Chuyên mục: Thông tin & Trao đổi - TẠP CHÍ KINH TẾ & QUẢN TRỊ KINH DOANH SỐ 10 (2019)<br />
<br />
ĐIỀU KIỆN CẦN TỐI ƯU CHO BÀI TOÁN TỐI ƯU HAI CẤP<br />
<br />
<br />
Trần Thị Mai1, Phạm Thị Linh2<br />
<br />
<br />
Tóm tắt<br />
Bài toán tối ưu hai cấp đang hấp dẫn các nhà khoa học nghiên cứu do ý nghĩa khoa học và tính ứng<br />
dụng rộng rãi của bài toán trong thực tế. Tối ưu hai cấp xuất hiện trên sách báo, tạp chí thường có liên<br />
quan đến các hệ thống phân cấp. Bài toán tối ưu hai cấp bao gồm hai bài toán tối ưu, trong đó một<br />
phần dữ liệu của bài toán thứ nhất được xác định ẩn thông qua nghiệm của bài toán thứ hai. Người ra<br />
quyết định ở mỗi cấp cố gắng tối ưu hóa (cực tiểu hay cực đại) hàm mục tiêu riêng của cấp mình mà<br />
không để ý tới mục tiêu của cấp kia, nhưng quyết định của mỗi cấp lại ảnh hưởng tới giá trị mục tiêu<br />
của cả hai cấp và tới không gian quyết định nói chung. Mô hình toán học của bài toán tối ưu hai cấp<br />
cùng với công cụ dưới vi phân suy rộng dùng để thiết lập điều kiện tối ưu cho bài toán được chúng tôi<br />
trình bày trong bài báo này.<br />
Từ khóa: Bài toán, bài toán hai cấp, dưới vi phân suy rộng, nghiệm, tối ưu.<br />
NECESSARY CONDITIONS FOR BILEVEL OPTIMIZATION PROBLEM<br />
Abstract<br />
Bilevel optimzation is attracting scientists due to its scientific significance and wide applicability in<br />
practice. The bilevel programming in books and magazines is often related to hierarchies. The bilevel<br />
optimzation includes two optimal problems, in which a part of the data of the first problem is identified<br />
through the solution of the second problem. The decision maker at each level tries to optimize<br />
(minimum or maximum) the function of his own level without paying attention to the goal of the other<br />
level but the decision of each level affects the target value of both levels and the decision space in<br />
general. The math model of bilevel optimzation along with the convexificator tool used to establish<br />
optimal conditions for the problem is presented in this paper.<br />
Keywords: Problem, bilevel programming, convexificator, solution, optimization.<br />
JEL classification: C; C02<br />
1. Introduction Mathetical model of bilevel programmimg<br />
Bilevel programming is arising from problem ( P) in this paper is a sequence of two<br />
actual needs such as: Problem of socio-economic optimization problems in which the feasible<br />
development planning for a territory or a region of upper-level problem ( P1 ) is<br />
country. Inside, the upper-level is the state that<br />
determined implicitly by the solutions set of the<br />
controls policies such as tariffs, exchange rate,<br />
import quota… with the aim of creating more lower-level problem ( P2 ) . It may be given as<br />
jobs, minor resource usage… Lower-level are the follows:<br />
companies with the goal of maximizing income <br />
Min F ( x, y )<br />
with the constraints on superiors' policies. Or, ( P1 ) : <br />
resource allocation problem at a firm or a subject to : G( x, y) 0, y S ( x);<br />
<br />
company with management decentralization. Where, for each x X , S ( x) is the<br />
Inside, the upper echelon plays a central role in solution set of the following parametric<br />
providing resources (capital, supplies and labor) optimization problem:<br />
aiming to maximize the company's profits. Min f ( x, y)<br />
<br />
Lower-level are factories producing products in ( P2 ) : where,<br />
different locations, decide the ratio, own <br />
subject to : g ( x , y ) 0,<br />
production output to maximize the performance<br />
of their units.<br />
<br />
<br />
10<br />
Chuyên mục: Thông tin & Trao đổi - TẠP CHÍ KINH TẾ & QUẢN TRỊ KINH DOANH SỐ 10 (2019)<br />
<br />
<br />
F ( F1 ,..., Fm ) : n1<br />
n2<br />
m<br />
, upper and lower convexificators of f at x .<br />
f: n1<br />
n2<br />
, Proposition 2.1 ([4]) Suppose that the<br />
function f :X admits an upper<br />
G (G1 ,..., Gm2 ) : n1<br />
n2<br />
m2<br />
<br />
convexificator * f ( x ) at x X . If f attains<br />
and g ( g1 ,..., gm1 ) : <br />
n1 n2 m1<br />
; ni<br />
its minimum at x then: 0 clconv * f ( x )<br />
mi , i 1, 2 are integers, with ni 1, mi 0. where cl and conv indicate the weakl* closure<br />
Whenever m1 0 or m2 0, this means that and convex hull, respectively.<br />
the corresponding inequality constraint is absen Proposition 2.2 ([4]) Suppose that the<br />
in the ( P) . function f ( f1 , f 2 ,.... f n ) be a continuous<br />
p n<br />
Within the scope of the article, we using function from to and g be continuous<br />
convexificator for establishing necessary function from n<br />
to . Suppose that, for each<br />
condition with optimal solution to the ( P) in<br />
i 1,..., n , fi admits a bounded convexificator<br />
finite dimensional space.<br />
2. Preliminaries * fi ( x ) and g admits a bounded convexifi-cator<br />
Let X be a Banach space, X * topological * g ( x ) at x . For each i 1,..., n if * fi ( x )<br />
dual of X , x X . We recall some notions on and * g ( x ) are upper semiconti-nuos at x then<br />
convexificators in [4].<br />
the set:<br />
Definition 2.1 [4] The lower (upper) Dini<br />
* ( f g )( x ) * g ( f ( x ))(* f1 ( x ),..., * f n ( x ))<br />
directional derivatives of f : X <br />
is a convexificator of f g at x .<br />
at x X in a direction X is defined as We shall begin with establishing necessary<br />
f ( x t ) f ( x)<br />
f d ( x; ) lim inf optimality condition for optimal solutions of<br />
t 0 t bilevel programming problem.<br />
f ( x t ) f ( x) 3. Optimality condition<br />
resp., f d ( x; ) limsup<br />
<br />
.<br />
t 0 t A pair ( x , y ) is said to be optimal solution<br />
In case f d ( x; ) f d ( x; ) their common<br />
<br />
to the ( P) if it is an optimal solution to the<br />
value is defined by f ' ( x; ) which is called Dini following problem: Min ( x , y )S F ( x, y) where,<br />
derivative of f in the direction . The function<br />
S x , y n1<br />
n2<br />
: G( x, y) 0; y S ( x).<br />
f is called Dini differentiable at x its Dini<br />
According to Stephane Dempe [3], ( P) can be<br />
derivative at x exists in all diretions.<br />
Definition 2.2 ([4]) The function replaced by ( P* ) : Min F ( x, y ),<br />
<br />
f :X is said to have an upper subject to:<br />
G( x, y) 0, g ( x, y) 0; f ( x, y) V ( x) 0<br />
(lower) convexificator * f ( x) at x if<br />
với ( x, y) n1<br />
n2<br />
.<br />
* f ( x) X * (* f ( x) X * ) is weakly*<br />
Luderer (1983) has proved that the problem<br />
closed, and for all X ,<br />
( P* ) has an optimal solutions, where<br />
f ( x, ) sup<br />
<br />
x ,*<br />
d<br />
x** f ( x ) V ( x) min f ( x, y) : g ( x, y) 0, y n2<br />
.<br />
y<br />
<br />
resp., f ( x, ) inf x* , Assumption 3.1 Dempe [2] has proved that<br />
<br />
<br />
d<br />
x** f ( x ) under the following hypotheses<br />
A weakly* closed set * f ( x) X * is said ( H1 ),( H 2 ),( H3 ), the problem ( P) has at lest<br />
to have a convexificator of f at x if it is both one optimal solution.<br />
<br />
<br />
11<br />
Chuyên mục: Thông tin & Trao đổi - TẠP CHÍ KINH TẾ & QUẢN TRỊ KINH DOANH SỐ 10 (2019)<br />
<br />
(H1): F (.,.), f (.,.), g (.,.) and G(.,.) are m<br />
<br />
<br />
lower semicontinuos (l.s.c) on n1 n2 ;<br />
, , 1 and k 1;<br />
k 1<br />
<br />
(H2): V (.,.) is upper semicontinuos (u.s.c) on m1 m2<br />
<br />
i gi ( x , y ) 0 and j G j ( x , y ) 0;<br />
n1<br />
; i 1 j 1<br />
m<br />
(H3): The problem ( P* ) has at least one<br />
(0, 0) cl{ k conv Fk ( x , y ) <br />
*<br />
<br />
<br />
feasible solution, there exists * c such k 1<br />
m1<br />
<br />
M {(x, y ) n1<br />
n2<br />
: G ( x, y ) 0, m 1[ conv * f k ( x , y ) i conv * g i ( x , y )<br />
as: i 1<br />
g ( x, y ) 0, F ( x, y ) c} m2<br />
j conv *G j ( x , y ) (*V ( x ) {0}]}, (1)<br />
is not empty and bounded. j 1<br />
Definition 3.1 [1] The problem ( P) is said where,<br />
to be regular at ( x , y ) if there exists a *V ( x ) conv {* f (., y )( x ) : y J ( x )}<br />
<br />
neighborhood U of ( x , y ) and , 0 such J ( x ) {y <br />
n2<br />
: g ( x , y) 0; f ( x , y) V ( x )}.<br />
that If in addition to the above assumptions, the<br />
( , ) m1<br />
m1<br />
; ( x, y) U ; problem (P) is regular at ( x , y ) one has<br />
<br />
x*g co g ( x, y ); xG* co G ( x, y ); k 0, k 1, m.<br />
x*f co f ( x, y ); xV* *V ( x) {0}; Proof<br />
A ccording to Stephane Dempe [3], ( P)<br />
X<br />
can be replaced by ( P* ) : Min F ( x, y),<br />
such that<br />
g ( x, y) G( x, y) ( x*g , xG* x*f xV* , ) 0. subject to:<br />
<br />
Theorem 3.1 Let ( x , y ) is a solution of ( P) . G( x, y) 0, g ( x, y) 0; f ( x, y) V ( x) 0<br />
Suppose that, there exists a neigh-borhood with ( x, y) n1<br />
n2<br />
.<br />
U X at ( x , y ) such that the functions Applying the scalarization theorem by<br />
F , f , g , G are continuous on U and admits Gong (2010, Theorem 3.1) to Problem ( P* )<br />
bounded convexificators. yields the existence of a continuous positively<br />
* F ( x , y ); * f ( x , y ); * g ( x , y ); *G( x , y ) homogeneous subadditive function on m<br />
<br />
at ( x , y ) . satisfying<br />
Assume that: y2 y1 int m<br />
( y2 ) ( y1)<br />
F; f ;<br />
* *<br />
and : ( F )( x, y) 0, ( x, y) M<br />
g; G<br />
* *<br />
Hence, ( x , y ) is a minimum of the<br />
are upper semicontinuos at ( x , y ) . following scalars optimization Problem (MP):<br />
Then, there exists scalars 1 , 2 ,..., m1 Min ( F )( x, y),<br />
0 and vector subject to:<br />
1 ,..., m 1<br />
m1<br />
; G( x, y) 0, g ( x, y) 0; f ( x, y) V ( x) 0<br />
1 ,...,m with ( x, y) <br />
m2 n1 n2<br />
such that: .<br />
2<br />
<br />
Luderer (1983) has proved that the problem<br />
(MP) has an optimal solutions, where<br />
V ( x) min f ( x, y) : g ( x, y) 0, y n2<br />
.<br />
y<br />
<br />
Taking account of Theorem 1 in Bard<br />
<br />
12<br />
Chuyên mục: Thông tin & Trao đổi - TẠP CHÍ KINH TẾ & QUẢN TRỊ KINH DOANH SỐ 10 (2019)<br />
<br />
(1984) to the scalars problem (MP) yields the zn cl{ C (0)(* F ( x , y )1 ,..., * F ( x , y ) m )<br />
exists , 1 , 0 and vector m1 m2<br />
1[ i conv gi ( x , y ) j conv *G j ( x , y )<br />
1 ,..., m <br />
*<br />
<br />
1<br />
m1<br />
; 1 ,...,m2 m2<br />
i 1 j 1<br />
<br />
such that conv f ( x , y ) ( V ( x ) {0})]},<br />
* *<br />
(4)<br />
, , 1 and 1 1 such that limn zn 0. By (4), there exists a<br />
<br />
m1 m2<br />
sequence { n } C (0) <br />
<br />
m<br />
i g i ( x , y ) 0 and jG j ( x , y ) 0 such as<br />
i 1 j 1<br />
zn cl{ n (* F ( x , y )1 ,..., * F ( x , y ) m )<br />
(0,0) cl{ conv ( F )( x , y )<br />
*<br />
<br />
m1 m2<br />
m m<br />
[ 1 conv * g ( x , y ) 2 conv *G ( x , y ) 1[ i conv * gi ( x , y ) j conv *G j ( x , y )<br />
1 i 1<br />
i i j 1<br />
j j i 1 j 1<br />
<br />
conv f ( x , y ) ( V ( x ) {0})]}<br />
* *<br />
(2) conv f ( x , y ) ( V ( x ) {0})]},<br />
* *<br />
(5)<br />
where, Since C (0) is a compact set in m<br />
, we can<br />
*V ( x ) conv {* f (., y)( x ) : y J ( x )} assume that n C (0) . Putting<br />
<br />
J ( x ) {y : g ( x , y ) 0; f ( x , y ) V ( x )}. . one has (1 ,..., m ). <br />
n2 m<br />
. It<br />
follows from (5), we have<br />
We now check hypotheses of a chain rule<br />
(0,0) cl{ (* F ( x , y )1 ,..., * F ( x , y ) m )<br />
by Jeyakumar-Luc ([4], Prop 5.1) to the m1 m2<br />
composite function ( F )( x, y) . Since the 1[ i conv * gi ( x , y ) j conv *G j ( x , y )<br />
function is continuous convex, we can apply<br />
i 1 j 1<br />
<br />
<br />
Proposition 2.2.6 trong Clarke (1983) to deduce conv f ( x , y ) ( V ( x ) {0})]},<br />
* *<br />
(6)<br />
that it is locally Lipschitz.Hence, its Sine (1 ,..., m ), putting 1 m1 , by<br />
subdifferential C ( F ( x, y)) is abounded virtue of (6), its holds that<br />
convexificator of at F ( x , y ) 0. Since m<br />
(0, 0) cl{ k conv * Fk ( x , y )<br />
function is convex and locally Lipschitz, k 1<br />
<br />
Proposition 7.3.9 trong Schirotzek (2007) was m1<br />
<br />
poined that: m1[ i conv * gi ( x , y )<br />
i 1<br />
C ( F( x , y ) ( x , y )) ( F( x , y ) ( x , y )). m2<br />
<br />
Moreover, due to Proposition 2.2, we have j conv *G j ( x , y ) conv * f ( x , y )<br />
j 1<br />
C ( F( x , y ) ( x , y ))(* F ( x , y )1 ,..., * F ( x , y )m )<br />
(*V ( x ) {0})]},<br />
is a convexificator of ( F )( x , y ) at ( x , y ).<br />
which implies (6).<br />
It follows from (2), we obtain<br />
Let us see that<br />
(0, 0) cl{ C ( F( x , y ) ( x , y ))(* F ( x , y )1 ,...,<br />
i m<br />
\{0}(i 1,..., m) . Since 0, we<br />
m1<br />
* F ( x , y ) m ) 1[ i conv * gi ( x , y ) just need to prove m<br />
\{0}. Indeed, for<br />
i 1<br />
m2<br />
any it can be written 0 ( y) int m<br />
. We<br />
j conv G j ( x , y ) conv f ( x , y )<br />
* *<br />
have<br />
j 1<br />
, y , F( x , y ) ( x , y ) y F( x , y ) ( x , y )<br />
(*V ( x ) {0})]}. (3)<br />
( F( x , y ) ( x , y ) y ) ( F( x , y ) ( x , y )<br />
Since F( x , y ) ( x , y ) 0 , it follows from (3) that<br />
( y ) P(0) 0.<br />
there exists a sequence<br />
Consequently, m<br />
\{0}, and so, it can<br />
<br />
13<br />
Chuyên mục: Thông tin & Trao đổi - TẠP CHÍ KINH TẾ & QUẢN TRỊ KINH DOANH SỐ 10 (2019)<br />
<br />
m m 1 In our article, the optimal condition of the<br />
be assumed that k 1 . Hence,<br />
k 1<br />
<br />
k 1<br />
k 1, problem is established for function vector in<br />
m<br />
which completes the proof. . This is a new result, have scientific<br />
meaning and tools to prove the problem is<br />
4. Conclusions<br />
convexificator, currently many scientists are<br />
In reference [2], the author applies bilevel<br />
interested.<br />
programming problem with the function<br />
considered is scalar function in .<br />
<br />
<br />
TÀI LIỆU THAM KHẢO<br />
[1]. Amahroq, T. and Gadhi, N. (2001). On the regularity condition for vector programming problems.<br />
Journal of global optimization, 21, 435 - 443.<br />
[2]. Babahadda, H and Gadhi, N. (2006). Necessary optimality conditions for bilevel optimization<br />
problems using convexificators. Journal of Global Optimization, 34, 535 - 549.<br />
[3]. Dempe, S. (1997). First- order necessary optimality conditions for general bilevel programming<br />
problems. Journal of optimization theory and applications, 95, 735 - 739.<br />
[4]. Jeyakumar, V., Luc, D. T. (1999). Nonsmooth calculus, minimality and monotonicity of<br />
convexificators. J. Optim. Theory Appl. 101, 599 - 612.<br />
<br />
<br />
<br />
<br />
Thông tin tác giả: Ngày nhận bài: 19/8/2019<br />
1. Trần Thị Mai Ngày nhận bản sửa: 28/8/2019<br />
- Đơn vị công tác: Trường ĐH Kinh tế & QTKD Ngày duyệt đăng: 25/09/2019<br />
- Địa chỉ email: tranthimai879@gmail.com<br />
2. Phạm Thị Linh<br />
- Đơn vị công tác: Trường ĐH Kinh tế & QTKD<br />
<br />
<br />
<br />
14<br />