intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi tuyển sinh vào lớp 10 THPT năm học 2009 - 2010 môn toán - Sở giáo dục và đào tạo Quảng Bình

Chia sẻ: Sunny_1 Sunny_1 | Ngày: | Loại File: PDF | Số trang:5

160
lượt xem
7
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Các bạn học sinh và quý thầy cô tham khảo miễn phí Đề thi tuyển sinh vào lớp 10 THPT năm học 2009 - 2010 môn toán - Sở giáo dục và đào tạo Quảng Bình để hệ thống kiến thức học tập cũng như trau dồi kinh nghiệm ra đề thi

Chủ đề:
Lưu

Nội dung Text: Đề thi tuyển sinh vào lớp 10 THPT năm học 2009 - 2010 môn toán - Sở giáo dục và đào tạo Quảng Bình

  1. SỞ GD&ĐT QUẢNG BÌNH ĐỀ THI CHÍNH THỨC TUYỂN SINH VÀO LỚP 10 THPT Năm học 2009-2010 Môn :TOÁN Thời gian làm bài: 120 phút (không kể thời gian phát đề) Phần I. Trắc nghiệm khách quan (2,0 điểm) * Trong các câu từ Câu 1 đến Câu 8, mỗi câu đều có 4 phương án trả lời A, B, C, D; trong đó chỉ có một phương án trả lời đúng. Hãy chọn chữ cái đứng trước phương án trả lời đúng. Câu 1 (0,25 điểm): Hệ phương trình nào sau đây vô nghiệm? (I )  y 3 x  2 y  3 x 1 ( II )  y 1 2 x y  2 x A. Cả (I) và (II) B. (I) C. (II) D. Không có hệ nào cả Câu 2 (0,25 điểm): Cho hàm số y = 3x2. Kết luận nào dưới đây đúng? A. Hàm số nghịch biến với mọi giá trị x>0 và đồng biến với mọi giá trị x0 và nghịch biến với mọi giá trị x
  2. 2 1 A. y = x + ; B. y = (1 + 3 )x + 1 C. y = x2  2 D. y = x x 3 Câu 7 (0,25 điểm): Cho biết cos  = , với  là góc nhọn. Khi đó sin  bằng bao 5 nhiêu? 3 5 4 3 A. ; B. ; C. ; D. 5 3 5 4 Câu 8 (0,25 điểm): Phương trình nào sau đây có 2 nghiệm phân biệt? A. x2 + 2x + 4 = 0 ; B. x2 + 5 = 0 C. 4x2 - 4x + 1 = 0 ; D. 2x2 +3x - 3 = 0 Phần II. Tự luận ( 8 điểm) Bài 1 (2,0 điểm): Cho biểu thức: n 1 n 1 N=  ; với n  0, n  1. n 1 n 1 a) Rút gọn biểu thức N. b) Tìm tất cả các giá trị nguyên của n để biểu thức N nhận giá trị nguyên. Bài 2 (1,5 điểm): Cho ba đường thẳng (d1): -x + y = 2; (d2): 3x - y = 4 và (d3): nx - y = n - 1; n là tham số. a) Tìm tọa độ giao điểm N của hai đường thẳng (d1) và (d2). b) Tìm n để đường thẳng (d3) đi qua N. Bài 3 (1,5 điểm): Cho phương trình: (n + 1)x2 - 2(n - 1)x + n - 3 = 0 (1), với n là tham số. a) Tìm n để phương trình (1) có một nghiệm x = 3. b) Chứng minh rằng, với mọi n  - 1 thì phương trình (1) luôn có hai nghiệm phân biệt. Bài 4 (3,0 điểm): Cho tam giác PQR vuông cân tại P. Trong góc PQR kẻ tia Qx bất kỳ cắt PR tại D (D không trùng với P và D không trùng với R). Qua R kẻ đường thẳng vuông góc với Qx tại E. Gọi F là giao điểm của PQ và RE. a) Chứng minh tứ giác QPER nội tiếp được trong một đường tròn. b) Chứng minh tia EP là tia phân giác của góc DEF c) Tính số đo góc QFD. d) Gọi M là trung điểm của đoạn thẳng QE. Chứng minh rằng điểm M luôn nằm trên cung tròn cố định khi tia Qx thay đổi vị trí nằm giữa hai tia QP và QR
  3. ĐÁP ÁN BÀI THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2009 - 2010 Môn: TOÁN Phần I. Trắc nghiệm khách quan Câu Câu1 Câu 2 Câu 3 Câu 4 Câu 5 Câu 6 Câu7 Câu 8 Đáp án C B C A D B C D Phần II. Tự luận Bài 1: n 1 n 1 a)N =  n 1 n 1 =    n  1 n 1  2 2  n  1 n  1 n  2 n 1 n  2 n 1 = n 1 = 2n  1 với n  0, n  1. n 1 2n  1 2n  1  4 4 b) N = = =2+ n 1 n 1 n 1 4 Ta có: N nhận giá trị nguyên  có giá trị nguyên  n-1 là ước của 4 n 1  n-1   1;2;4 + n-1 = -1  n = 0 + n-1 = 1  n = 2 + n-1 = -2  n = -1 (Không thỏa mãn với ĐKXĐ của N) + n-1 = 2  n = 3 + n-1 = -4  n = -3 (Không thỏa mãn với ĐKXĐ của N) + n-1 = 4  n = 5 Vậy để N nhận giá trị nguyên khi và chỉ khi n  0;2;3;5
  4. Bài 2: (d1): -x + y = 2; (d2): 3x - y = 4 và (d3): nx - y = n - 1; n là tham số. a) Gọi N(x;y) là giao điểm của hai đường thẳng (d1) và (d2) khi đó x,y là nghiệm của hệ phương trình:   x y 2 3x y4 (I ) Ta có : (I)  2 x 6 y  x2   x 3 y 5 Vậy: N(3;5) b) (d3) đi qua N(3; 5)  3n - 5 = n -1  2n = 4  n= 2. Vậy: Để đường thẳng (d3) đi qua điểm N(3;5)  n = 2 Bài 3: Cho phương trình: (n + 1)x2 - 2(n - 1)x + n - 3 = 0 (1), với n là tham số. a) Phương trình (1) có một nghiệm x = 3  (n+1).32 - 2(n-1).3 + n-3 = 0  9n + 9 - 6n + 6 + n - 3 = 0  4n = -12  n = -3 b) Với n  -1, ta có: ' = (n-1)2 - (n+1)(n-3) = n2 - 2n + 1 - n2 +2n +4 =5>0 Vậy: với mọi n  -1 thì phương trình (1) luôn có hai nghiệm phân biệt. Bài 4: F P x N D E M Q R I Q
  5. a) Ta có:  QPR = 900 ( vì tam giác PQR vuông cân ở P)  QER = 900 ( RE  Qx) Tứ giác QPER có hai đỉnh P và E nhìn đoạn thẳng QR dưới một góc không đổi (900)  Tứ giác QPER nội tiếp đường tròn đường kính QR. b) Tứ giác QPER nội tiếp   PQR +  PER = 1800 mà  PER +  PEF = 1800 (Hai góc kề bù)   PQR =  PEF   PEF =  PRQ (1) Mặt khác ta có:  PEQ =  PRQ (2) . Từ (1) và (2) ta có  PEF =  PEQ  EP là tia phân giác của gócDEF c) Vì RP  QF và QE  RF nên D là trực tâm của tam giác QRF suy ra FD  QR   QFD =  PQR (góc có cạnh tương ứng vuông góc) mà  PQR = 450 (tam giác PQR vuông cân ở P)   QFD = 450 d) Gọi I là trung điểm của QR và N là trung điểm của PQ. (I,N cố định) Ta có: MI là đường trung bình của tam giác QRE  MI//ER mà ER  QE 0  MI  QE   QMI = 90  M thuộc đường tròn đường kính QI. Khi Qx  QR thì M  I, khi Qx  QP thì M  N. Vậy: khi tia Qx thay đổi vị trí nằm giữa hai tia QP và QR thì M luôn nằm trên cung NI của đường tròn đường kính QI cố định.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2