intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi thử đại học môn toán năm 2012_Đề số 21

Chia sẻ: Up Up | Ngày: | Loại File: PDF | Số trang:4

78
lượt xem
27
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'đề thi thử đại học môn toán năm 2012_đề số 21', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Đề thi thử đại học môn toán năm 2012_Đề số 21

  1. ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012 Môn thi : TOÁN ( ĐỀ 21 ) I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I: (2 điểm) Cho hàm số y  x 3  2 mx 2  (m  3) x  4 có đồ thị là (Cm) 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên khi m = 1. 2) Cho đường thẳng (d): y = x + 4 và điểm K(1; 3). Tìm các giá trị của tham số m sao cho (d) cắt (Cm) tại ba điểm phân biệt A(0; 4), B, C sao cho tam giác KBC có diện tích bằng 8 2. Câu II: (2 điểm) 1) Giải bất phương trình: 15.2 x 1  1  2 x  1  2 x 1 2) Tìm m để phương trình: 4(log 2 x ) 2  log 0,5 x  m  0 có nghiệm thuộc (0, 1). 3 dx Câu III: (2 điểm) Tính tích phân: I = . x 6 (1  x 2 ) 1 Câu IV: (1 điểm) Tính thể tích của hình chóp S.ABC, biết đáy ABC là một tam giác đều cạnh a, mặt bên (SAB) vuông góc với đáy, hai mặt bên còn lại cùng tạo với đáy góc α.  cos x Câu V: (1 điểm) T ìm giá trị nhỏ nhất của hàm số: y = với 0 < x  . 2 sin x(2cos x  sin x ) 3 II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu VI.a (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho điểm A(2;–3), B(3;–2),  ABC có diện tích 3 bằng ; trọng tâm G của  ABC thuộc đường thẳng (d): 3x – y – 8 = 0. Tìm bán kính 2 đường tròn nội tiếp  ABC. 2) Trong không gian với hệ toạ độ Oxyz, cho điểm A(1; –2; 3) và đường thẳng d có x 1 y  2 z  3 phương trình . Tính khoảng cách từ điểm A đến đường thẳng d. Viết   1 2 1 phương trình mặt cầu tâm A, tiếp xúc với d. z2 Câu VII.a (1 điểm) Giải phương trình z 4  z 3   z  1  0 trên tập số phức. 2 B. Theo chương trình nâng cao Câu VI.b (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, viết phương trình tiếp tuyến chung của hai đ ường tròn (C1): x2 + y2 – 2x – 2y – 2 = 0, (C2): x2 + y2 – 8x – 2y + 16 = 0. 2) Trong không gian với hệ toạ độ Oxyz, cho 2 đường thẳng: x  t x  t '   ( d1 ) :  y  4  t ; và (d2) :  y  3t '  6  z  6  2t z  t ' 1   Gọi K là hình chiếu vuông góc của điểm I(1; –1; 1) trên (d2). Tìm phương trình tham số của đường thẳng đi qua K vuông góc với (d1) và cắt (d1). 0 1 2 2009 Câu VII.b (1 điểm) Tính tổng S  C2009  2C2009  3C2009  ...  2010C2009 .
  2. Hướng dẫn Đề số 21 Câu I: 2) Phương trình hoành độ giao điểm của (Cm) và d: x 3  2mx 2  ( m  3) x  4  x  4 (1) x  0 (1)  x ( x 2  2mx  m  2)  0   2  g ( x)  x  2mx  m  2  0 (2) (d) cắt (Cm) tại ba điểm phân biệt A(0; 4), B, C  (2) có 2 nghiệm phân biệt khác 0.    m 2  m  2  0  m  1  m  2  (a ) .    m  2  g (0)  m  2  0  1 3  4 Mặt khác: d ( K , d )  2 2 1 Do đó: S KBC  8 2  BC .d ( K , d )  8 2  BC  16  BC 2  256 2  ( xB  xC ) 2  ( y B  yC )2  256 với xB , xC là hai nghiệm của phương trình (2).  ( xB  xC ) 2  (( xB  4)  ( xC  4)) 2  256  2( xB  xC ) 2  256  ( xB  xC )2  4 xB xC  128 1  137 1  137  4m2  4( m  2)  128  m2  m  34  0  m  (thỏa (a)). Vậy m  . 2 2 Đặt: t  2 x ; điều kiện: t > 0. Khi đó BPT  30t  1  t  1  2t Câu II: 1) * (2) (2)  30t  1  3t  1  30t  1  9t 2  6t  1  1  t  4  t  1: ( a) 2  0  t  1 : (2)  30t  1  t  1  30t  1  t  2t  1  0  t  1 (b) x  0  t  4  0  2  4  x  2. Vậy, bất phương trình có nghiệm: x  2. 