Đề thi thử Đại học năm 2011 của Trần Sỹ Tùng ( Có đáp án) - Đề số 7
lượt xem 10
download
Tham khảo tài liệu 'đề thi thử đại học năm 2011 của trần sỹ tùng ( có đáp án) - đề số 7', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử Đại học năm 2011 của Trần Sỹ Tùng ( Có đáp án) - Đề số 7
- www.MATHVN.com Trần Sĩ Tùng Ôn thi Đại học Đề số 7 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm): Cho hàm số y = x 3 + 2mx 2 + (m + 3) x + 4 có đồ thị là (Cm). 1) Khảo sát sự biến thiên và vẽ đồ thị (C1) của hàm số trên khi m = 1. 2) Cho (d) là đường thẳng có phương trình y = x + 4 và điểm K(1; 3). Tìm các giá trị của tham số m sao cho (d) cắt (Cm) tại ba điểm phân biệt A(0; 4), B, C sao cho tam giác KBC có diện tích bằng 8 2 . Câu II (2 điểm): 1) Giải phương trình: cos 2 x + 5 = 2(2 − cos x)(sin x − cos x) (1) 8 x 3 y 3 + 27 = 18 y 3 2 2) Giải hệ phương trình: (2) 4 x y + 6 x = y 2 π 1 2 I = ∫ sin x ⋅ sin 2 x + dx Câu III (1 điểm): Tính tích phân: π 2 6 Câu IV (1 điểm): Cho hình chóp S.ABC có góc giữa hai mặt phẳng (SBC) và (ACB) bằng 600, ABC và SBC là các tam giác đều cạnh a. Tính khoảng cách từ B đến mp(SAC). Câu V (1 điểm) Tìm các giá trị của tham số thực m sao cho phương trình sau có nghiệm thực: 91+ 1− x − (m + 2)31+ 1− x + 2m + 1 = 0 2 2 (3) II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn: Câu VIa (2 điểm): 1) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) có phương trình ( x − 1)2 + ( y + 2)2 = 9 và đường thẳng d: x + y + m = 0. Tìm m để trên đường thẳng d có duy nhất một điểm A mà từ đó kẻ được hai tiếp tuyến AB, AC tới đường tròn (C) (B, C là hai tiếp điểm) sao cho tam giác ABC vuông. 2) Trong không gian với hệ tọa độ Oxyz, cho điểm A(10; 2; –1) và đường thẳng d có x −1 y z −1 == phương trình: . Lập phương trình mặt phẳng (P) đi qua A, song song với 2 1 3 d và khoảng cách từ d tới (P) là lớn nhất. Câu VIIa (1 điểm): Cho ba số thực dương a, b, c thỏa mãn abc = 1. Chứng minh rằng: 4a 3 4b3 4c 3 + + ≥3 (4) (1 + b)(1 + c) (1 + c)(1 + a) (1 + a )(1 + b) B. Theo chương trình nâng cao: Câu VIb (2 điểm): 1) Trong mặt phẳng với hệ toạ độ Oxy, cho điểm A(2;–3), B(3;–2), tam giác ABC có 3 ; trọng tâm G của ∆ABC nằm trên đường thẳng (d): 3x – y – 8 = 0. diện tích bằng 2 Tìm bán kính đường tròn nội tiếp ∆ ABC. 2) Trong không gian với hệ toạ độ Oxyz, cho đường thẳng (d) là giao tuyến của 2 mặt phẳng (P): 2x – 2y – z + 1 = 0, (Q): x + 2y – 2z – 4 = 0 và mặt cầu (S): x2 + y2 + z2 + 4x – 6y + m = 0. Tìm m để (S) cắt (d) tại 2 điểm M, N sao cho độ dài MN = 8. log 2 ( x 2 + y 2 ) = 1 + log 2 ( xy ) (x, y ∈ R) Câu VIIb (1 điểm): Giải hệ phương trình : 2 3x − xy + y = 81 2 www.MATHVN.com www.MATHVN.com - Trang 7
- Hướng dẫn Đề sô 7 Câu I: 2) xB, xC là các nghiệm của phương trình: . x2 2mx m 2 0 1 1 137 SKBC 8 2 BC.d( K , d ) 8 2 BC 16 m 2 2 Câu II: 1) (1) (cos x – sin x)2 4(cos x – sin x) – 5 0 x k2 x k2 2 3 (2 x)3 3 18 . Đặt a = 2x; b = 3 . (2) a b 3 2) (2) y ab 1 y 2x. 3 2 x 3 3 y y 3 5 6 3 5 6 Hệ đã cho có nghiệm: ; , ; 4 3 5 4 3 5 3 Câu III: Đặt t = cosx. I = 2 16 3 a2 13 3 Câu IV: VS.ABC = 1 SSAC .SO a163 = 1 . SSAC S .d( B; SAC) 3 SAC 3 16 3a d(B; SAC) = 13 1 x2 Câu V: Đặt t = . (3) . Vì nên 31 x [ 1;1] t [3;9] t 2 2t 1 . m t 2
- t 2 2t 1 Xét hàm số với . f(t) đồng biến trên [3; f (t ) t [3;9] t 2 48 9]. 4 f(t) . 7 48 4 m 7 Câu VI.a: 1) (C) có tâm I(1; –2), R = 3. ABIC là hình vuông cạnh bằng 3 IA 3 2 m1 m 5 3 2 m1 6 m 7 2 2) Gọi H là hình chiếu của A trên d d(d, (P)) = d(H, (P)). Giả sử điểm I là hình chiếu của H lên (P), ta có => HI lớn nhất khi . Vậy (P) cần tìm là mặt AH HI A I uuu r phẳng đi qua A và nhận làm VTPT (P): AH . 7x y 5z 77 0 Câu VII.a: Áp dụng BĐT Cô–si ta có: a3 b3 c3 1 b 1 c 3a 1 c 1 a 3b 1 a 1 b 3c ; ; (1 b)(1 c) 8 8 4 (1 c)(1 a) 8 8 4 (1 a)(1 b) 8 8 4 a3 b3 c3 a b c 3 33 abc 3 3 (1 b)(1 c) (1 c)(1 a) (1 a)(1 b) 2 4 2 44 Dấu "=" xảy ra a = b = c = 1. Câu VI.b: 1) Gọi C(a; b), (AB): x –y –5 =0 d(C; AB) =
- a b 5 2SABC AB 2 a 5 b 5 a b 8 (1) Trọng tâm G ; ; a b5 3 a b 2 (2) 3 3 (d) 3a –b =4 (3) S 3 (1), (3) C(–2; 10) r = p 2 65 89 S 3 (2), (3) C(1; –1) r p 22 5 . Gọi H 2) (S) tâm I(–2;3;0), bán kính R= 13 m IM (m 13) là trung điểm của MN MH= 4 IH = d(I; d) = m 3 r uur r u; AI d(I; d) = (d) qua A(0;1;-1), VTCP u (2;1;2) 3 r u Vậy : =3 m = –12 m 3 Câu VII.b: Điều kiện x, y > 0 log ( x2 y2 ) log 2 log ( xy) log (2 xy) 2 2 2 2 x2 xy y2 4 x2 y2 2xy ( x y)2 0 x y x 2 x 2 hay x2 xy y2 4 xy 4 y 2 y 2 xy 4
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học năm 2013 môn Hóa khối A, B - Trường THPT Trần Nhân Tông (Mã đề 325)
6 p | 285 | 104
-
Đề thi thử Đại học năm 2013 môn Toán khối A - Trường THPT chuyên Quốc học
1 p | 200 | 47
-
Đáp án và đề thi thử Đại học năm 2013 khối C môn Lịch sử - Đề số 12
6 p | 186 | 19
-
Đề thi thử Đại học năm 2013 môn Địa lý (có đáp án)
7 p | 149 | 15
-
Đề thi thử Đại học năm 2013 môn tiếng Anh khối D - Mã đề 234
8 p | 153 | 11
-
Đề thi thử Đại học năm 2014 môn Toán - GV Nguyễn Ngọc Hân
2 p | 119 | 10
-
Đề thi thử Đại học năm 2014 môn Vật lý (Mã đề TTLTĐH 6) - Sở GD & ĐT TP Hồ Chí Minh
8 p | 123 | 10
-
Đáp án đề thi thử Đại học năm 2013 môn Ngữ văn khối C, D
3 p | 141 | 9
-
Đề thi thử Đại học năm 2013 môn Ngữ văn khối C, D
3 p | 134 | 9
-
Đề thi thử Đại học năm 2014 môn Vật lý (Mã đề TTLTĐH 8) - Sở GD & ĐT TP Hồ Chí Minh
9 p | 109 | 5
-
Đề thi thử Đại học năm 2014 môn Toán - Đề số 7
5 p | 60 | 3
-
Đề thi thử Đại học năm 2014 môn Toán - Đề số 10
5 p | 74 | 3
-
Đề thi thử Đại học năm 2014 môn Toán - Đề số 3
4 p | 53 | 2
-
Đề thi thử Đại học năm 2014 môn Toán - Đề số 4
6 p | 57 | 2
-
Đề thi thử Đại học năm 2014 môn Toán - Đề số 5
4 p | 52 | 2
-
Đề thi thử Đại học năm 2014 môn Toán - Đề số 6
6 p | 70 | 2
-
Đề thi thử Đại học năm 2014 môn Toán - Đề số 8
6 p | 71 | 2
-
Đề thi thử Đại học năm 2014 môn Toán - Đề số 9
6 p | 75 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn