg sin α - kmg cos α - kF sin α mg(sin  kcox) mg(tg  k ) F  0,25 cos  k sin 1  ktg 4 a/ Gia tốc của m: a = g.sin  = 9,8.sin300 = 4,9 m/s2. 0,5 b/ Xét m trong HQC gắn với nêm: ⃗N ⃗ N = mg.cos  - Fqt.sin  = mg.cos  - ma.sin  a là gia tốc của nêm HV(0,5) Xét chuyển động của nêm trong HQC O: a O N’sin  = 2ma; mà N = N’ ⃗N ⃗’ => (mg.cos  - ma.sin  ). sin  = 2ma => g. cos  sin  = (sin2  + 2).a 0,5 g. sin 2 => a  Thay số được: a  1,886 m/s2. 2(sin   2) 2 5 Xét trong hệ quy chiếu quay. Điều kiện cân bằng của vật : HV(0,5)      P  Ta  TB  Fqt  0 0,5 Chiếu lên phương các sợi dây:  0,5  mg cos   Ta  Fqt . cos   0 (1). a r  mg cos   Tb  Fqt . cos   0 (2). ab Với : Fqt  mr  m . 2 2 . a2  b2 b r a 0,5 cos     b a2  b2 r b cos    . a a2  b2 Thay các giá trị của Fqt , cos  , cos  và  = 8rad/s vào (1) và (2) ta được : a ab 2 Ta  mg  m 2 2 = 9,14N a2  b2 a  b2 b a 2b 0,5 Tb  mg  m 2 = 0,6N a2  b2 a2  b2 6 Khi quả cầu đứng cân bằng các lực tác dụng vào nó: HV(0,5) ⃗⃗ ;trọng lực P . Sức căng T ; lực ma sát Fms ; phản lực N A Đối với trục quay lqua điểm A, vuông góc mặt phẳng hình vẽ : ⃗⃗ N Fms.R – N.R = 0. 0,5 hay Fms = N. 4
  5. Mặt khác Fms ≤ k.N  k  1. 7 a. Chọn hệ toạ độ Oxy như hình vẽ. HV(0,5) + Điều kiện cân bằng mômen của vật với trục quay qua O là: C α A O B O x y 3P MT  M P  0  T.OB.sin   P.OA  T  0,25 2sin  +Điều kiện cân bằng lực của thanh là: QTP0 0,25 3P Theo phương Ox: Q x  Tcos   0  Q x  cos  0,25 2sin  3P P Theo phương Oy: Q y  P  Tsin   Q y  P   Q y   0,25 2 2 + Phản lực Q của bản lề tác dụng lên thanh là: 0,25 9P 2 P2 P Q Q Q 2 x 2 y cotan  2  9cotan2  1 4 4 2 3P + Từ biểu thức lực căng T  ta thấy Tmin khi   90 (dây treo thẳng đứng) 0 0,25 2sin  3P P khi đó lực căng T  . Cũng tại vị trí này thì cotan   0  Q  Qmin  2 2 2 b. Theo giả thiết ta có: 3P 3 Tmax  4P   4P  sin    220    1580 0,5 2sin  8 Vậy để dây không bị đứt thì ta phải chọn điểm treo C sao cho góc treo α thoả mãn 220    1580 0,5 + Vì T luôn dương, nên T min khi sin  max, khi đó   90 . o Vậy dây đặt vuông góc với thanh OA tại B thì lực căng dây đạt giá trị nhỏ nhất. 8 – Động lượng của hệ ếch-ván được bảo toàn theo phương ngang, nên : 0,25 mv0cos  Mu (1) Trong đó v0 là vận tốc của ếch và u là vận tốc của ván đối với mặt nước nằm yên 0,5 5
  6. Để ếch nhảy tới mép cuối của tấm ván, cần thỏa mãn điều kiện: L  u.t   v0cos  .t (2) 2v0 sin  Với t là thời gian nhảy của ếch. Thay t  vào phương trình (2) g 0,25 gL Giải hệ (1) và (2) ta được; v0   3,93 m / s m    1 sin 2 M  9 a. Áp dụng định luật bảo toàn cơ năng : 1 Vận tốc bi A qua vị trí cân bằng: V0A= 2 gl (1  cos  ) = 1,62 m/s b. Va chạm đàn hồi : Bảo toàn động lượng và bảo toàn động năng. 0,5 mV0A= m VA+m1V0B 1 1 1 m V02A = mVA2 + mV02B 0,5 2 2 2 => VA=0,54m/s; V0B= 2,16m/s 2h c. Hòn bi B chuyển động ném ngang: t= = 0,4s =>S= V0B.t = 0,864m g 1 10 - Lắp thanh gỗ vào trục quay để có 1 đòn bẩy. l l0 Treo lọ rỗng vào đòn bên phải, treo lọ đầy cát 0,5 vào một vị trí ở đòn bên trái sao cho đòn bẩy cân bằng nằm ngang. Ta có: P0.l0 = P.l (1) - Nhúng lọ đựng đầy cát ngập trong nước rồi tìm F vị trí treo nó sao cho đòn bẩy cân bằng: P0. l0 = (P – F). l’ (2) 0,5 - Từ (1) và (2): F = P(l’ – l)/l’ mà F = dnước.V P P0 P l 'l Suy ra: dnước =  V l' - Lặp lại thí nghiệm bằng cách thay nước bằng dầu hoả, tìm vị trí l’’ treo lọ cát để đòn bẩy cân bằng. P l ' 'l 0,5 - Ta có: ddầu =  V l' ' (l ' 'l )l ' - Suy ra ddầu = dnước  (l 'l )l ' ' (l ' 'l )l ' 0,5 hay: Ddầu = Dnước  (l 'l )l ' ' 6
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
3=>0