intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề Thi Thử Đại Học Khối A, A1, B,D Toán Học 2013 - Phần 28 - Đề 3

Chia sẻ: Hoa Bi | Ngày: | Loại File: PDF | Số trang:2

26
lượt xem
2
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo đề thi - kiểm tra 'đề thi thử đại học khối a, a1, b,d toán học 2013 - phần 28 - đề 3', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Đề Thi Thử Đại Học Khối A, A1, B,D Toán Học 2013 - Phần 28 - Đề 3

  1. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm) Câu I (2 điểm) Cho hàm số y  x 3  3x  1 (1) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1). 2. Định m để phương trình sau có 4 nghiệm thực phân biệt: 3 x  3 x  m 3  3m Câu II (2 điểm) (2  sin 2 2 x)(2 cos 2 x  cos x) 1. Giải phương trình: cot 4 x  1  2sin 4 x  x 2 y  xy 2  x  5 y  0  2. Giải hệ phương trình:  2 ( x, y  ¡ ) 2 xy  y  5 y  1  0  Câu III (1 điểm)   cos 2  x    8 Tính  dx sin 2 x  cos 2 x  2 Câu IV (1 điểm) Cho hình chóp S.ABC có mặt phẳng (SAC) vuông góc với mặt phẳng (ABC), SA  AB  a, AC  2a và · ASC  · ABC  900. Tính thể tích khối chóp S.ABC và cosin của góc giữa hai mặt phẳng (SAB), (SBC). Câu V (1 điểm) Cho ba số thực dương a, b, c thỏa mãn: a.b.c = 1. Tìm giá trị lớn nhất của biểu thức: ab bc ca T   a  b  ab b  c  bc c  a  ca PHẦN TỰ CHỌN (3 điểm) - Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) A. Theo chương trình Chuẩn Câu VI.a (2 điểm) 1. Trong mặt phẳng tọa độ Oxy , cho hai điểm A(4; 1), B(3; 2) và đường thẳng  : 3 x  4 y  42  0 . Viết phương trình đường tròn (C ) đi qua hai điểm A, B và tiếp xúc với đường thẳng . 2. Trong không gian tọa độ Oxyz, cho bốn điểm A(6; 6; 6), B(4; 4; 4), C( 2; 10; 2) và S(2; 2; 6). Chứng minh O, A, B, C là bốn đỉnh của một hình thoi và hình chiếu vuông góc của S trên mặt phẳng (OABC) trùng với tâm I của OABC. Tính khoảng cách giữa hai đường thẳng SO và AC. Câu VII.a (1 điểm) 2 Giải phương trình: (2 x  1) log 3 x  (4 x  9) log 3 x  14  0 B. Theo chương trình Nâng cao Câu VI.b (2 điểm) 1. Trong mặt phẳng tọa độ Oxy , cho hình thoi ABCD có A(1; 0), B(3; 2) và · ABC  1200. Xác định tọa độ hai đỉnh C và D.
  2. 2. Trong không gian tọa độ Oxyz, cho ba điểm A, B, C lần lượt di động trên các tia Ox, Oy và Oz sao cho mặt phẳng (ABC) không đi qua O và luôn đi qua điểm M(1; 2; 3). Xác định tọa độ các điểm A, B, C để thể tích khối tứ diện OABC đạt giá trị nhỏ nhất. Câu VII.b (1 điểm) 32 x  y  2  3x  2 y  27 x  y  9 Giải hệ phương trình:  ( x, y  ¡ ) log 3 ( x  1)  log 3 ( y  1)  1 ---------------Hết--------------- Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2