intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 34 - Đề 1

Chia sẻ: Ky Su | Ngày: | Loại File: PDF | Số trang:7

35
lượt xem
4
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo đề thi - kiểm tra 'đề thi thử đại học khối a, a1, b, d toán 2013 - phần 34 - đề 1', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 34 - Đề 1

  1. I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x Câu I (2,0 điểm). Cho hàm số y = . x 1 1. Khảo sát sự biến thiên và vẽ đồ thị ( C ) của hàm số. 2. Tìm các giá trị của m để đường thẳng y = mx – m + 2 cắt đồ thị ( C ) tại hai điểm phân biệt A,B và đoạn AB có độ dài nhỏ nhất. Câu II (2,0 điểm) cos 2 x.  cos x  1 1. Giải phương trình  2 1  sin x  . sin x  cos x 2. Giải phương trình 7  x 2  x x  5  3  2 x  x2 (x  ¡ ) 3 x3 Câu III (1,0 điểm). Tính tích phân  3. dx . 0 x 1  x  3 Câu IV (1,0 điểm). Cho tứ diện đều ABCD có cạnh bằng 1. Gọi M, N là các điểm lần lượt di động trên các cạnh AB, AC sao cho  DMN    ABC  . Đặt AM = x, AN = y. Tính thể tích tứ diện DAMN theo x và y. Chứng minh rằng: x  y  3 xy. Câu V (1,0 điểm). Cho x, y, z  0 thoả mãn x+y+z > 0. Tìm giá trị nhỏ nhất của biểu x 3  y 3  16 z 3 thức P  3 x  y  z II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B). A. Theo chương trình Chuẩn: Câu VI.a (2,0 điểm) 1. Trong mặt phẳng toạ độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng AB: x – 2y + 1 = 0, phương trình đường thẳng BD: x – 7y + 14 = 0, đường thẳng AC đi qua M(2; 1). Tìm toạ độ các đỉnh của hình chữ nhật. 2. Trong không gian toạ độ Oxyz, cho mặt phẳng (P): 2x – y – 5z + 1 = 0 và hai đường thẳng x  1 y 1 z  2 x2 y2 z d 1:   , d 2:   2 3 1 1 5 2 Viết phương trình đường thẳng d vuông góc với (P) đồng thời cắt hai đường thẳng d1 và d2. Câu VII.a (1,0 điểm). Tìm phần thực của số phức z = (1 + i)n , biết rằng n  N thỏa mãn phương trình log4(n – 3) + log4(n + 9) = 3 B. Theo chương trình Nâng cao: Câu VI.b (2,0 điểm) 1. Trong mặt phẳng toạ độ Oxy cho tam giác ABC, có điểm A(2; 3), trọng tâm G(2; 0). Hai đỉnh B và C lần lượt nằm trên hai đường thẳng d1: x + y + 5 = 0 và d2: x + 2y – 7 = 0. Viết phương trình đường tròn có tâm C và tiếp xúc với đường thẳng BG.
  2. x  3 y  2 z 1 2. Trong không gian toạ độ cho đường thẳng d:   và mặt phẳng (P): x + y + z 2 1 1 + 2 = 0. Gọi M là giao điểm của d và (P). Viết phương trình đường thẳng  nằm trong mặt phẳng (P), vuông góc với d đồng thời thoả mãn khoảng cách từ M tới  bằng 42 .  1 Câu VII.b (1,0 điểm). Giải hệ phương trình log 1  y  x   log 4 y  1  4 ( x, y  ¡ )  2 2  x  y  25 -------------------Hết ------------------- ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Câu Nội dung Điểm I HS tu lam 2,0 II 2.0 cos 2 x.  cos x  1 1 Giải phương trình  2 1  sin x  . 1.0 sin x  cos x ĐK: sin x  cos x  0 0.25 Khi đó PT  1  sin x   cos x  1  2 1  sin x  sin x  cos x  2  1  sin x 1  cos x  sin x  sin x.cos x   0 0.25  1  sin x 1  cos x 1  sin x   0 sin x  1  (thoả mãn điều kiện) 0.25  cos x  1     x   2  k 2 k, m  Z   x    m2 0.25  Vậy phương trình đã cho có nghiệm là: x    k 2 và x    m 2 k, m  Z 2 2 Giải phương trình: 7  x 2  x x  5  3  2 x  x2 (x  ¡ ) 1.0 3  2 x  x 2  0  PT   2 2 0.25 7  x  x x  5  3  2 x  x  3  2 x  x 2  0   0.25  x x  5  2( x  2) 
  3.   3  x  1   2  x  0   x  0  0.25  x  1  x  16   0 2  x2   x  5  2.  x  x  1 0.25 Vậy phương trình đã cho có một nghiệm x = - 1. 3 x3 1.0 III Tính tích phân  3. dx . 0 x 1  x  3 x  0  u  1 Đặt u = x  1  u 2  1  x  2udu  dx ; đổi cận:  0.25 x  3  u  2 3 2 2 2 x3 2u 3  8u 1 0.25 Ta có:  3 x  1  x  3 1 u  3u  2du   (2u  6)du  6 u  1du 0 dx   2 1 1 2 2 0.25   u 2  6u  1  6 ln u  1 1 3 0.25  3  6 ln 2 IV 1.0 D Dựng DH  MN  H Do  DMN    ABC   DH   ABC  mà D. ABC là tứ diện đều nên H là tâm tam giác đều ABC . C B 0.25 N H M A 2  3 2 6 2 2 Trong tam giác vuông DHA: DH  DA  AH  1    3   3    0.25 1 3 Diện tích tam giác AMN là S AMN  AM . AN .sin 600  xy 2 4 1 2 Thể tích tứ diện D. AMN là V  S AMN .DH  xy 0.25 3 12 1 1 1 Ta có: S AMN  S AMH  S AMH  xy.sin 600  x. AH .sin 300  y. AH .sin 300 2 2 2 0.25
  4.  x  y  3 xy. V 1.0 3 Trước hết ta có: 3 x y 3   x  y (biến đổi tương đương) 4 0.25 2  ...   x  y   x  y   0 3 3  x  y  64 z 3 a  z  64 z 3 3 Đặt x + y + z = a. Khi đó 4P  3  3  1  t   64t 3 a a 0.25 z (với t = , 0  t  1 ) a Xét hàm số f(t) = (1 – t)3 + 64t3 với t   0;1 . Có 2 1 f '(t )  3 64t 2  1  t   , f '(t )  0  t    0;1 0.25   9 Lập bảng biến thiên 64 16  Minf  t    GTNN của P là đạt được khi x = y = 4z > 0 0.25 t 0;1 81 81 VI.a 2.0 1 1.0 Do B là giao của AB và BD nên toạ độ của B là nghiệm của hệ:  21 x  2 y 1  0 x  5   21 13    B ;  0.25   x  7 y  14  0  y  13  5 5   5 Lại có: Tứ giác ABCD là hình chữ nhật nên góc giữa AC và AB bằng góc giữa uuur uuur uuur AB và BD, kí hiệu nAB (1; 2); nBD (1; 7); n AC (a; b) (với a2+ b2 > 0) lần lượt là VTPT của các đường thẳng AB, BD, AC. Khi đó ta có: uuu uuu r r uuu uuu r r   cos nAB , nBD  cos nAC , nAB   0.25  a  b 3  a  2b  a  b  7 a  8ab  b  0   2 2 2 2 2 a   b  7 - Với a = - b. Chọn a = 1  b = - 1. Khi đó Phương trình AC: x – y – 1 = 0, A = AB  AC nên toạ độ điểm A là nghiệm của hệ: x  y 1  0 x  3    A(3; 2) 0.25 x  2 y 1  0  y  2 Gọi I là tâm hình chữ nhật thì I = AC  BD nên toạ độ I là nghiệm của hệ:
  5.  7  x  y 1  0 x  2  7 5   I ;   x  7 y  14  0 y  5 2 2   2  14 12  Do I là trung điểm của AC và BD nên toạ độ C  4;3 ; D  ;  5 5 - Với b = - 7a (loại vì AC không cắt BD) 0.25 2 1.0  x  1  2t x  2  m   Phương trình tham số của d1 và d2 là: d1 :  y  1  3t ; d 2 :  y  2  5m 0.25 z  2  t  z  2m   Giả sử d cắt d1 tại M(-1 + 2t ; 1 + 3t ; 2 + t) và cắt d2 tại N(2 + m ; - 2 + 5m ; - 2m) r 0.25 uuuu  MN (3 + m - 2t ; - 3 + 5m - 3t ; - 2 - 2m - t). 3  m  2t  2k uur uuuu r uu r  Do d  (P) có VTPT nP (2; 1; 5) nên k : MN  kn p  3  5m  3t   k có 2  2m  t  5k 0.25  nghiệm m  1 Giải hệ tìm được  t  1  x  1  2t  0.25 Khi đó điểm M(1; 4; 3)  Phương trình d:  y  4  t thoả mãn bài toán  z  3  5t  VII.a Tìm phần thực của số phức z = (1 + i)n , biết rằng n  N thỏa mãn phương trình 1.0 log4(n – 3) + log4(n + 9) = 3 n  N Điều kiện:  n  3 0.25 Phương trình log4(n – 3) + log4(n + 9) = 3  log4(n – 3)(n + 9) = 3 n  7 (thoả mãn)  (n – 3)(n + 9) = 43  n2 + 6n – 91 = 0    n  13 (không thoả mãn) 0.25 Vậy n = 7.
  6. Khi đó z = (1 + i)n = (1 + i)7 = 2 3 0.25 1  i  . 1  i     1  i  .(2i)3  (1  i ).(8i )  8  8i  Vậy phần thực của số phức z là 8. 0.25 VI.b 2.0 1 1.0 Giả sử B ( xB ; yB )  d1  xB   yB  5; C ( xC ; yC )  d 2  xC  2 yC  7  xB  xC  2  6 0.25 Vì G là trọng tâm nên ta có hệ:   y B  yC  3  0 Từ các phương trình trên ta có: B(-1;-4) ; C(5;1) 0.25 uuu r uuur Ta có BG (3; 4)  VTPT nBG (4; 3) nên phương trình BG: 4x – 3y – 8 = 0 0.25 9 81 Bán kính R = d(C; BG) =  phương trình đường tròn: (x – 5)2 +(y – 1)2 = 0.25 5 25 2 1.0 Ta có phương trình tham số của d là:  x  3  2t  x  3  2t  y  2  t    y  2  t  toạ độ điểm M là nghiệm của hệ  (tham số t) 0.25  z  1  t  z  1  t  x  y  z  2  0   M (1; 3;0) uur uu r Lại có VTPT của(P) là nP (1;1;1) , VTCP của d là ud (2;1; 1) . uur uu uu r r Vì  nằm trong (P) và vuông góc với d nên VTCP u  ud , nP   (2; 3;1)   uuuu r Gọi N(x; y; z) là hình chiếu vuông góc của M trên  , khi đó MN ( x  1; y  3; z ) . uuuu r uu r 0.25 Ta có MN vuông góc với u nên ta có phương trình: 2x – 3y + z – 11 = 0 x  y  z  2  0  Lại có N (P) và MN = 42 ta có hệ: 2 x  3 y  z  11  0 ( x  1)2  ( y  3)2  z 2  42  Giải hệ ta tìm được hai điểm N(5; - 2; - 5) và N(- 3; - 4; 5) 0.25 x 5 y2 z5 Nếu N(5; -2; -5) ta có pt  :   2 3 1 0.25 x3 y4 z 5 Nếu N(-3; -4; 5) ta có pt  :   2 3 1
  7. VII.b  1 1.0 log 1  y  x   log 4 y  1 Giải hệ phương trình  4 ( x, y  ¡ )  x 2  y 2  25  y  x  0 Điều kiện:  0.25 y  0 Hệ phương trình  1  yx yx 1 log 4  y  x   log 4 y  1 log 4 y  1  y  4 0.25     x 2  y 2  25  x 2  y 2  25  x 2  y 2  25    x  3y x  3y  x  3y   2 2  2 2   2 25 0.25  x  y  25 9 y  y  25  y  10    15 5   x; y    ;  (không thỏa mãn đk)   10 10     15 5  0.25  x; y     ;  (không thỏa mãn đk)    10 10  Vậy hệ phương trình đã cho vô nghiệm. Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì được điểm từng phần như đáp án quy định.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
3=>0