2) PT  log 2 x  log 2 x  m  0; x  (0; 1) (1) 2 Đặt: t  log 2 x . Vì: lim log 2 x   và lim log x  0 , nên: với x  (0;1)  t  ( ; 0) x 0 x 1 Ta có: (1)  t 2  t  m  0, t  0 (2)  m  t 2  t , t  0  y  t 2  t , t  0 : ( P ) Đặt:  y  m : (d ) 1 1 Xét hàm số: y  f (t )  t 2  t , với t < 0  f (t )  2t  1  f (t )  0  t    y  2 4 Từ BBT ta suy ra: (1) có nghiệm x  (0; 1)  (2) có nghiệm t < 0 1  (d) và (P) có điểm chung, với hoành độ t < 0  m  . 4 1 Vậy, giá trị m cần tìm: m  . 4 3 1 t6 3 117  41 3  1 1  4  t2 1 Câu III: Đặt : x   I    2 dt    t  dt = 2 1 t 1 t 1  t 135 12  3 3 Câu IV: Dựng SH  AB  SH  ( ABC ) và SH là đường cao của hình chóp. Dựng HN  BC , HP  AC  SN  BC , SP  AC  SPH  SNH    SHN =  SHP  HN = HP. a3 a3  AHP vuông có: HP  HA.sin 60o  ;  SHP vuông có: SH  HP.tan   tan  4 4 a2 3 a3 1 1a 3 .tan  .  tan  Thể tích hình chóp S . ABC : V  .SH .S ABC  . 3 34 4 16  Câu V: Với 0  x  thì 0  tan x  3 và sin x  0,cos x  0, 2cos x  sin x  0 3
  3. cos x 1  tan 2 x 1  tan 2 x cos3 x  y   sin 2 x 2cos x  sin x tan 2 x (2  tan x) 2 tan 2 x  tan 3 x . cos2 x cos x 1 t2  Đặt: t  tan x; 0  t  3  y  f (t )  2 3 ; 0  t  3 2t  t 4 2 3 t (t  1)(t 2  t  4) t  3t  4t t (t  3t  4) f (t )   f (t )  0  ( t  0  t  1).   (2t 2  t 3 ) 2 (2t 2  t 3 ) 2 (2t 2  t 3 ) 2    Từ BBT ta có: min f (t )  2  t  1  x  . Vậy: miny  2 khi x  . 4 4   0;   3  a b 5 2SABC Câu VI.a: 1) Gọi C(a; b) , (AB): x –y –5 =0  d(C; AB) =  AB 2 a  b  8 (1)  a 5 b 5  a b 5 3  ; Trọng tâm G    (d)  3a –b =4 (3) ; ab2 (2) 3 3  S 3 Từ (1), (3)  C(–2; 10)  r =  p 2  65  89 S 3 Từ (2), (3)  C(1; –1)  r   . p 22 5     BA, a    4  196  100  5 2   2) d(A, (d)) = a 4 11 Phương trình mặt cầu tâm A (1; –2; 3), bán kính R = 5 2 : (x – 1)2 + (y + 2)2 + (2 – 3)2 = 50 2 2  1  5 1  1 5 1   2 Câu VII.a: PT  z   z     z      0   z     z     0 (1)  z  z 2 z  z  2     1  3i 1  3i  1 5 Đặt ẩn số phụ: t = z  . (1)  t 2  t   0   t  t   z 2 2 2  1  i 1  i Đáp số có 4 nghiệm z : 1+i; 1- i ; . ; 2 2 Câu VI.b: 1) (C1): ( x  1) 2  ( y  1) 2  4 có tâm I1 (1; 1) , bán kính R1 = 2. (C2): ( x  4) 2  ( y  1) 2  1 có tâm I 2 (4; 1) , bán kính R2 = 1. Ta có: I1 I 2  3  R1  R2  (C1) và (C2) tiếp xúc ngoài nhau tại A(3; 1)  (C1) và (C2) có 3 tiếp tuyến, trong đó có 1 tiếp tuyến chung trong tại A là x = 3 // Oy. * Xét 2 tiếp tuyến chung ngoài: ( ) : y  ax  b  ( ) : ax  y  b  0 ta có:  a  b 1   2 2 2 2 a  a    d ( I1 ; )  R1 2  a b   4 4   hay   d ( I 2 ;  )  R2 4a  b  1 47 2 47 2     1 b  b   a2  b2   4 4  47 2 47 2 2 2 Vậy, có 3 tiếp tuyến chung: (1 ) : x  3, (2 ) : y   , ( 3 ) y  x x 4 4 4 4   2) (d1) có vectơ chỉ phương u1  (1; 1; 2) ; (d2) có vectơ chỉ phương u2  (1; 3; 1)  K (d 2 )  K (t  ; 3t   6; t   1)  IK  (t  1; 3t  5; t  2)   18  18 12 7  IK  u2  t   1  9t  15  t  2  0  t   K ;  ;  11  11 11 11 
  4.   18 56 59  Giả sử (d ) cắt (d1) tại H (t; 4  t; 6  2t ), ( H  ( d1 )) . HK    t;   t ;   2t   11 11 11     1 18 56 118 26 HK  u1  t  t   4t  0  t    HK  (44;  30;  7). 11 11 11 11 11 18   x  11  44  12  Vậy, phương trình tham số của đường thẳng (d ):  y    30 . 11  7   z  11  7  Câu VII.b: Xét đa thức: f ( x )  x(1  x) 2009  x(C2009  C2009 x  C2009 x 2  ...  C2009 x 2009 ) 0 1 2 2009  C2009 x  C2009 x 2  C2009 x 3  ...  C2009 x 2010 . 0 1 2 2009  Ta có: f ( x)  C2009  2C2009 x  3C2009 x 2  ...  2010C2009 x 2009 0 1 2 2009  f (1)  C2009  2C2009  3C2009  ...  2010C2009 0 1 2 2009 (a)  Mặt khác: f ( x)  (1  x) 2009  2009(1  x) 2008 x  (1  x) 2008 (2010  x )  f / (1)  2011.22008 (b)  Từ (a) và (b) suy ra: S  2011.22008.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2