intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Điều kiện cần tối ưu cho bài toán tối ưu hai cấp

Chia sẻ: ViTomato2711 ViTomato2711 | Ngày: | Loại File: PDF | Số trang:5

45
lượt xem
2
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài toán tối ưu hai cấp đang hấp dẫn các nhà khoa học nghiên cứu do ý nghĩa khoa học và tính ứng dụng rộng rãi của bài toán trong thực tế. Tối ưu hai cấp xuất hiện trên sách báo, tạp chí thường có liên quan đến các hệ thống phân cấp.

Chủ đề:
Lưu

Nội dung Text: Điều kiện cần tối ưu cho bài toán tối ưu hai cấp

Chuyên mục: Thông tin & Trao đổi - TẠP CHÍ KINH TẾ & QUẢN TRỊ KINH DOANH SỐ 10 (2019)<br /> <br /> ĐIỀU KIỆN CẦN TỐI ƯU CHO BÀI TOÁN TỐI ƯU HAI CẤP<br /> <br /> <br /> Trần Thị Mai1, Phạm Thị Linh2<br /> <br /> <br /> Tóm tắt<br /> Bài toán tối ưu hai cấp đang hấp dẫn các nhà khoa học nghiên cứu do ý nghĩa khoa học và tính ứng<br /> dụng rộng rãi của bài toán trong thực tế. Tối ưu hai cấp xuất hiện trên sách báo, tạp chí thường có liên<br /> quan đến các hệ thống phân cấp. Bài toán tối ưu hai cấp bao gồm hai bài toán tối ưu, trong đó một<br /> phần dữ liệu của bài toán thứ nhất được xác định ẩn thông qua nghiệm của bài toán thứ hai. Người ra<br /> quyết định ở mỗi cấp cố gắng tối ưu hóa (cực tiểu hay cực đại) hàm mục tiêu riêng của cấp mình mà<br /> không để ý tới mục tiêu của cấp kia, nhưng quyết định của mỗi cấp lại ảnh hưởng tới giá trị mục tiêu<br /> của cả hai cấp và tới không gian quyết định nói chung. Mô hình toán học của bài toán tối ưu hai cấp<br /> cùng với công cụ dưới vi phân suy rộng dùng để thiết lập điều kiện tối ưu cho bài toán được chúng tôi<br /> trình bày trong bài báo này.<br /> Từ khóa: Bài toán, bài toán hai cấp, dưới vi phân suy rộng, nghiệm, tối ưu.<br /> NECESSARY CONDITIONS FOR BILEVEL OPTIMIZATION PROBLEM<br /> Abstract<br /> Bilevel optimzation is attracting scientists due to its scientific significance and wide applicability in<br /> practice. The bilevel programming in books and magazines is often related to hierarchies. The bilevel<br /> optimzation includes two optimal problems, in which a part of the data of the first problem is identified<br /> through the solution of the second problem. The decision maker at each level tries to optimize<br /> (minimum or maximum) the function of his own level without paying attention to the goal of the other<br /> level but the decision of each level affects the target value of both levels and the decision space in<br /> general. The math model of bilevel optimzation along with the convexificator tool used to establish<br /> optimal conditions for the problem is presented in this paper.<br /> Keywords: Problem, bilevel programming, convexificator, solution, optimization.<br /> JEL classification: C; C02<br /> 1. Introduction Mathetical model of bilevel programmimg<br /> Bilevel programming is arising from problem ( P) in this paper is a sequence of two<br /> actual needs such as: Problem of socio-economic optimization problems in which the feasible<br /> development planning for a territory or a region of upper-level problem ( P1 ) is<br /> country. Inside, the upper-level is the state that<br /> determined implicitly by the solutions set of the<br /> controls policies such as tariffs, exchange rate,<br /> import quota… with the aim of creating more lower-level problem ( P2 ) . It may be given as<br /> jobs, minor resource usage… Lower-level are the follows:<br /> companies with the goal of maximizing income <br /> Min F ( x, y )<br /> with the constraints on superiors' policies. Or, ( P1 ) : <br /> resource allocation problem at a firm or a  subject to : G( x, y)  0, y  S ( x);<br /> <br /> company with management decentralization. Where, for each x  X , S ( x) is the<br /> Inside, the upper echelon plays a central role in solution set of the following parametric<br /> providing resources (capital, supplies and labor) optimization problem:<br /> aiming to maximize the company's profits.  Min f ( x, y)<br /> <br /> Lower-level are factories producing products in ( P2 ) :  where,<br /> different locations, decide the ratio, own <br />  subject to : g ( x , y )  0,<br /> production output to maximize the performance<br /> of their units.<br /> <br /> <br /> 10<br /> Chuyên mục: Thông tin & Trao đổi - TẠP CHÍ KINH TẾ & QUẢN TRỊ KINH DOANH SỐ 10 (2019)<br /> <br /> <br /> F  ( F1 ,..., Fm ) : n1<br />  n2<br />  m<br /> , upper and lower convexificators of f at x .<br /> f: n1<br />  n2<br />  , Proposition 2.1 ([4]) Suppose that the<br /> function f :X  admits an upper<br /> G  (G1 ,..., Gm2 ) : n1<br />  n2<br />  m2<br /> <br /> convexificator * f ( x ) at x  X . If f attains<br /> and g  ( g1 ,..., gm1 ) :  <br /> n1 n2 m1<br /> ; ni<br /> its minimum at x then: 0  clconv * f ( x )<br /> mi , i  1, 2 are integers, with ni  1, mi  0. where cl and conv indicate the weakl* closure<br /> Whenever m1  0 or m2  0, this means that and convex hull, respectively.<br /> the corresponding inequality constraint is absen Proposition 2.2 ([4]) Suppose that the<br /> in the ( P) . function f  ( f1 , f 2 ,.... f n ) be a continuous<br /> p n<br /> Within the scope of the article, we using function from to and g be continuous<br /> convexificator for establishing necessary function from n<br /> to . Suppose that, for each<br /> condition with optimal solution to the ( P) in<br /> i  1,..., n , fi admits a bounded convexificator<br /> finite dimensional space.<br /> 2. Preliminaries * fi ( x ) and g admits a bounded convexifi-cator<br /> Let X be a Banach space, X * topological * g ( x ) at x . For each i  1,..., n if * fi ( x )<br /> dual of X , x  X . We recall some notions on and * g ( x ) are upper semiconti-nuos at x then<br /> convexificators in [4].<br /> the set:<br /> Definition 2.1 [4] The lower (upper) Dini<br /> * ( f g )( x )  * g ( f ( x ))(* f1 ( x ),..., * f n ( x ))<br /> directional derivatives of f : X   <br /> is a convexificator of f g at x .<br /> at x  X in a direction   X is defined as We shall begin with establishing necessary<br /> f ( x  t )  f ( x)<br /> f d ( x; )  lim inf optimality condition for optimal solutions of<br /> t 0 t bilevel programming problem.<br />  f ( x  t )  f ( x)  3. Optimality condition<br />  resp., f d ( x; )  limsup<br /> <br /> .<br />  t 0 t  A pair ( x , y ) is said to be optimal solution<br /> In case f d ( x; )  f d ( x; ) their common<br />  <br /> to the ( P) if it is an optimal solution to the<br /> value is defined by f ' ( x; ) which is called Dini following problem: Min ( x , y )S F ( x, y) where,<br /> derivative of f in the direction  . The function<br /> S   x , y   n1<br />  n2<br /> : G( x, y)  0; y  S ( x).<br /> f is called Dini differentiable at x its Dini<br /> According to Stephane Dempe [3], ( P) can be<br /> derivative at x exists in all diretions.<br /> Definition 2.2 ([4]) The function replaced by ( P* ) : Min F ( x, y ),<br /> <br /> f :X    is said to have an upper subject to:<br /> G( x, y)  0, g ( x, y)  0; f ( x, y)  V ( x)  0<br /> (lower) convexificator * f ( x) at x if<br /> với ( x, y)  n1<br />  n2<br /> .<br /> * f ( x)  X * (* f ( x)  X * ) is weakly*<br /> Luderer (1983) has proved that the problem<br /> closed, and for all   X ,<br /> ( P* ) has an optimal solutions, where<br /> f ( x, )  sup<br /> <br /> x ,*<br /> d<br /> x** f ( x ) V ( x)  min  f ( x, y) : g ( x, y)  0, y  n2<br /> .<br /> y<br /> <br />  resp., f  ( x, )  inf x* ,  Assumption 3.1 Dempe [2] has proved that<br />  <br />  <br /> d<br /> x** f ( x ) under the following hypotheses<br /> A weakly* closed set * f ( x)  X * is said ( H1 ),( H 2 ),( H3 ), the problem ( P) has at lest<br /> to have a convexificator of f at x if it is both one optimal solution.<br /> <br /> <br /> 11<br /> Chuyên mục: Thông tin & Trao đổi - TẠP CHÍ KINH TẾ & QUẢN TRỊ KINH DOANH SỐ 10 (2019)<br /> <br /> (H1): F (.,.), f (.,.), g (.,.) and G(.,.) are  m<br /> <br /> <br /> lower semicontinuos (l.s.c) on n1  n2 ;<br />    ,  ,    1 and  k  1;<br />  k 1<br /> <br /> (H2): V (.,.) is upper semicontinuos (u.s.c) on  m1 m2<br /> <br />   i gi ( x , y )  0 and   j G j ( x , y )  0;<br /> n1<br /> ;  i 1 j 1<br />  m<br /> (H3): The problem ( P* ) has at least one<br />  (0, 0)  cl{ k conv  Fk ( x , y ) <br /> *<br /> <br /> <br /> feasible solution, there exists  *  c   such  k 1<br />  m1<br /> <br /> M  {(x, y )  n1<br />  n2<br /> : G ( x, y )  0,  m 1[ conv * f k ( x , y )   i conv * g i ( x , y )<br /> as:  i 1<br /> g ( x, y )  0, F ( x, y )  c}  m2<br />   j conv *G j ( x , y )   (*V ( x )  {0}]}, (1)<br /> is not empty and bounded.  j 1<br /> Definition 3.1 [1] The problem ( P) is said where,<br /> to be regular at ( x , y ) if there exists a  *V ( x )  conv {* f (., y )( x ) : y  J ( x )}<br /> <br /> neighborhood U of ( x , y ) and  ,   0 such  J ( x )  {y <br /> n2<br /> : g ( x , y)  0; f ( x , y)  V ( x )}.<br /> that If in addition to the above assumptions, the<br /> (  , )  m1<br />   m1<br />  ; ( x, y) U ; problem (P) is regular at ( x , y ) one has<br /> <br /> x*g  co g ( x, y ); xG*  co G ( x, y ); k  0, k  1, m.<br /> x*f  co f ( x, y ); xV*  *V ( x)  {0}; Proof<br /> A ccording to Stephane Dempe [3], ( P)<br />    X<br /> can be replaced by ( P* ) : Min F ( x, y),<br /> such that<br />  g ( x, y)  G( x, y)  ( x*g , xG* x*f  xV* ,  )  0. subject to:<br /> <br /> Theorem 3.1 Let ( x , y ) is a solution of ( P) . G( x, y)  0, g ( x, y)  0; f ( x, y)  V ( x)  0<br /> Suppose that, there exists a neigh-borhood with ( x, y)  n1<br />  n2<br /> .<br /> U  X at ( x , y ) such that the functions Applying the scalarization theorem by<br /> F , f , g , G are continuous on U and admits Gong (2010, Theorem 3.1) to Problem ( P* )<br /> bounded convexificators. yields the existence of a continuous positively<br /> * F ( x , y ); * f ( x , y ); * g ( x , y ); *G( x , y ) homogeneous subadditive function  on m<br /> <br /> at ( x , y ) . satisfying<br /> Assume that: y2  y1  int m<br />   ( y2 )  ( y1)<br />  F;  f ;<br /> * *<br /> and : ( F )( x, y)  0, ( x, y)  M<br />  g;  G<br /> * *<br /> Hence, ( x , y ) is a minimum of the<br /> are upper semicontinuos at ( x , y ) . following scalars optimization Problem (MP):<br /> Then, there exists scalars 1 , 2 ,..., m1 Min ( F )( x, y),<br />   0 and vector subject to:<br />    1 ,..., m   1<br /> m1<br />  ; G( x, y)  0, g ( x, y)  0; f ( x, y)  V ( x)  0<br />   1 ,...,m   with ( x, y)  <br /> m2 n1 n2<br />  such that: .<br /> 2<br /> <br /> Luderer (1983) has proved that the problem<br /> (MP) has an optimal solutions, where<br /> V ( x)  min  f ( x, y) : g ( x, y)  0, y  n2<br /> .<br /> y<br /> <br /> Taking account of Theorem 1 in Bard<br /> <br /> 12<br /> Chuyên mục: Thông tin & Trao đổi - TẠP CHÍ KINH TẾ & QUẢN TRỊ KINH DOANH SỐ 10 (2019)<br /> <br /> (1984) to the scalars problem (MP) yields the zn  cl{  C (0)(* F ( x , y )1 ,..., * F ( x , y ) m )<br /> exists  , 1 ,   0 and vector m1 m2<br /> 1[ i conv  gi ( x , y )   j conv *G j ( x , y )<br />    1 ,..., m    <br /> *<br /> <br /> 1<br /> m1<br />  ;   1 ,...,m2  m2<br />  i 1 j 1<br /> <br /> such that  conv  f ( x , y )   ( V ( x )  {0})]},<br /> * *<br /> (4)<br />    , ,    1 and   1  1 such that limn zn  0. By (4), there exists a<br /> <br />  m1 m2<br /> sequence { n }  C (0) <br />  <br /> m<br />   i g i ( x , y )  0 and  jG j ( x , y )  0 such as<br />  i 1 j 1<br /> zn  cl{  n (* F ( x , y )1 ,..., * F ( x , y ) m )<br /> (0,0)  cl{ conv  (  F )( x , y )<br /> *<br /> <br />  m1 m2<br /> m m<br />  [ 1  conv * g ( x , y )  2  conv *G ( x , y ) 1[ i conv * gi ( x , y )   j conv *G j ( x , y )<br />  1 i 1<br /> i i j 1<br /> j j i 1 j 1<br /> <br />   conv  f ( x , y )   ( V ( x )  {0})]}<br /> * *<br /> (2)  conv  f ( x , y )   ( V ( x )  {0})]},<br /> * *<br /> (5)<br /> where, Since  C (0) is a compact set in m<br /> , we can<br /> *V ( x )  conv {* f (., y)( x ) : y  J ( x )} assume that n   C (0) . Putting<br /> <br />  J ( x )  {y  : g ( x , y )  0; f ( x , y )  V ( x )}.    . one has   (1 ,..., m ). <br /> n2 m<br /> . It<br /> follows from (5), we have<br /> We now check hypotheses of a chain rule<br /> (0,0)  cl{ (* F ( x , y )1 ,..., * F ( x , y ) m )<br /> by Jeyakumar-Luc ([4], Prop 5.1) to the m1 m2<br /> composite function ( F )( x, y) . Since the 1[ i conv * gi ( x , y )   j conv *G j ( x , y )<br /> function  is continuous convex, we can apply<br /> i 1 j 1<br /> <br /> <br /> Proposition 2.2.6 trong Clarke (1983) to deduce  conv  f ( x , y )   ( V ( x )  {0})]},<br /> * *<br /> (6)<br /> that it is locally Lipschitz.Hence, its Sine   (1 ,..., m ), putting 1  m1 , by<br /> subdifferential C ( F ( x, y)) is abounded virtue of (6), its holds that<br /> convexificator of  at F ( x , y )  0. Since m<br /> (0, 0)  cl{ k conv * Fk ( x , y )<br /> function  is convex and locally Lipschitz, k 1<br /> <br /> Proposition 7.3.9 trong Schirotzek (2007) was m1<br /> <br /> poined that: m1[ i conv * gi ( x , y )<br /> i 1<br /> C ( F( x , y ) ( x , y ))  ( F( x , y ) ( x , y )). m2<br /> <br /> Moreover, due to Proposition 2.2, we have   j conv *G j ( x , y )   conv * f ( x , y )<br /> j 1<br /> C ( F( x , y ) ( x , y ))(* F ( x , y )1 ,..., * F ( x , y )m )<br />  (*V ( x )  {0})]},<br /> is a convexificator of ( F )( x , y ) at ( x , y ).<br /> which implies (6).<br /> It follows from (2), we obtain<br /> Let us see that<br /> (0, 0)  cl{  C ( F( x , y ) ( x , y ))(* F ( x , y )1 ,...,<br /> i  m<br />  \{0}(i  1,..., m) . Since   0, we<br /> m1<br /> * F ( x , y ) m )  1[ i conv * gi ( x , y ) just need to prove   m<br />  \{0}. Indeed, for<br /> i 1<br /> m2<br /> any it can be written 0  ( y)  int m<br /> . We<br />   j conv  G j ( x , y )   conv  f ( x , y )<br /> * *<br /> have<br /> j 1<br />  ,  y   , F( x , y ) ( x , y )  y  F( x , y ) ( x , y )<br />  (*V ( x )  {0})]}. (3)<br />  ( F( x , y ) ( x , y )  y )  ( F( x , y ) ( x , y )<br /> Since F( x , y ) ( x , y )  0 , it follows from (3) that<br />  ( y )  P(0)  0.<br /> there exists a sequence<br /> Consequently,   m<br />  \{0}, and so, it can<br /> <br /> 13<br /> Chuyên mục: Thông tin & Trao đổi - TẠP CHÍ KINH TẾ & QUẢN TRỊ KINH DOANH SỐ 10 (2019)<br /> <br /> m m 1 In our article, the optimal condition of the<br /> be assumed that   k  1 . Hence,<br /> k 1<br /> <br /> k 1<br /> k  1, problem is established for function vector in<br /> m<br /> which completes the proof. . This is a new result, have scientific<br /> meaning and tools to prove the problem is<br /> 4. Conclusions<br /> convexificator, currently many scientists are<br /> In reference [2], the author applies bilevel<br /> interested.<br /> programming problem with the function<br /> considered is scalar function in .<br /> <br /> <br /> TÀI LIỆU THAM KHẢO<br /> [1]. Amahroq, T. and Gadhi, N. (2001). On the regularity condition for vector programming problems.<br /> Journal of global optimization, 21, 435 - 443.<br /> [2]. Babahadda, H and Gadhi, N. (2006). Necessary optimality conditions for bilevel optimization<br /> problems using convexificators. Journal of Global Optimization, 34, 535 - 549.<br /> [3]. Dempe, S. (1997). First- order necessary optimality conditions for general bilevel programming<br /> problems. Journal of optimization theory and applications, 95, 735 - 739.<br /> [4]. Jeyakumar, V., Luc, D. T. (1999). Nonsmooth calculus, minimality and monotonicity of<br /> convexificators. J. Optim. Theory Appl. 101, 599 - 612.<br /> <br /> <br /> <br /> <br /> Thông tin tác giả: Ngày nhận bài: 19/8/2019<br /> 1. Trần Thị Mai Ngày nhận bản sửa: 28/8/2019<br /> - Đơn vị công tác: Trường ĐH Kinh tế & QTKD Ngày duyệt đăng: 25/09/2019<br /> - Địa chỉ email: tranthimai879@gmail.com<br /> 2. Phạm Thị Linh<br /> - Đơn vị công tác: Trường ĐH Kinh tế & QTKD<br /> <br /> <br /> <br /> 14<br />
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2