intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi thử ĐH - CĐ đợt 1 năm 2009 - 1010 trường thpt Đông Sơn 1

Chia sẻ: Nguyễn Ngân | Ngày: | Loại File: PDF | Số trang:6

78
lượt xem
6
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'đề thi thử đh - cđ đợt 1 năm 2009 - 1010 trường thpt đông sơn 1', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Đề thi thử ĐH - CĐ đợt 1 năm 2009 - 1010 trường thpt Đông Sơn 1

  1. Gửi: http//laisac.page.tl TRƯỜNG THPT ĐÔNG SƠN 1 KÌ THI KSCL TRƯỚC TUYỂN SINH NĂM 2010 (LẦN 1) MÔN THI: TOÁN Thời gian: 180 phút (không kể thời gian giao đề) PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH ( 8 điểm) Câu I: (2 điểm) Cho hàm số y = x 3 − 3 x 2 + mx (1) 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m = 0. 2. Tìm tất cả các giá trị của tham số m để hàm số (1) có cực đại, cực tiểu và các điểm cực đại, cực tiểu của đồ thị hàm số đối xứng nhau qua đường thẳng d: x – 2y – 5 = 0. Câu II: (3 điểm) ⎧ x 2 + y 2 + x 2 y 2 = 1 + 2 xy 1. Giải hệ phương trình: ⎨ ⎩ x + x y + xy = xy + y + 1 2 2 4 x + (x − 11).2 x − 8(x − 3) ≥0 2. Giải bất phương trình: log 2 x − 2 x x 1 − cos 3 ) = 2 cos x + sin 2 x 3. Giải phương trình: 3(sin 3 2 2 2 Câu III: (1 điểm) Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a. Gọi M và N lần lượt là các trung điểm của các cạnh SB và SC. Tính theo a thể tích khối chóp S.AMN, biết rằng mặt phẳng (AMN) vuông góc với mặt phẳng (SBC). 2 x cos 2 x − 1 2 Câu IV: (1 điểm) Tính giới hạn: lim x2 x →0 Câu V: ( 1 điểm) Cho a, b, c là những số thực dương thoả mãn: a 2 + b 2 + c 2 = 3 . Chứng minh 1 1 1 4 4 4 + + ≥2 +2 +2 a+b b+c c+a a +7 b +7 c +7 PHẦN RIÊNG (2 điểm) Thí sinh chỉ được làm một trong hai phần: Phần 1 hoặc Phần 2 PHẦN 1:(Theo chương trình Chuẩn) Câu VI.a: (1 điểm) Trong mặt phẳng với hệ trục tọa độ Oxy cho hai điểm A(1; 2), B(1; 6) và đường tròn (C): ( x − 2) 2 + ( y − 1) 2 = 2 . Gọi V(A, k) là phép vị tự tâm A tỉ số k sao cho V(A, k) biến đường tròn (C) thành đường tròn (C’) đi qua B. Tính diện tích ảnh của tam giác OAB qua V(A, k). n ⎛1 x⎞ Câu V II.a: (1 điểm) Cho khai triển ⎜ + ⎟ = a0 + a1 x + a2 x 2 + .... + an x n . Tìm số lớn nhất trong ⎝2 3⎠ các số a0 , a1 , a2 ,..., an biết rằng n là số tự nhiên thỏa mãn Cn Cn −2 + 2Cn −2 Cn −1 + Cn Cn −1 = 11025 . 2n n n 1n PHẦN 2: (Theo chương trình Nâng cao) Câu VI.b: (1 điểm) Trong mặt phẳng với hệ trục toạ độ Oxy cho hình chữ nhật ABCD có diện tích bằng 12, tâm I là giao điểm của đường thẳng d1 : x − y − 3 = 0 và d 2 : x + y − 6 = 0 . Trung điểm của một cạnh là giao điểm của d1 với trục Ox. Tìm toạ độ các đỉnh của hình chữ nhật. 2 x 2 − 3x + 2 Câu VII.b: (1 điểm) Cho hàm số y = có đồ thị (C). Tìm tọa độ điểm M thuộc (C) sao x −1 cho tổng khoảng cách từ M tới hai đường tiệm cận của (C) là nhỏ nhất. ----------------***Hết***---------------- Chú ý: Thí sinh dự thi khối B và D không phải làm câu V. Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm Họ và tên thí sinh:. . . . . . . . . . . . . . . . . . . . . . . . . Số báo danh:. . . . . . . . . . . . . . . . . . .
  2. TRƯỜNG THPT ĐÔNG SƠN I KÌ THI KSCL TRƯỚC TUYỂN SINH NĂM 2010(LẦN 1) HƯỚNG DẪN CHẤM MÔN TOÁN - Điểm toàn bài không làm tròn. - Học sinh làm cách khác nếu đúng vẫn được điểm tối đa. - Nếu học sinh làm cả hai phần trong phần riêng thì không tính điểm phần tự chọn. - Thí sinh dự thi khối B, D không phải làm câu V; thang điểm dành cho câu I.1 và câu III là 1,5 điểm. Câu Nội dung Điểm I.1 Khảo sát hàm số ... 1,00 * Với m = 0 thì y = x − 3x 3 2 1. Tập xác định: R 0,25 2. Sự biến thiên: a) Giới hạn: lim y = lim (x − 3x ) = −∞, lim y = lim (x − 3x ) = +∞ 3 2 3 2 x → −∞ x → −∞ x → +∞ x → +∞ 2 b) Bảng biến thiên: y’=3x – 6x, y’ = 0 ⇔ x = 0, x = 2. -∞ +∞ x 0 2 y' + 0 - 0 + +∞ 0,25 0 y -∞ -4 - Hàm số đồng biến trên (- ∞ ; 0) và (2; + ∞ ), nghịch biến trên (0; 2) 0,25 - Hàm số đạt cực đại tại x = 0, yCĐ = 0, đạt cực tiểu tại x = 2, yCT = - 4. 3. Đồ thị: Đồ thị giao với trục tung tại (0; 0), giao với trục hoành tại (0; 0),(3; 0). Nhận điểm uốn I(1; - 2) làm tâm đối xứng y O x 12 3 0,25 -2 -4 I.2 Tìm giá trị của tham số m ... 1,00 Ta có y = x 3 − 3x 2 + mx, y' = 3x 2 − 6 x + m Điều kiện để hàm số có cực đại, cực tiểu là y’ = 0 có hai nghiệm phân biệt 0,25 ⇔ Δ ' = 9 − 3m > 0 ⇔ m < 3 ⎞ 1⎞ ⎛2 ⎛1 1 Ta có: y = ⎜ x − ⎟y'+⎜ m − 2 ⎟x + m ⎠ 3⎠ ⎝ 3 ⎝3 3 Tại các điểm cực trị thì y’ = 0, do đó tọa độ các điểm cực trị thỏa mãn phương trình ⎞ ⎛2 y = ⎜ m − 2 ⎟x + m . Như vậy đường thẳng Δ đi qua các điểm cực trị có phương 0,25 1 ⎠ ⎝3 3 ⎞ ⎛2 1 2 trình y = ⎜ m − 2 ⎟x + m , nên nó có hệ số góc k1 = m − 2 ⎠ ⎝3 3 3 1 5 1 Ta có d: x – 2y – 5 = 0 ⇔ y = x − suy ra d có hệ số góc k2 = 0,25 2 2 2 Để hai điểm cực trị đối xứng qua d thì ta phải có d ⊥ Δ, 1
  3. 1⎛2 ⎞ suy ra k 1 k 2 = −1 ⇔ ⎜ m − 2 ⎟ = −1 ⇔ m = 0 2⎝3 ⎠ +) Với m = 0 thì đồ thị có hai điểm cực trị là (0; 0) và (2; - 4), nên trung điểm của chúng là I( 1; -2), ta thấy I ∈ d, do đó hai điểm cực trị đối xứng với nhau qua d. 0,25 Vậy: m = 0 II.1 Giải hệ phương trình đại số... 1,00 ⎧x 2 + y 2 + x 2 y 2 = 1 + 2xy ⎧(x − y)2 + x 2 y 2 = 1 ⇔⎨ ⎨ 0,25 ⎩x + x y + xy = xy + y + 1 ⎩(x − y)(1 + xy) + xy = 1 2 2 ⎧u 2 + v 2 = 1 ⎧(u + v )2 − 2 uv = 1 ⇔⎨ Đặt u = x- y, v = xy, ta có hệ ⎨ ⎩u(1 + v ) + v = 1 ⎩u + v + uv = 1 Đặt S = u + v, P = uv (điều kiện S 2 ≥ 4 P ) ta có hệ phương trình 0,25 ⎡S = 1 ⎧S 2 − 2 P = 1 ⎧S 2 − 2(1 − S ) = 1 ⇒ S 2 + 2S − 3 = 0 ⇔ ⎢ ⇔⎨ ⎨ ⎣S = −3 ⎩P = 1 − S ⎩S + P = 1 ⎧ u + v = 1 ⎧u = 0 ⎧u = 1 +) Với S = 0 ⇒ P = 0 ⇒ ⎨ ⇒⎨ hoặc ⎨ ⎩uv = 0 ⎩v = 1 ⎩v = 0 ⎧u = 0 ⎧x − y = 0 ⎧x = y = 1 ⇒⎨ ⇔⎨ - Nếu ⎨ 0,25 ⎩v = 1 ⎩xy = 1 ⎩x = y = −1 ⎧u = 1 ⎧x − y = 1 ⎧x = 1 ⎧x = 0 ⇔⎨ ⇔⎨ - Nếu ⎨ hoÆc ⎨ ⎩v = 0 ⎩xy = 0 ⎩y = 0 ⎩y = −1 +) Với S = - 3 ⇒ P = 4 ⇒ S 2 < 4P (loại) 0,25 Vậy hệ phương trình có 4 nghiệm (x; y ) = (− 1;−1), (1;1), (1;0), (0;−1) II.2 Giải bất phương trình logarit... (2 x + x − 3)(2 x − 8) 4 x + (x − 11).2 x − 8(x − 3) ≥ 0 (1) ≥0⇔ 0,25 log 2 x − 2 log 2 x − 2 +) Xét f (x) = 2 x + x − 3 , f’(x) = 2 x ln 2 + 1 > 0, ∀x nên f(x) đồng biến trên R . f(1) = 0. 0,25 +) Xét g(x) = 2x – 8, g(x) đồng biến trên R , g(3) = 0. +) Xét h(x) = log 2 x − 2 , h(x) đồng biến trên (0; + ∞), h(4) = 0. Bảng xét dấu vế trái của (1) +∞ x 0 1 3 4 x 2 +x-2 - 0 + | + | + 0,25 2x - 8 - | - 0 + | + log2x - 2 - | - | - 0 + VT - 0 + 0 - || + Theo bảng xét dấu, bất phương trình đã cho có tập nghiệm S = [1;3] ∪ (4;+∞) 0,25 II.3 Giải phương trình lượng giác... 1,00 x ⎞⎛ x x⎞ ⎛x 3(sin3 − cos3 ) = 2 cos x + sin 2x ⇔ 3⎜sin − cos ⎟⎜1 + sin cos ⎟ = (2 + sinx) cosx x x 1 2 ⎠⎝ 2 2⎠ ⎝2 2 2 2 0,25 ⎛x x ⎞⎛ ⎞ ⎛ x ⎞⎛ x⎞ ⇔ 3⎜ sin − cos ⎟⎜ 1 + sin x ⎟ = (2 + sin x )⎜ cos − sin ⎟⎜ cos + sin ⎟ 1 x x ⎝2 2 ⎠⎝ ⎠ ⎝ 2 ⎠⎝ 2⎠ 2 2 2 ⎛ x⎞ ⎛x x 3⎞ x ⇔ ⎜ cos − sin ⎟(2 + sin x)⎜ sin + cos + ⎟ = 0 0,25 ⎝ 2⎠ ⎝2 2 2⎠ 2 ⎛x π⎞ xπ π x x − cos = 0 ⇔ sin ⎜ − ⎟ = 0 ⇔ − = kπ ⇔ x = + k2π (k ∈ Z) * sin 0,25 ⎝2 4⎠ 2 2 24 2 * 2 + sin x = 0 ⇔ sin x = −2 (vô nghiệm) 2
  4. ⎛x π⎞ π⎞ ⎛ x x 3 3 3 + cos = − ⇔ 2 sin⎜ + ⎟ = − ⇔ sin⎜ x + ⎟ = − * sin (vô nghiệm) ⎝2 4⎠ ⎝ 4⎠ 2 2 2 2 22 0,25 π Vậy nghiệm của phương trình là: x = + k2π ( k ∈ Z ) 2 III Tính thể tích khối chóp... 1,00 S M I N A B K C Ta có các tam giác SMN và AMN cân tại S và A. Gọi I là trung điểm của MN suy ra SI ⊥ MN và AI ⊥ MN. Do (SBC) ⊥ (AMN) nên SI ⊥ (AMN). 0,25 1 1 Do đó VS .AMN = SI.S AMN = SI.AI.MN 3 6 Gọi K là trung điểm của BC suy ra I là trung điểm của SK, mà AI ⊥ SK nên tam 0,25 a3 giác ASK cân tại A. Do đó SA = AK = 2 1 a 1 a SC SA a 3 MN = BC = , NI = MN = , SN = = = 2 2 2 4 2 2 4 0,25 3a 2 a 2 a 2 SI = SN − NI = − = 2 2 16 16 4 1 a 2 a 10 a a 3 5 3a 2 a 2 a 10 AI = SA 2 − SI 2 = − = . Vậy VS .AMN = = 0,25 64 42 96 4 8 4 V SA SM SN 1 Chú ý: Thí sinh có thể sử dụng công thức: S .AMN = = . . VS .ABC SA SB SC 4 IV Tính giới hạn..... 1,00 2 x cos 2 x − 1 (2 x − 1) cos 2 x 1 − cos 2 x 2 2 = lim − lim 0,50 lim x2 x2 x2 x→0 x→0 x→0 2 e x ln 2 − 1 2 ⎛ sin x ⎞ ⎟ = ln 2 − 1 = ln 2. lim 2 lim cos 2 x − lim⎜ 0,50 ⎝x⎠ x → 0 x ln 2 x → 0 x→0 V Chứng minh bất đẳng thức... 1,00 Áp dụng bất đẳng thức Côsi cho hai số dương ta có: ⎛1 1⎞ 11 4 11 (x + y)⎜ + ⎟ ≥ 2 xy .2 . = 4 ⇒ + ≥ (*), ⎜x y⎟ x y x+y ⎝ ⎠ xy 1 1 4 1 1 4 + ≥ + ≥ Áp dụng (*) ta có: ; 0,25 a + b b + c a + 2 b + c b + c c + a a + b + 2c 1 1 4 + ≥ c + a a + b 2a + b + c 1 1 1 2 2 2 ⇒ + + ≥ + + (1) a + b b + c c + a 2a + b + c a + 2 b + c a + b + 2 c 3
  5. Mặt khác ta lại có (2a )( )( ) 0,25 + 2 + b 2 + 1 + c 2 + 1 ≥ 2 2a 2 .2 + 2 b 2 .1 + 2 c 2 .1 = 2(2a + b + c) 2 1 2 ⇒ 2a 2 + b 2 + c 2 + 4 ≥ 2(2a + b + c) ⇒ a 2 + 7 ≥ 2(2a + b + c) ⇒ ≥2 2a + b + c a + 7 1 2 1 2 ≥2 ≥2 Tương tự: ; 0,25 2a + c + a b + 7 2c + a + b c + 7 1 1 1 2 2 2 ⇒ + + ≥2 +2 +2 (2) 2a + b + c a + 2 b + c a + b + 2 c a + 7 b + 7 c + 7 1 1 1 4 4 4 + + ≥2 +2 +2 Từ (1) và (2) ta suy ra: 0,25 a+b b+c c+a a +7 b +7 c +7 Dấu ‘’=’’ xảy ra ⇔ a = b = c = 1 VIa.1 Tính diện tích ảnh của tam giác qua phép vị tự ... 1,00 Do B ∈ (C’) nên tồn tại M(x; y) ∈ (C) sao cho B là ảnh của M qua V(A; k), suy ra AB = k AM . Do A ≠ B , nên k ≠ 0 ⎧x = 1 0,25 ⎧1 − 1 = k (x − 1) ⎪ ⇒⎨ ⇒⎨ 4 + 2k ⎩6 − 2 = k (y − 2) ⎪y = ⎩ k 2 ⎛ 4 + 2k ⎞ Do M thuộc (C) nên (x − 2) + (y − 1) = 2 ⇒ (1 − 2) + ⎜ − 1⎟ = 2 2 2 2 0,25 ⎝k ⎠ ⇔ (4 + k ) = k ⇔ k = −2 . 2 2 +) Đường thẳng AB có phương trình x - 1 = 0, dó đó d(O, AB) = 1 0,25 1 1 Độ dài AB = 4. Suy ra S OAB = AB.d(O, AB ) = 4.1 = 2 . 2 2 Ảnh của tam giác OAB qua phép vị tự V(A, 2) có diện tích S = − 2 .SOAB = 2. 0,25 VII.a Tìm số lớn nhất trong các số a0 , a1 , a2 ,..., an .... 1,00 n −2 n −2 n −1 n −1 + 2C +C C = 11025 ⇔ (C + C ) = 105 Ta có C C 2 1 2 12 2 C n n n n n n n n ⎡ n = 14 n( n − 1) 0,25 C 2 + C 1 = 105 ⇔ + n = 105 ⇔ n 2 + n − 210 = 0 ⇔ ⎢ ⎣ n = −15 (lo¹ i) n n 2 14 − k 14 k ⎛1 x⎞ ⎛1⎞ ⎛x⎞ 14 14 = ∑C ⎜ ⎟ ⎜ ⎟ =∑ C 14 2 .3 .x k −14 − k Ta có khai triển ⎜ + ⎟ k k k 0,25 14 ⎝2 3⎠ ⎝2⎠ ⎝ 3 ⎠ k =0 k =0 Do đó a k = C 14 2 k −14 .3 − k k a k +1 C 14+1 2 k −13 3 − k −1 2(14 − k ) k = = Ta xét tỉ số . C 14 2 k −14 3 − k 3( k + 1) k ak 0,25 2(14 − k ) a k +1 > 1 ⇔ k < 5 . Do k ∈ , nên k ≤ 4 . >1⇔ 3( k + 1) ak a k +1 a < 1 ⇔ k > 5, k +1 = 1 ⇔ k = 5 Tương tự ak ak Do đó a 0 < a 1 < ... < a 4 < a 5 = a 6 > a 7 > ... > a 14 0,25 Do đó a5 và a6 là hai hệ số lớn nhất 1001 Vậy hệ số lớn nhất là a 5 = a 6 = C 14 2 −9 3 −5 = 5 62208 4
  6. VIb Tìm toạ độ các đỉnh của hình chữ nhật... 1,00 Ta có: d 1 ∩ d 2 = I . Toạ độ của I là nghiệm của hệ: ⎧x = 9 / 2 ⎧x − y − 3 = 0 ⎛9 3⎞ ⇔⎨ . Vậy I⎜ ; ⎟ ⎨ ⎩y = 3 / 2 ⎩x + y − 6 = 0 0,25 ⎝2 2⎠ Do vai trò A, B, C, D nên giả sử M là trung điểm cạnh AD ⇒ M = d 1 ∩ Ox Suy ra M( 3; 0) 2 2 ⎛ 9⎞ ⎛3⎞ Ta có: AB = 2 IM = 2 ⎜ 3 − ⎟ + ⎜ ⎟ = 3 2 ⎝ 2⎠ ⎝2⎠ S ABCD 12 Theo giả thiết: S ABCD = AB.AD = 12 ⇔ AD = = =2 2 0,25 AB 32 Vì I và M cùng thuộc đường thẳng d1 ⇒ d 1 ⊥ AD Đường thẳng AD đi qua M ( 3; 0) và vuông góc với d1 nhận n(1;1) làm VTPT nên có PT: 1(x − 3) + 1(y − 0) = 0 ⇔ x + y − 3 = 0 . Lại có: MA = MD = 2 ⎧x + y − 3 = 0 ⎪ Toạ độ A, D là nghiệm của hệ PT: ⎨ ⎪ (x − 3) + y 2 = 2 2 ⎩ ⎧y = − x + 3 ⎧y = − x + 3 ⎧y = 3 − x 0,25 ⇔⎨ ⇔⎨ ⇔⎨ ⎩(x − 3) + y = 2 ⎩(x − 3) + (3 − x) = 2 ⎩x − 3 = ±1 2 2 2 2 ⎧x = 2 ⎧x = 4 ⇔⎨ hoặc ⎨ . Vậy A( 2; 1), D( 4; -1) ⎩y = 1 ⎩y = −1 ⎧x = 2 x I − x A = 9 − 2 = 7 ⎛9 3⎞ Do I⎜ ; ⎟ là trung điểm của AC suy ra: ⎨ C ⎩y C = 2 y I − y A = 3 − 1 = 2 ⎝2 2⎠ 0,25 Tương tự I cũng là trung điểm của BD nên ta có B( 5; 4) Vậy toạ độ các đỉnh của hình chữ nhật là: (2; 1), (5; 4), (7; 2), (4; -1) VIIb Tìm tọa độ điểm M thuộc (C) .... 1,00 1 1 +) Ta có y = 2x − 1 + . lim [y − (2x − 1)] = lim = 0 . Do đó (C) có x − 1 x →±∞ x → ±∞ x − 1 tiệm cận xiên y = 2x – 1. 2x2 − 3x + 2 2x2 − 3x + 2 0,25 = +∞; lim = −∞ . Do đó (C) có tiệm cận đứng x = 1 +) lim x −1 x −1 x→1+ x→1− 1⎞ ⎛ ⎟ , x0 ≠ 1 +) Gọi M ∈ (C ) ⇒ M = ⎜ x 0 ;2 x 0 − 1 + x0 − 1⎟ ⎜ ⎠ ⎝ Tổng khoảng cách từ M tới hai đường tiệm cận của (C) là ⎛ 1⎞ 2x 0 − ⎜ 2x 0 − 1 + ⎟ −1 ⎜ x0 −1⎟ 0,25 ⎝ ⎠ 1 d = x0 −1 + = x0 −1 + 5 x0 −1 2 2 + 12 Áp dụng bất đẳng thức Côsi cho hai số dương ta có 2 1 2 1 1 0,25 = 4 ⇒ d = 4 khi x 0 − 1 = d ≥ 2 x0 −1 ⇔ x0 = 1 ± 4 5 x0 −1 5 x0 − 1 5 5 5 ⎛ ⎞ ⎛ ⎞ 1 2 1 2 Vậy d nhỏ nhất khi M = ⎜ 1 + 4 ;1 + 4 + 4 5 ⎟ ; M = ⎜ 1 − 4 ;1 − 4 − 4 5 ⎟ 0,25 ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ 5 5 5 5 5
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2