Giải bài toán tìm cực trị của hàm nhiều biến có điều kiện ràng buộc cân bằng với công cụ toán sơ cấp và toán cao cấp
lượt xem 3
download
Bài viết dưới đây giới thiệu cách giải bài toán tìm cực trị của hàm nhiều biến có ràng buộc điều kiện cân bằng với công cụ toán sơ cấp và toán cao cấp. Qua đó, cho chúng ta thấy được điểm mạnh của toán cao cấp cũng như “vẽ đẹp” của toán sơ cấp. Mời các bạn tham khảo!
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Giải bài toán tìm cực trị của hàm nhiều biến có điều kiện ràng buộc cân bằng với công cụ toán sơ cấp và toán cao cấp
- KỶ YẾU HOẠT ĐỘNG KHOA HỌC & GIÁO DỤC TRƯỜNG ĐH KIẾN TRÚC ĐÀ NẴNG 10/2021 GIẢI BÀI TOÁN TÌM CỰC TRỊ CỦA HÀM NHIỀU BIẾN CÓ ĐIỀU KIỆN RÀNG BUỘC CÂN BẰNG VỚI CÔNG CỤ TOÁN SƠ CẤP VÀ TOÁN CAO CẤP ThS. Lê Xuân Hòa* Tóm tắt Giới thiệu. Cực trị của hàm nhiều biến có ràng buộc điều kiện cân bằng là kiến thức trọng tâm trong học phần Toán cao cấp dành cho kinh tế, có nhiều ứng dụng trong việc giải quyết các bài toán tìm giá trị lớn nhất và giá trị nhỏ nhất. Bài viết dưới đây giới thiệu cách giải bài toán tìm cực trị của hàm nhiều biến có ràng buộc điều kiện cân bằng với công cụ toán sơ cấp và toán cao cấp. Qua đó, cho chúng ta thấy được điểm mạnh của toán cao cấp cũng như “vẽ đẹp” của toán sơ cấp. Nội dung bài toán. Tìm cực trị của hàm w = f (x1; x2; … ; xn) (1); thỏa mãn điều kiện ràng buộc cân bằng g(x1; x2; … ; xn) = b (2). (x1; x2; … ; xn): gọi là biến chọn (hay là biến quyết định); w: là biến mục tiêu; f: hàm mục tiêu; g(x1; x2; … ; xn) = b là phương trình ràng buộc. I. Kiến thức cơ sở: 1. Bất đẳng thức Cauchy cho n số không âm. Cho n số không âm a1 ≥ 0; a2 ≥ 0; …; an ≥ 0; Khi đó, ta có a1 a2 ... an n a1.a2 ....an ; dấu = xảy ra khi a1 = a2 = … = an . n 2. Bất đẳng thức Bunhiacôpxki Cauchy Schwartz (BCS). Cho 2 bộ n số (a1; a2; … ; an) , (x1; x2; … ; xn), ta có: a1x1 a2 x2 ... an xn a12 a22 ... an2 . x12 x22 ... xn2 ; dấu = xảy ra khi 2 a1 a2 a ... n . x1 x2 xn 3. Phương pháp nhân tử Lagrange. Ở đây chúng tôi trình bày tóm tắt phương pháp nhân tử Lagrange đối với hàm 2 biến và hàm 3 biến. 3.1. Đối với hàm 2biến. Tìm cực trị của f(x; y), thỏa mãn điều kiện g(x; y) = b. Lập hàm Lagrange F = f (x; y) + .(g(x; y) b); : gọi là nhân tử Lagrange. * Tổ KHTN, Trường Đại học Kiến trúc Đà Nẵng 67
- 10/2021 KỶ YẾU HOẠT ĐỘNG KHOA HỌC & GIÁO DỤC TRƯỜNG ĐH KIẾN TRÚC ĐÀ NẴNG Fx/ 0 Xét hệ phương trình: Fy/ 0 (*) F / 0 Nếu hệ (*) vô nghiệm thì f (x; y) với điều kiện (2) là không có cực trị. Nếu hệ (*) có nghiệm (x0; y0; 0) ta gọi là các điểm dừng. g g 2 F 2 F 2 F 2 F Tính ; ; ; ; ; . x y x 2 xy yx y 2 Xét tại điểm dừng (x0; y0; 0). 0 g1 g 2 Lập ma trận D như sau: D g1 a11 a12 , với g 2 a21 a22 g g 2 F 2 F g1 x0 ; y0 ; 0 ; g2 x0 ; y0 ; 0 ; a11 2 x0 ; y0 ; 0 ; a12 x0 ; y0 ; 0 x y x xy 2 F 2 F a21 x0 ; y0 ; 0 ; a22 2 x0 ; y0 ;0 yx y Để ý rằng D là ma trận đối xứng. Nếu D > 0 thì điểm (x0; y0) là điểm cực đại. D < 0 thì điểm (x0; y0) là điểm cực tiểu. Và nếu D = 0 thì ta chưa có kết luận gì về điểm dừng (x0; y0; 0). 3.2. Đối với hàm 3biến. Tìm cực trị của f(x; y; z), thỏa mãn điều kiện g(x; y; z) = b. Lập hàm Lagrange F = f (x; y; z) + .(g(x; y; z) b); : gọi là nhân tử Lagrange. Fx/ 0 / F 0 Xét hệ phương trình: y/ (*) Fz 0 F/ 0 Nếu hệ (*) vô nghiệm thì f (x; y; z) với điều kiện (2) là không có cực trị. Nếu hệ (*) có nghiệm (x0; y0; z0; 0) ta gọi là các điểm dừng. g g g 2 F 2 F 2 F 2 F 2 F 2 F 2 F 2 F 2 F Tính ; ; ; ; ; ; ; ; ; ; ; . x y z x 2 xy xz yx y 2 yz zx zy z 2 68
- KỶ YẾU HOẠT ĐỘNG KHOA HỌC & GIÁO DỤC TRƯỜNG ĐH KIẾN TRÚC ĐÀ NẴNG 10/2021 Xét tại điểm dừng (x0; y0; z0; 0). 0 g1 g1 g1 g a a13 Lập ma trận H như sau: H 1 11 a12 , với g1 a21 a22 a23 g1 a31 a32 a33 g g g g1 x0 ; y0 ; z0 ; 0 ; g 2 x0 ; y0 ; z0 ; 0 ; g3 x0 ; y0 ; z0 ; 0 x y z 2 F 2 F 2 F a11 x ; y ; z ; ; a x ; y ; z ; ; a x0 ; y0 ; z0 ; 0 x 2 xy xz 0 0 0 0 12 0 0 0 0 13 2 F 2 F 2 F a21 x0 ; y0 ; z0 ; 0 ; a22 2 x0 ; y0 ; z0 ; 0 ; a23 x0 ; y0 ; z0 ; 0 yx y yz 2 F 2 F 2 F a31 x0 ; y0 ; z0 ; 0 ; a32 x0 ; y0 ; z0 ; 0 ; a33 2 x0 ; y0 ; z0 ; 0 zx zy z Xét Dk là các định thức con chính cấp k+1 của H. Nếu (1)kDk > 0 với mọi k = 1; 2; 3 (tức là nếu D1 < 0, D2 > 0, D3 = det(H) < 0) thì hàm số đạt cực đại tại (x0; y0; z0); Nếu Dk < 0 với mọi k = 1; 2; 3 thì hàm số đạt cực tiểu tại (x0; y0; z0). II. Các bài toán minh họa. Trong phần lời giải, cách 1 là giải bằng cách dùng phương pháp nhân tử Lagrange, cách 2 là dùng công cụ toán sơ cấp. Bài 1 (Ví dụ 1, trang 35, [1]). Tìm cực trị của hàm số f(x; y) = x2 + y2 (1) với điều kiện ràng buộc cân bằng ax + by + c = 0 (2). Lời giải. Cách 1. Lập hàm Lagrange F(x; y; ) = x2 + y2 + ( ax + by + c). ac x 2 2 x0 Fx/ 2 x a 0 a b bc Xét hệ phương trình Fy/ 2 y a 0 y 2 y0 . F / ax by c 0 a b2 2c a 2 b 2 0 69
- 10/2021 KỶ YẾU HOẠT ĐỘNG KHOA HỌC & GIÁO DỤC TRƯỜNG ĐH KIẾN TRÚC ĐÀ NẴNG g g 2 F 2 F 2F 2F Tính a; b; 2; 0; 0; 2. x y x 2 xy yx y 2 Xét tại điểm dừng (x0; y0; 0). 0 a b Lập ma trận đối xứng D a 2 0 2 a 2 b 2 0 b 0 2 c2 ac bc Kết luận.Hàm số đạt cực tiểu bằng 2 tại điểm 2 2 ; 2 2 . a b 2 a b a b Cách 2. Từ (2): ax + by = c c2 = (ax + by)2 ≤ (a2 + b2 ). (x2 + y2 ) c2 c2 a b x2 y 2 hay f ( x; y ) ; dấu = xảy ra khi (3) a b 2 2 a b 2 2 x y ac bc Từ (2), (3) x ; y 2 . a b 2 2 a b2 c2 ac bc KL. Hàm số đạt cực tiểu bằng 2 tại điểm 2 2 ; 2 2 . a b 2 a b a b Bài 2 (Ví dụ 2, trang 237 [3]). Tìm cực trị của hàm số f(x; y) = 8x + 15y + 28 (1) với điều kiện ràng buộc cân bằng 2x2 + 3y2 = 107 (2). Lời giải. Cách 1. Lập hàm Lagrange F(x; y; ) = 8x + 15y + 28 + (2x2 + 3y2 107). Fx/ 8 4 x 0 x 4 x1 x 4 x2 Xét hệ phương trình Fy/ 15 6 y 0 y 5 y1 y 5 y2 . F / 2 x 2 3 y 2 107 0 1 1 1 2 2 2 g g 2 F 2 F 2 F 2 F Tính 4x ; 6y; 4 ; 0; 0; 6 . x y x 2 xy yx y 2 Xét tại điểm dừng (x1; y1; 1). 70
- KỶ YẾU HOẠT ĐỘNG KHOA HỌC & GIÁO DỤC TRƯỜNG ĐH KIẾN TRÚC ĐÀ NẴNG 10/2021 0 16 30 Định thức đối xứng D 16 2 0 0 Hàm số đạt cực đại tại điểm (4; 5) và giá trị cực 30 0 3 đại bằng 135. Xét tại điểm dừng (x2; y2; 2). 0 16 30 Định thức đối xứng D 16 2 0 0 Hàm số đạt cực tiểu tại điểm (4; 5) và 30 0 3 giá trị cực đại bằng 79. 2 Cách 2. Ta có 8 x 15 y 2 8 2 2.x 15 3 3. y 32 75 . 2 x 2 3 y 2 107 2 79 ≤ 8x + 15y + 28 ≤ 135 hay 79 ≤ f(x; y) ≤ 135 x y dấu = xảy ra khi (3) 4 5 Từ (2), (3) x = 4, y = 5 và x = 4; y = 5. KL. Hàm số đạt cực tiểu bằng 79 tại điểm (4; 5); đạt cực đại bằng 135 tại điểm (4; 5). Bài 3 (Ví dụ, trang 243 [3]). Tìm cực trị của hàm số f(x; y; z) = x + y + z (1) với điều kiện ràng buộc cân bằng x.y.z = 8 (2). Lời giải. Cách 1. Lập hàm Lagrange F(x; y; z; ) = x + y + z + (x.y.z 8). x 2 x1 Fx/ 1 yz 0 / y 2 y1 Fy 1 xz 0 Xét hệ phương trình / z 2 z1 . Fz 1 xy 0 F/ xyz 8 0 1 1 4 g g g 2F 2F 2F Tính yz ; xz ; xy ; 0; z ; y x y z x 2 xy xz 2 F 2 F 2 F 2 F 2 F 2 F z; 0; x; y ; x ; 0. yx y 2 yz zx zy z 2 Xét tại điểm dừng (x1; y1; z1 ; 1). 71
- 10/2021 KỶ YẾU HOẠT ĐỘNG KHOA HỌC & GIÁO DỤC TRƯỜNG ĐH KIẾN TRÚC ĐÀ NẴNG 0 4 4 4 1 1 4 4 2 2 Lập ma trận đối xứng H 1 1 4 4 2 2 1 1 4 4 2 2 Xét các định thức con chính 0 4 4 0 4 1 D1 16 0; D2 4 0 16 0; D3 det( H ) 12 0 4 0 2 1 4 0 2 Hàm số đạt cực tiểu tại điểm (2; 2; 2) và giá trị cực đại bằng 6. Cách 2. Áp dụng bất đẳng thức Cauchy cho 3 số dương x, y, z, ta có: x y x 3. 3 x. y.z 6 hay f(x; y; z) ≥ 6; dấu = xảy ra khi x = y = z (3) Từ (2), (3) x = y = z = 2. KL. Hàm số đạt cực tiểu bằng 6 tại điểm (2; 2; 2). Bài 4 (Bài tập số 13, trang 256 [3]). Tìm cực trị của hàm số f(x; y; z) = 5x + 4y + 3z (1) với điều kiện ràng buộc cân bằng x2 + 2y2 + 3z2 = 36 (2). Lời giải. Cách 1. Lập hàm Lagrange F(x; y; z; ) = 5x + 4y + 3z + (x2 + 2y2 + 3z2 36) x 5 x1 x 5 x2 Fx/ 5 2 x 0 y2 y y 2 y Fy 4 4 y 0 / 1 2 Xét hệ phương trình z 1 z z 1 z . Fz/ 3 6 z 0 1 2 F/ x 2 2 y 2 3z 2 36 0 1 1 1 2 2 2 g g g 2 F 2F 2F Tính 2x ; 4y; 6z ; 2 ; 0; 0 x y z x 2 xy xz 72
- KỶ YẾU HOẠT ĐỘNG KHOA HỌC & GIÁO DỤC TRƯỜNG ĐH KIẾN TRÚC ĐÀ NẴNG 10/2021 2 F 2 F 2 F 2 F 2 F 2 F 0; 4 ; 0; 0; 0; 6 . yx y 2 yz zx zy z 2 Xét tại điểm dừng (x1; y1; z1 ; 1). 0 10 8 6 10 1 0 0 Lập ma trận đối xứng H 8 0 2 0 6 0 0 3 Xét các định thức con chính, có D1 < 0, D2 > 0, D3 = det(H) < 0 Hàm số đạt cực đại tại điểm (5; 2; 1) và giá trị cực đại bằng 36. Xét tại điểm dừng (x2; y2; z2 ; 2). 0 10 8 6 10 1 0 0 Lập ma trận đối xứng H 8 0 2 0 6 0 0 3 Xét các định thức con chính, có D1 < 0, D2 < 0, D3 = det(H) < 0 Hàm số đạt cực tiểu tại điểm (5; 2; 1) và giá trị cực đại bằng 36. Cách 2. Ta có 2 5 x 4 y 3z 2 5 x 4 2 2. y 3 3.z 36 . x 2 2 y 2 3z 2 36 2 36 ≤ 5x + 4y + 3z ≤ 36 hay 36 ≤ f(x; y; z) ≤ 36 x y dấu = xảy ra khi z (3) 5 2 Từ (2), (3) x = 5; y = 2; z = 1 và x = 5; y = 2; z = 1. KL. Hàm số đạt cực tiểu bằng 36 tại điểm (5; 2; 1); đạt cực đại bằng 36 tại điểm (5; 2; 1). Bài 5 (Bài tập số 14, trang 256 [3]). Tìm cực trị của hàm số f(x; y; z) = x.y2.z3 (1) với điều kiện ràng buộc cân bằng x + 2y + 3z = 18 (2). Lời giải. Cách 1. Lập hàm Lagrange F(x; y; z; ) = x.y2.z3 + (x + 2y + 3z 18) 73
- 10/2021 KỶ YẾU HOẠT ĐỘNG KHOA HỌC & GIÁO DỤC TRƯỜNG ĐH KIẾN TRÚC ĐÀ NẴNG Fx/ y 2 z 3 0 x3 Fy 2 xyz 2 0 y3 / 3 Xét hệ phương trình . Fz 3xy z 3 0 z 3 / 2 3 F/ x 2 y 3z 18 0 243 g g g 2F 2F 2F Tính 1; 2; 3; 0; 2 yz ; 3 3 y2 z2 x y z x 2 xy xz 2 F 2 F 2 F 2 F 2 F 2 F 2 yz 3 ; 2 xz 3 ; 6 xyz 2 ; 3 y 2 2 z ; 6 xyz 2 ; 6 xy 2 z . yx y 2 yz zx zy z 2 Xét tại điểm dừng (3; 3; 3; 243). 0 1 2 3 1 0 162 243 Lập ma trận đối xứng H 2 162 162 486 3 243 486 486 Xét các định thức con chính, có D1 < 0, D2 > 0, D3 = det(H) < 0 Hàm số đạt cực đại tại điểm (3; 3; 3) và giá trị cực đại bằng 729. Cách 2. Áp dụng bất đẳng thức Cauchy, ta có 18 x 2 y 3z x y y z z z 6. 6 x. y 2 .z 3 729 x. y 2 .z 3 hay f(x; y; z) ≤ 729; dấu = xảy ra khi x = y = z = 3. KL. Hàm số đạt cực đại bằng 729 tại điểm (3; 3; 3). Bài 6. Tìm cực trị của hàm f = x4 + y4 + z4 (1) với điều kiện ràng buộc cân bằng xy + yz + zx = 4 (2). Lờigiải. Cách 1. Lập hàm Lagrange F(x; y; z; ) = x4 + y4 + z4 + (xy + yz + zx 4) 2 2 x 3 x1 x 3 x2 Fx/ 4 x3 ( y z ) 0 2 2 / y y1 y y2 Fy 4 y ( z x) 0 3 3 3 Xét hệ phương trình / . Fz 4 z ( x y ) 0 2 3 z 2 z1 z z2 F/ xy yz zx 4 0 3 3 8 8 1 3 3 2 74
- KỶ YẾU HOẠT ĐỘNG KHOA HỌC & GIÁO DỤC TRƯỜNG ĐH KIẾN TRÚC ĐÀ NẴNG 10/2021 g g g 2 F 2 F 2 F Tính y z; z x; x y; 12 x 2 ; ; x y z x 2 xy xz 2 F 2 F 2 F 2 F 2 F 2 F ; 12 y 2 ; ; ; ; 12 z 2 . yx y 2 yz zx zy z 2 Xét tại điểm dừng (x1; y1; z1;1). 4 4 4 0 3 3 3 4 8 8 16 3 3 3 Lập ma trận đối xứng H 4 8 8 16 3 3 3 8 8 16 4 3 3 3 Xét các định thức con chính, có D1 < 0, D2 < 0, D3 = det(H) < 0. 16 2 Hàm số đạt cực tiểu bằng tại điểm x y z . 3 3 Cách 2. Áp dụng bất đẳng thức BCS, ta có 4 xy yz zx x 2 y 2 z 2 x 2 y 2 z 2 x 2 y 2 z 2 và x 2 y 2 z 2 1 2 12 12 x 4 y 4 z 4 3 x 4 y 4 z 4 16 16 2 suy ra x 4 y 4 z 4 hay f ( x; y; z ) ; dấu = xảy ra khi x y z . 3 3 3 16 2 Kết luận. Hàm số đạt cực tiểu bằng tại điểm x y z . 3 3 Kết luận. Qua các bài toán trên cùng với hai cách giải, có thể thấy việc sử dụng một cách “linh hoạt” công cụ toán sơ cấp sẽ cho chúng ta lời giải đẹp, ngắn gọn. Chú ý việc sử dụng công cụ toán sơ cấp cũng chỉ áp dụng cho một lớp các bài toán có hàm mục tiêu và điều kiện ràng buộc cân bằng đơn giản. TÀI LIỆU THAM KHẢO [1]. Trần Lưu Cường; Bài tập toán cao cấp phần II Các ví dụ và bài tập; Trường ĐKBK tp Hồ Chí Minh; 1992. [2]. Lê Đình Thúy; Toán cao cấp dành cho các nhà kinh tế; NXB ĐH kinh tế quốc dân; 2017. 75
CÓ THỂ BẠN MUỐN DOWNLOAD
-
ĐI TÌM CÔNG THỨC TỔNG QUÁT DÃY SỐ
21 p | 882 | 178
-
Một số bài toán giải bằng định lý Lagrange
4 p | 553 | 140
-
Dãy số VMO2009
9 p | 313 | 117
-
SỬ DỤNG TÍNH ĐẲNG CẤP ĐỂ CHỨNG MINH BẤT ĐẲNG THỨC
6 p | 353 | 110
-
Giáo trình toán rời rạc - Bài toán luồng cực đại
15 p | 614 | 55
-
Bài giảng Tối ưu hóa - Chương 3: Bài toán vận tải
17 p | 194 | 20
-
Chuyên đề: Cực trị của một biểu thức
23 p | 156 | 17
-
Đề thi học kì môn giải tích 2
1 p | 172 | 13
-
Ứng dụng giải thuật di truyền cho bài toán điều khiển tối ưu đa mục tiêu
7 p | 122 | 11
-
Bài giảng Tối ưu hóa: Chương 3 - ThS. Nguyễn Công Trí
24 p | 97 | 10
-
Trắc nghiệm toán 12 và thủ thuật Casio giải nhanh: Phần 1
172 p | 55 | 9
-
Bài giảng Thống kê máy tính: Nhắc lại toán Giải tích - Lê Phong
8 p | 63 | 4
-
Tìm giá trị lớn nhất và nhỏ nhất bằng phương pháp dồn biến
6 p | 26 | 3
-
Phương pháp tọa độ giải bài toán cực trị của modul số phức
15 p | 32 | 3
-
Sử dụng tính nguyên tố để giải bài toán cực trị trên tập đối số nguyên
8 p | 40 | 2
-
Giải thuật Chaotic vortex search cho bài toán tối ưu toàn cục
11 p | 31 | 2
-
Đề thi học kì 1 môn Toán cao cấp 1 năm 2021-2022 - Trường Đại học Công nghiệp TP. HCM (Mã đề 8)
2 p | 55 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn