Đề thi tuyển sinh vào lớp 10 THPT năm học 2009 - 2010 môn toán - Sở giáo dục và đào tạo Quảng Bình
lượt xem 7
download
Các bạn học sinh và quý thầy cô tham khảo miễn phí Đề thi tuyển sinh vào lớp 10 THPT năm học 2009 - 2010 môn toán - Sở giáo dục và đào tạo Quảng Bình để hệ thống kiến thức học tập cũng như trau dồi kinh nghiệm ra đề thi
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi tuyển sinh vào lớp 10 THPT năm học 2009 - 2010 môn toán - Sở giáo dục và đào tạo Quảng Bình
- SỞ GD&ĐT QUẢNG BÌNH ĐỀ THI CHÍNH THỨC TUYỂN SINH VÀO LỚP 10 THPT Năm học 2009-2010 Môn :TOÁN Thời gian làm bài: 120 phút (không kể thời gian phát đề) Phần I. Trắc nghiệm khách quan (2,0 điểm) * Trong các câu từ Câu 1 đến Câu 8, mỗi câu đều có 4 phương án trả lời A, B, C, D; trong đó chỉ có một phương án trả lời đúng. Hãy chọn chữ cái đứng trước phương án trả lời đúng. Câu 1 (0,25 điểm): Hệ phương trình nào sau đây vô nghiệm? (I ) y 3 x 2 y 3 x 1 ( II ) y 1 2 x y 2 x A. Cả (I) và (II) B. (I) C. (II) D. Không có hệ nào cả Câu 2 (0,25 điểm): Cho hàm số y = 3x2. Kết luận nào dưới đây đúng? A. Hàm số nghịch biến với mọi giá trị x>0 và đồng biến với mọi giá trị x0 và nghịch biến với mọi giá trị x
- 2 1 A. y = x + ; B. y = (1 + 3 )x + 1 C. y = x2 2 D. y = x x 3 Câu 7 (0,25 điểm): Cho biết cos = , với là góc nhọn. Khi đó sin bằng bao 5 nhiêu? 3 5 4 3 A. ; B. ; C. ; D. 5 3 5 4 Câu 8 (0,25 điểm): Phương trình nào sau đây có 2 nghiệm phân biệt? A. x2 + 2x + 4 = 0 ; B. x2 + 5 = 0 C. 4x2 - 4x + 1 = 0 ; D. 2x2 +3x - 3 = 0 Phần II. Tự luận ( 8 điểm) Bài 1 (2,0 điểm): Cho biểu thức: n 1 n 1 N= ; với n 0, n 1. n 1 n 1 a) Rút gọn biểu thức N. b) Tìm tất cả các giá trị nguyên của n để biểu thức N nhận giá trị nguyên. Bài 2 (1,5 điểm): Cho ba đường thẳng (d1): -x + y = 2; (d2): 3x - y = 4 và (d3): nx - y = n - 1; n là tham số. a) Tìm tọa độ giao điểm N của hai đường thẳng (d1) và (d2). b) Tìm n để đường thẳng (d3) đi qua N. Bài 3 (1,5 điểm): Cho phương trình: (n + 1)x2 - 2(n - 1)x + n - 3 = 0 (1), với n là tham số. a) Tìm n để phương trình (1) có một nghiệm x = 3. b) Chứng minh rằng, với mọi n - 1 thì phương trình (1) luôn có hai nghiệm phân biệt. Bài 4 (3,0 điểm): Cho tam giác PQR vuông cân tại P. Trong góc PQR kẻ tia Qx bất kỳ cắt PR tại D (D không trùng với P và D không trùng với R). Qua R kẻ đường thẳng vuông góc với Qx tại E. Gọi F là giao điểm của PQ và RE. a) Chứng minh tứ giác QPER nội tiếp được trong một đường tròn. b) Chứng minh tia EP là tia phân giác của góc DEF c) Tính số đo góc QFD. d) Gọi M là trung điểm của đoạn thẳng QE. Chứng minh rằng điểm M luôn nằm trên cung tròn cố định khi tia Qx thay đổi vị trí nằm giữa hai tia QP và QR
- ĐÁP ÁN BÀI THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2009 - 2010 Môn: TOÁN Phần I. Trắc nghiệm khách quan Câu Câu1 Câu 2 Câu 3 Câu 4 Câu 5 Câu 6 Câu7 Câu 8 Đáp án C B C A D B C D Phần II. Tự luận Bài 1: n 1 n 1 a)N = n 1 n 1 = n 1 n 1 2 2 n 1 n 1 n 2 n 1 n 2 n 1 = n 1 = 2n 1 với n 0, n 1. n 1 2n 1 2n 1 4 4 b) N = = =2+ n 1 n 1 n 1 4 Ta có: N nhận giá trị nguyên có giá trị nguyên n-1 là ước của 4 n 1 n-1 1;2;4 + n-1 = -1 n = 0 + n-1 = 1 n = 2 + n-1 = -2 n = -1 (Không thỏa mãn với ĐKXĐ của N) + n-1 = 2 n = 3 + n-1 = -4 n = -3 (Không thỏa mãn với ĐKXĐ của N) + n-1 = 4 n = 5 Vậy để N nhận giá trị nguyên khi và chỉ khi n 0;2;3;5
- Bài 2: (d1): -x + y = 2; (d2): 3x - y = 4 và (d3): nx - y = n - 1; n là tham số. a) Gọi N(x;y) là giao điểm của hai đường thẳng (d1) và (d2) khi đó x,y là nghiệm của hệ phương trình: x y 2 3x y4 (I ) Ta có : (I) 2 x 6 y x2 x 3 y 5 Vậy: N(3;5) b) (d3) đi qua N(3; 5) 3n - 5 = n -1 2n = 4 n= 2. Vậy: Để đường thẳng (d3) đi qua điểm N(3;5) n = 2 Bài 3: Cho phương trình: (n + 1)x2 - 2(n - 1)x + n - 3 = 0 (1), với n là tham số. a) Phương trình (1) có một nghiệm x = 3 (n+1).32 - 2(n-1).3 + n-3 = 0 9n + 9 - 6n + 6 + n - 3 = 0 4n = -12 n = -3 b) Với n -1, ta có: ' = (n-1)2 - (n+1)(n-3) = n2 - 2n + 1 - n2 +2n +4 =5>0 Vậy: với mọi n -1 thì phương trình (1) luôn có hai nghiệm phân biệt. Bài 4: F P x N D E M Q R I Q
- a) Ta có: QPR = 900 ( vì tam giác PQR vuông cân ở P) QER = 900 ( RE Qx) Tứ giác QPER có hai đỉnh P và E nhìn đoạn thẳng QR dưới một góc không đổi (900) Tứ giác QPER nội tiếp đường tròn đường kính QR. b) Tứ giác QPER nội tiếp PQR + PER = 1800 mà PER + PEF = 1800 (Hai góc kề bù) PQR = PEF PEF = PRQ (1) Mặt khác ta có: PEQ = PRQ (2) . Từ (1) và (2) ta có PEF = PEQ EP là tia phân giác của gócDEF c) Vì RP QF và QE RF nên D là trực tâm của tam giác QRF suy ra FD QR QFD = PQR (góc có cạnh tương ứng vuông góc) mà PQR = 450 (tam giác PQR vuông cân ở P) QFD = 450 d) Gọi I là trung điểm của QR và N là trung điểm của PQ. (I,N cố định) Ta có: MI là đường trung bình của tam giác QRE MI//ER mà ER QE 0 MI QE QMI = 90 M thuộc đường tròn đường kính QI. Khi Qx QR thì M I, khi Qx QP thì M N. Vậy: khi tia Qx thay đổi vị trí nằm giữa hai tia QP và QR thì M luôn nằm trên cung NI của đường tròn đường kính QI cố định.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 có đáp án - Sở GD&ĐT Thừa Thiên Huế
5 p | 6 | 2
-
Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2024-2025 - Sở GD&ĐT Bình Phước
1 p | 4 | 1
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 có đáp án - Sở GD&ĐT TP. Hồ Chí Minh
6 p | 13 | 1
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 có đáp án - Sở GD&ĐT Tây Ninh
5 p | 2 | 1
-
Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2024-2025 - Sở GD&ĐT Sơn La
1 p | 3 | 1
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 có đáp án - Sở GD&ĐT Nam Định
13 p | 8 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 có đáp án - Sở GD&ĐT Nghệ An
8 p | 12 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2024-2025 - Sở GD&ĐT Tuyên Quang
1 p | 7 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2024-2025 có đáp án - Sở GD&ĐT Hưng Yên
6 p | 5 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 có đáp án - Trường THPT Chuyên Khoa học tự nhiên, Hà Nội
10 p | 5 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 - Sở GD&ĐT Quảng Bình
1 p | 8 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 - Sở GD&ĐT Lai Châu
1 p | 6 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 - Sở GD&ĐT Kon Tum
1 p | 3 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 - Sở GD&ĐT Bến Tre
3 p | 3 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 - Sở GD&ĐT Lâm Đồng
2 p | 4 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2024-2025 có đáp án - Sở GD&ĐT Quảng Nam
15 p | 10 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm 2024-2025 có đáp án - Sở GD&ĐT Nam Định
7 p | 7 | 0
-
Đề thi tuyển sinh vào lớp 10 môn Toán năm 2024-2025 có đáp án - Sở GD&ĐT Thanh Hóa
5 p | 12 | 0
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn