ĐỀ THI THỬ ĐẠI HỌC NĂM HỌC 2012_THPT Thanh Bình_24
lượt xem 12
download
Tham khảo tài liệu 'đề thi thử đại học năm học 2012_thpt thanh bình_24', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(1) Đăng nhập để gửi bình luận!
Nội dung Text: ĐỀ THI THỬ ĐẠI HỌC NĂM HỌC 2012_THPT Thanh Bình_24
- TRƯỜNG THPT ĐẶNG THÚC HỨA ĐỀ KIỂM TRA SỐ 1 - NĂM 2008 GV: Trần Đình Hiền Môn thi : Toán Thời gian làm bài: 180 phút Câu I: (2 điểm). Cho hàm số y = - x3 + 3mx2 -3m – 1. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1. 2. Tìm các giá trị của m để hàm số có cực đại, cực tiểu. Với giá trị nào của m thì đồ thị hàm số có điểm cực đại, điểm cực t iểu đối xứng với nhau qua đường thẳng d: x + 8y – 74 = 0. Câu II: (2 điểm). 1. Giải phương trình : 1 + 3 (sinx + cosx) + sin2x + cos2x = 0 x2 2. Tìm m để phương trình x 2 2 x m.( x 4). 2 8 2 x x 2 14 m 0 có nghiệm thực. 4x Câu III: (2 điểm). x y z Trong không gian với hệ trục toạ độ Đềcác Oxyz, cho hai đường thẳng 1 : , 1 2 1 x 1 y 1 z 1 2 : 1 1 3 1. Chứng minh hai đường thẳng 1 và 2 chéo nhau. 2. Viết phương trình mặt phẳng (P) chứa đường thẳng 2 và tạo với đường thẳng 1 một góc 300. Câu IV: (2 điểm). 2 ln( x 2 1) 1. Tính t ích phân : I dx . x3 1 2. Cho x, y, z > 0 và x + y + z ≤ xyz . Tìm giá trị lớn nhất của biểu thức. 1 1 1 P 2 2 2 x 2 yz y 2 zx z 2 xy Câu Va: (2 điểm). 1. Trong mặt phẳng với hệ toạ độ Đềcác Oxy, cho tam giác ABC cân tại A , phương trình cạnh AB: x + y – 3 = 0 , phương trình cạnh AC : x – 7y + 5 = 0, đường thẳng BC đi qua điểm M(1; 10). Viết phương trình cạnh BC và tính diện tích của tam giác ABC. n 1 2. Tìm số hạng không chứa x trong khai triển nhị thức Niutơn của 2.x , biết rằng x n 1 2 An Cn 1 4n 6 (n là số nguyên dương, x > 0, Ank là số chỉnhhợp chập k của n phần tử, Cn là số tổ hợp chập k của k n phần tử) ………………. Hết ………………. 1
- ĐÁP ÁN ĐỀ KIỂM TRA SỐ 1 – GV: Trần Đình Hiền Câu Nội dung Điểm 3 2 Khi m = 1. Ta có hàm số y = - x + 3x – 4. I-1 Tập xác định D = R. Sự biến thiên. Chiều biến thiên. 0,25 y’ = - 3x2 + 6x , y’ = 0 x = 0 v x = 2. y’> 0 x ( 0;2). Hàm số đồng biến trên khoảng ( 0; 2). y’ < 0 x (- ∞; 0) (2; +∞).Hàm số nghịch biến trên các khoảng (- ∞;0) và (2; +∞). Cực trị. Hàm số đạt cực đại tại x = 2, yCĐ = y(2) = 0. Hàm số đạt cực tiểu tại x = 0, yCT = y(0) = - 4. 0,25 Giới hạn. Lim ( x3 3 x 2 4) , Lim ( x 3 3 x 2 4) .Đồ thị hàm số không có tiệm cận. x x Tính lồi, lõm và điểm uốn. y’’ = - 6x +6 , y’’ = 0 x = 1. -∞ +∞ x 1 y’’ + 0 - Đồ thị Điểm uốn Lồi Lõm I(1; - 2) 0,25 Bảng biến thiên. -∞ +∞ x 0 1 2 y’ - 0 + 0 - +∞ 0 y (I) -2 -∞ -4 Đồ thị. Đồ thị hàm số cắt trục Ox tai các điểm (- 1; 0) , (2; 0). Đồ thị hàm số cắt trục Oy tai điểm (0 ; -4). Đồ thị hàm số có tâm đối xứng là điểm uốn I(1;- 2). Hệ số góc của tiếp tuyến tại điểm uốn là k = y’(1) = 3. y f(x)=-x^3+3x^2-4 2 1 x 0,25 -3 -2 -1 1 2 3 4 5 -1 -2 -3 -4 -5 -6 Ta có y’ = - 3x2 + 6mx ; y’ = 0 x = 0 v x = 2m. I-2 0,25 Hàm số có cực đại , cực tiểu phương trình y’ = 0 có hai nghiệm phân biệt m 0. Hai điểm cực trị là A(0; - 3m - 1) ; B(2m; 4m3 – 3m – 1) Trung điểm I của đoạn thẳng AB là I(m ; 2m3 – 3m – 1) 0,25 Vectơ AB (2m; 4m3 ) ; Một vectơ chỉ phương của đường thẳng d là u (8; 1) . I d Hai điểm cực đại , cực tiểu A và B đối xứng với nhau qua đường thẳng d 0,25 AB d m 8(2m3 3m 1) 74 0 m=2 0,25 AB.u 0 2
- II-1 Tập xác định D = R. 0,25 Phương trình đã cho tương đương với ( 3 s inx sin 2 x) 3 cos x (1 cos2 x) 0 ( 3 s inx 2 s inx.cos x ) ( 3 cos x 2cos 2 x ) 0 s inx( 3 2 cos x) cos x ( 3 2 cos x ) 0 0,25 3 cos x 0,25 ( 3 2 cos x )(s inx cos x ) 0 2 s inx cos x 5 x k 2 5 x k 2 6 ,k Z 0,25 6 x k t anx 1 4 II-2 x 2 4 x 0 Điều kiện: x 4 2 x 4 0,25 8 2x x2 0 x2 Phương trình đã cho tương đương với x 2 2 x m | 4 x | 2. 8 2 x x 2 14 m 0 4x ( x 2 2 x 8) m 8 2 x x 2 2 8 2 x x 2 6 m 0 . (1) 0,25 8 2 x x 2 ; Khi x - 2; 4) thì t 0; 3 . Đặt t = (2) t 2 2t 6 Phương trình trở thành : - t2 – mt + 2t – 6 – m = 0 m . t 1 t 2 2t 6 t 2 2t 8 ; t 0;3 ; f’(t) = Xét hàm số f (t ) ; f’(t) = 0 t = - 4 v t = 2. (t 1)2 t 1 Bảng biến thiên của hàm số f(t) trên đoạn 0 ; 3 . -∞ -4 -1 +∞ t 0 2 3 0,25 f’(t) - 0+ + + 0 - -2 f(t) 9 -6 4 Phương trình đx cho có nghiệm x - 2; 4) Phương trình (2) có nghiệm t 0; 3 0,25 Đường thẳng y = m cắt đồ thị hàm số f(t) , t 0; 3 - 6 ≤ m ≤ - 2 III-1 Đường thẳng 1 có một vectơ chỉ phương u1 (1; 2;1) , Điểm M O(0; 0; 0) 1. 0,25 Đường thẳng 2 có một vectơ chỉ phương u2 (1; 1;3) , điểm N(1;-1;1) 2. 0,25 2 1 1 1 1 2 Ta có u1 , u2 (5; 2;1) ; ON (1; 1;1) . ; ; 0,25 1 3 3 1 1 1 Ta có u1 , u2 .ON 5 2 1 2 0 . Suy ra hai đường thẳng 1 và 2 chéo nhau. 0,25 III -2 x y 0 Phương trình đường thẳng 2 : . 0,25 3 y z 2 0 3
- Phương trình mặt phẳng (P) chứa đường thẳng 2 có dạng (x + y) + (3y + z + 2) = 0 với 2 + 2 0 x + ( + 3)y + z + 2 = 0. 0,25 Một vectơ pháp tuyến của mặt phẳng (P) là n ( ; 3 ; ) . Mặt phẳng (P) tạo với đường thẳng 1 một góc 300. Ta có sin(1,(P)) = | cos(u1 , n) | |1. 2( 3 ) 1. | 0,25 sin300 = 3. 2 3 5 2 | 5 | 2 2 2 6. ( 3 ) 2 - - 102 = 0 (2 - 5)( + 2) = 0 2 = 5 v = - 2 2 Với 2 = 5 chọn = 5, = 2 ta có phương trình mặt phẳng (P) là: 5x + 11y + 2z + 4 = 0 0,25 Với = - 2 chọn = 2, = - 1 ta có phương trình mặt phẳng (P) là: 2x – y – z – 2 = 0. Kết luận: Có hai phương trình mặt phẳng (P) thoả mãn 5x + 11y + 2z + 4 = 0 ; 2x – y – z – 2 = 0. I V- 1 2x u ln( x 2 1) du 2 x 1 Đặt dx 0,25 v 1 dv x 3 2 x2 2 ln( x 2 1) 2 dx Do đó I = 0,25 2 1 1 x ( x 2 1) 2x 2 2 2 dx 1 d ( x 2 1) ln 2 ln 5 1 x ln 2 ln 5 2 2 dx 0,25 x 1 2 1 x 1 2 8 1 x 2 8 1x 2 ln 2 ln 5 1 5 ln | x | ln | x 2 1 | = 2 ln 2 ln 5 0,25 1 8 2 8 2 IV -2 (xyz)3 ≥ 27.xyz Từ giả thiết ta có xyz ≥ x + y + z ≥ 3 3 xyz xyz ≥ 3 3 . 0,25 Áp dụng BĐT Cauchy ta có 0,25 x2 + yz + yz ≥ 3 3 ( xyz ) 2 ; y2 + zx + zx ≥ 3 3 ( xyz ) 2 ; z2 + xy + xy ≥ 3 3 ( xyz ) 2 1 1 1 1 1 1 Từ đó ta có P 0,25 (3 3) 2 3 3 3 ( xyz )2 3 3 ( xyz ) 2 3 3 ( xyz ) 2 ( xyz ) 2 3 3 x y z 1 Từ đó ta có Max P = đạt được khi x y z 3. 0,25 x y z xyz 3 Va-1 x y 3 0 x 2 Toạ độ điểm A là nghiệm của hệ phương trình: .Hay A(2;1) x 7 y 5 0 y 1 0,25 Phương trình đường phân giác góc A là x y 3 x 7 y 5 x 3 y 5 0 d 1 3 x y 5 0 d2 2 52 Do tam giác ABC cân tại A nên đường phân giác trong kẻ từ A cũng là đường cao. * Nếu d1 là đường cao của tam giác ABC kẻ từ A thì phương trình cạnh BC là 3x – y + 7 = 0 0,25 * Nếu d2 là đường cao của tam giác ABC kẻ từ A thì phương trình cạnh BC là x + 3y - 31 = 0 TH1: Phương trình cạnh BC: 3x – y + 7 = 0 x y 3 0 x 1 Toạ độ điểm B là nghiệm của hệ phương trình . Hay B(-1; 4) 3 x y 7 0 y 4 11 11 2 x 5 Toạ độ điểm C là nghiệm của hệ phương trình . Hay C( ;) x 7y 5 0 0,25 55 3 x y 7 0 y 2 5 Diện tích tam giác ABC là : S 1 d ( C , A B ). A B 1 . 2 4 .3 2 3 6 (đvdt) 2 252 5 4
- TH2: Phương trình cạnh BC: x +3y - 31 = 0 x y 3 0 x 11 Toạ độ điểm B là nghiệm của hệ phương trình . Hay B(-11; 14) x 3 y 31 0 y 14 101 101 18 x 5 Toạ độ điểm C là nghiệm của hệ phương trình . Hay C( ) ; x 7y 5 0 0,25 5 5 x 3 y 31 0 y 18 5 1 1 104 676 Diện tích tam giác ABC là : S d (C , AB). AB . .13 2 (đvdt) 2 25 2 5 Va-2 n 1 2 Giải phương trình An Cn 1 4n 6 ; Điều kiện: n ≥ 2 ; n N. (n 1)! n(n 1) Phương trình tương đương với n(n 1) 4n 6 n(n 1) 4n 6 0,25 2!(n 1)! 2 n2 – 11n – 12 = 0 n = - 1 (Loại) v n = 12. 12 1 Với n = 12 ta có nhị thức Niutơn: 2 x . x k 1 0,25 12 k k Số hạng thứ k + 1 trong khai triển là : Tk +1 = C (2 x) ; k N, 0 ≤ k ≤ 12 12 x k 24 3k 12 k 12 k k k 2x 2 2 = C .2 .x Hay Tk+ 1 = C .x . 12 12 k N , 0 k 12 Số hạng này không chứa x khi k 8. 0,25 24 3k 0 Vậy số hạng thứ 9 không chứa x là T9 = C12 24 7920 8 0,25 Chú ý: I – Cách chấm một bài thi tự luận: 1) Học sinh dùng mực đỏ để gạch chân các chỗ sai trong bài thi. 2) Học sinh làm cách khác với đáp án , nếu đúng thì cho điểm tố đa câu đó ! 3) Học sinh làm sai hoặc sót ở bước 0, 25 đ nào thì cắt 0, 25 điểm tại đó. 4) Một bài toán nếu bước trên(0,25 đ) sai và kết quả bước phía dưới (0,25 đ) liên quan đến bước trên thì cắt điểm từ chỗ làm sai và các bước sau có liên quan. 5) Một bài toán nếu bước trên(0,25 đ) sai và bước phía dưới (0,25 đ) không liên quan đến bước phía trên nếu đúng vẫn cho 0, 25 đ. 6) Học sinh cho điểm của từng câu. Sau đó cộng điểm của các câu để có điểm của bài thi. II – Phương pháp học tập: 1) Học sinh cần trình bày đầy đủ các câu dẫn, các dấu tương đương “”, ..v.., không được viết tắt (trừ các ký hiệu toán học cho phép ), không được làm bài quá ngắn gọn hơn với đáp án. 2) Học sinh thi theo chương trình THPT không phân ban cần có các tài liệu theo các chủ đề ở nội dung của các câu trong đề thi để học tập và tích luỹ kiến thức. 3) Cần tích cực, chủ động đọc các tài liệu tham khảo, tự làm các đề thi thử, các đề tham khảo , các đề đã thi để nâng cao trình độ kiến thức và kỹ thuật, kỹ năng trình bày một bài thi tự luận. 4) Học sinh cần tích cực tự học ở nhà, tránh tình trạng ỉ lại các giáo viên dạy ở trên lớp. 5
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học năm 2013 môn Hóa khối A, B - Trường THPT Trần Nhân Tông (Mã đề 325)
6 p | 285 | 104
-
Đề thi thử Đại học năm 2013 môn Toán khối A - Trường THPT chuyên Quốc học
1 p | 200 | 47
-
Đáp án và đề thi thử Đại học năm 2013 khối C môn Lịch sử - Đề số 12
6 p | 186 | 19
-
Đề thi thử Đại học năm 2013 môn Địa lý (có đáp án)
7 p | 149 | 15
-
Đề thi thử Đại học năm 2013 môn tiếng Anh khối D - Mã đề 234
8 p | 153 | 11
-
Đề thi thử Đại học năm 2014 môn Toán - GV Nguyễn Ngọc Hân
2 p | 119 | 10
-
Đề thi thử Đại học năm 2014 môn Vật lý (Mã đề TTLTĐH 6) - Sở GD & ĐT TP Hồ Chí Minh
8 p | 123 | 10
-
Đáp án đề thi thử Đại học năm 2013 môn Ngữ văn khối C, D
3 p | 141 | 9
-
Đề thi thử Đại học năm 2013 môn Ngữ văn khối C, D
3 p | 134 | 9
-
Đề thi thử Đại học năm 2014 môn Vật lý (Mã đề TTLTĐH 8) - Sở GD & ĐT TP Hồ Chí Minh
9 p | 109 | 5
-
Đề thi thử Đại học năm 2015 môn Toán - Đề số 16
8 p | 110 | 4
-
Đề thi thử Đại học năm 2015 môn Toán - Đề số 17
8 p | 101 | 4
-
Đề thi thử Đại học năm 2015 môn Toán - Đề số 28
1 p | 77 | 3
-
Đề thi thử Đại học năm 2015 môn Toán - Đề số 29
1 p | 79 | 3
-
Đề thi thử Đại học năm 2015 môn Toán - Đề số 30
1 p | 76 | 3
-
Đề thi thử Đại học năm 2015 môn Toán - Đề số 20
9 p | 99 | 2
-
Đề thi thử Đại học năm 2015 môn Toán - Đề số 22
9 p | 67 | 2
-
Đề thi thử Đại học năm 2015 môn Toán - Đề số 25
9 p | 94 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn