Đề thi thử đại học - cao đẳng môn Toán - Đề số 28
lượt xem 27
download
Tham khảo tài liệu 'đề thi thử đại học - cao đẳng môn toán - đề số 28', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử đại học - cao đẳng môn Toán - Đề số 28
- ĐỀ THI VÀ GỢI Ý BÀI GIẢI MÔN TOÁN –ĐH-CĐ năm 2011 *** PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH x 2 − mx + 2m − 1 mx − 1 Câu I (2 điểm). Cho hàm số y = (1), có đồ thị là (Cm), m là tham số. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1. 1. Xác định m để tiệm cận xiên của (Cm) đi qua gốc tọa độ và hàm số (1) có cực trị. 2. Câu II (2 điểm) � π� � 2π � 3 − sin x sin 2 � + � sin 2 � + + = x x � � 3� � 3� 2 Giải phương trình : 1. x x 3 + y3 = m(x + y) + −x − y = 2 Cho hệ phương trình : 2. Tìm tất cả các giá trị của m để hệ phương trình trên có 3 nghiệm phân biệt (x 1; y1), (x2; y2) và (x3; y3) sao cho x1, x2, x3 lập thành một cấp số cộng. Câu III (2 điểm). 1. Tam giác ABC có a = b 2 - Chứng minh rằng : cos2A = cos2B. - Tìm giá trị lớn nhất của góc B và giá trị tương ứng của các góc A, C. 3 ln x +(x + 1)2 dx 2. Tính tích phân: I = 1 Câu IV (2 điểm). Trong không gian với hệ tọa độ Oxyz, cho ba điểm A (6;-2;3); B (2;-1;3); C (4;0;- 1). Chứng minh rằng: A, B, C là ba đỉnh của một tam giác. Tìm độ dài đường cao 1. của tam giác ABC kẻ từ đỉnh A. Tìm m và n để điểm M (m + 2; 1; 2n + 3) thẳng hàng với A và C. 2. PHẦN TỰ CHỌN: Thí sinh chỉ được chọn làm câu V. a hoặc câu V.b Câu V.a. Theo chương trình THPT không phân ban (2 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hypebol (H) có phương trình: 1. x 2 y2 − =1 2 3 và điểm M(2; 1). Viết phương trình đường thẳng d đi qua M, biết rằng đường thẳng đó cắt (H) tại hai điểm A, B mà M là trung điểm của AB. Cho hai đường thẳng song song. Trên đường thẳng thứ nhất lấy 9 điểm phân 2. biệt. Trên đường thẳng thứ hai lấy 16 điểm phân biệt. Hỏi có bao nhiêu tam giác với đỉnh là các điểm lấy trên hai đường thẳng đã cho. Câu V.b. Theo chương trình THPT phân ban thí điểm (2 điểm) 2007 2006 2006 − x + 2007 − x =1 Giải phương trình: 1. ỉ Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại đỉnh A ( A = 90o), 2. AB=AC=a. Mặt bên qua cạnh huyền BC vuông góc với mặt đáy, hai mặt bên còn lại đều hợp với mặt đáy các góc 60o. Hãy tính thể tích của khối chóp S.ABC. BÀI GIẢI
- x 2 − 2x x2 − x +1 y' = (x − 1) ; y’ = 0 ⇒ x = 0, 2 Câu I. 1. m = 1 ⇒ y = x − 1 . MXĐ : D = R \ {1}. x=2 TCĐ : x = 1; TCX : y = x −∞ +∞ x 0 1 2 0− − y' + 0 + +∞ +∞ y -1 −∞ −∞ 3 mx 2 − 2x − 2m 2 + 2m x 2 − mx + 2m − 1 (mx − 1) 2 mx − 1 2. y= ; y’ = x 1 − m 2 2m3 − 2m 2 + 1 x 1 − m2 + + + m 2 (mx − 1) ⇒ TCX : y = m m2 y= m m 2 với 2m3 − 2m 2 +2 0 1 và m ≠ 0 m 2 − 2x − 2m 2 + 2m = 0 có 2 nghiem phan biet mx − − 1 − m2 � 2 = −+�ٹm 2m 1 0 3 2 � 0 m0 m2 � YCBT ⇔ ⇔m = 1 � π� � 2π � 3 − sin x sin 2 � + � sin 2 � + + = x x � � 3� � 3� 2 ⇔ Câu II. 1. � π� π � 3 − sin x � sin 2 � + � sin 2 � − x � + = x � 3� 3 2 � � 2π � �π2 � � 1 − cos � + � 1 − cos � − 2x � 3 − sin x 2x 3� �3 � � + = 2 2 2 ⇔ 2π � �π2 �1� � � 1 − sin x + cos � + � cos � − 2x � 0 + = 1 − sin x + 2 cos 2x � � 0 − = 2x 3� �3 � 2� � �⇔ ⇔ ⇔ 1 – cos2x – sinx = 0 ⇔ 2sin2x – sinx = 0 6 6x = kπ = πx = π + k2π =sin x = 0 = 6 = = 5π =sin x = 1 πx = + k2π = 2 ⇔= 6 ⇔ (k ∈ Z) x x 3 + y 3 = m(x + y) (1) + x−y=2 (2) (I) − 2. (2) ⇔ y = x − 2 thay vào (1) ta có : =x = 1 =2 x − 2x + 4 − m = 0(*) (2x - 2)[x2 - 2x + 4 - m] = 0 ⇔ − Nhận xét : Nếu pt (*) có 2 nghiệm x1, x2 phân biệt thì : x1 < 1 < x2 và x1 + x2 = 2 YCBT ⇔ pt (*) có 2 nghiệm phân biệt ⇔ ∆ ' = 1 - 4 + m > 0 ⇔ m > 3.
- Câu III. 1. a = b 2 ⇔ sinA = B 2sin Nên : cos2A = 1 - sin2A = 1 - 2sin2B = cos2B (đpcm) Vì : cos2B = cos2A và 0 ≤ cos2A ≤ 1 nên : B lớn nhất ⇔ cos2B nhỏ nhất ⇔ cos2B = 0 ⇔ 2B = 90o ⇔ B = 450. Lúc đó : A= 90o, C = 45o. 3 ln x dx 1 +(x + 1)2 dx − . ặt u = lnx ⇒ du = x ; dv = (x + 1)-2dx ⇒ v = x + 1 2. I= 1 Đ ( x + 1) − x dx = − 1 ln 3 + 3 � − 1 � 33 ln x 1 +� � x +1� − dx � I = x + 1 1 1 x(x + 1) 4 x 1� � 3 �x� 1 1 3 − ln 3 + � ln − ln 3 + ln x +1 � 4 � � 4 2 = 1= uuu uuu rr r uuur uuu r � BC � (−4; −16; −C 0 = AB, � 6) Câu IV. 1. Ta có : AB = (−4;1;0) ; BC = (2;1; −4) � ⇒ ⇒ A, B, C không thẳng hàng ⇒ A, B, C là 3 đỉnh của tam giác uuu uuu rr � B, BC � 2 33 A � � = BC 3 ⇒ AH = d(A, BC) = uuuur uuu r AM = (m − 4;3; 2n) AC = −2(1; −1; 2) M (m + 2; 1; 2n + 3) ⇒ cùng phương 2. m − 4 3 2n = = −1 2 m = 1 và n = -3 ⇒1 ⇒ Câu V.a. 1. Giả sử d qua M cắt (H) tại A, B : với M là trung điểm AB 33x 2 − 2y A = 6 (1) 2 −A −2 3x − 2y 2 = 6 (2) A, B ∈ (H) : ⇒ − B B M là trung điểm AB nên : xA + xB = 4 (3) và yA + yB = 2 (4) (1) − (2) ta có : 3(x2A - x2B) - 2(y2A - y2B) = 0 (5) Thay (3) và (4) vào (5) ta có : 3(xA -xB)-(yA-yB) = 0 ⇔ 3(2xA-4)-(2yA- 2) = 0 ⇔ 3xA - yA = 5 Tương tự : 3xB - yB = 5. Vậy phương trình d : 3x - y - 5 = 0 2 Số tam giác có đỉnh trên d và đáy trên d : 9.C16 2. 1 2 2 Số tam giác có đỉnh trên d2 và đáy trên d1 : 16.C9 2 2 Số tam giác thỏa YCBT là 9.C16 + 16.C9 . Câu V.b. −−1 x −0 x 2006 1 − Nhận xét : −−1 x −0 x 2007 1 ⇔ 2006 ≤ x ≤ 2007 1. Ta có : 2006 - x 2007 + 2007 - x 2006 ≤ 2006 - x + 2007 - x = x - 2006 + 2007 -x=1 Vậy phương trình ⇔ 2006 - x 2007 = 2006 - x và 2007 - x 2006 = 2007 - x
- �x = 2006 � �� ==x = 2005 �2006 − x = 0 � ==x = 2007 �� �2006 − x =0 1 == � � = x = 2007 −−2007 − x = 0 == −−2007 − x = 1 ==x = 2006 ⇔ −− S ⇔ == ⇔ = 2006 hay x = 2007 x Kẻ SH vuông góc với BC. Suy ra SH ⊥ mp 2. (ABC) Kẻ SI vuông góc với AB và SJ ⊥ AC ⇒góc SIH=góc SJH = 60o ⇒ tam giác SHI = tam C C giác SHJ ⇒ HI = HJ ⇒ AIHJ là hình vuông H H J ⇒ I là trung điểm AB ⇒ IH = a/2 J a3 B B A Trong tam giác vuông SHI ta có SH = 2 A I a3 3 1 SH.dt(ABC) = V(SABC) = 3 12 đvtt) ( Người giải đề: 0977467739 Hết.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học lần 1 môn Hóa khối A, B năm 2010 - Trường THPT Đông Sơn I (Mã đề: 144)
18 p | 3609 | 744
-
.....đề thi thử đại học môn Văn dành cho các bạn luyện thi khối C & Dđề thi thử đại học môn Văn dành cho các bạn luyện thi khối C & D
5 p | 907 | 329
-
Đề thi thử Đại học, Cao đẳng môn Hóa năm 2010 - Trường THPT Chu VĂn An (Mã đề 160)
8 p | 696 | 269
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 01)
6 p | 444 | 242
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 02)
6 p | 386 | 184
-
Đề thi thử Đại học năm 2010 môn Hóa học - Mã đề thi 132
6 p | 795 | 181
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 03)
7 p | 336 | 161
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 04)
8 p | 330 | 143
-
Đề thi thử đại học môn Lý (Có đáp án)
4 p | 399 | 133
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 06)
6 p | 301 | 128
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 08)
7 p | 305 | 119
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 09)
6 p | 294 | 114
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 07)
8 p | 313 | 114
-
Đề thi thử đại học và cao đẳng năm 2010 môn Toán khối A-B-D-V
4 p | 309 | 54
-
Đề thi thử Đại học lần 4 môn Anh khối A1, D năm 2014 - Cô Vũ Thu Phương
8 p | 269 | 30
-
Đề thi thử đại học và cao đẳng năm 2010 môn Toán trường Minh Khai
2 p | 169 | 24
-
Đề thi thử Đại học lần 1 môn Anh khối A1, D năm 2014 - Cô Vũ Thu Phương
11 p | 113 | 20
-
Đề thi thử đại học môn Hóa học - Trường THPT Quỳnh Côi
4 p | 107 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn