intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Giáo trình hình thành ứng dụng phát triển mã nguồn nguyên lý sử dụng toán tử divergence p3

Chia sẻ: Dfsaf Fasrew | Ngày: | Loại File: PDF | Số trang:10

52
lượt xem
4
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'giáo trình hình thành ứng dụng phát triển mã nguồn nguyên lý sử dụng toán tử divergence p3', công nghệ thông tin, kỹ thuật lập trình phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Giáo trình hình thành ứng dụng phát triển mã nguồn nguyên lý sử dụng toán tử divergence p3

  1. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 7. Ph−¬ng Tr×nh TruyÒn Sãng .d o .d o c u -tr a c k c u -tr a c k B i to¸n SH1b Cho c¸c miÒn D = 3+ , H = D × 3+ v h m p ∈ C(3+, 3) T×m h m u ∈ C(H, 3) tho¶ m n ph−¬ng tr×nh truyÒn sãng ∂2u ∂2u = a2 2 víi (x, t) ∈ H0 ∂t 2 ∂x ®iÒu kiÖn ban ®Çu ∂u u(x, 0) = 0, (x, 0) = 0 ∂t v ®iÒu kiÖn biªn u(0, t) = p(t) • KiÓm tra trùc tiÕp h m x x u(x, t) = η(t - )p(t - ) (7.6.2) a a l nghiÖm cña b i to¸n SH1b. B i to¸n SH1 Cho c¸c miÒn D = 3+ , H = D × 3+ , c¸c h m f ∈ C(H, 3), g, h ∈ C(D, 3), p ∈ C(3+, 3) T×m h m u ∈ C(H, 3) tho¶ m n ph−¬ng tr×nh truyÒn sãng ∂2u ∂2u = a2 2 + f(x, t) víi (x, t) ∈ H0 ∂t 2 ∂x ®iÒu kiÖn ban ®Çu ∂u u(x, 0) = g(x), (x, 0) = h(x) ∂t v ®iÒu kiÖn biªn u(0, t) = p(t) • T×m nghiÖm cña b i to¸n SH1 d−íi d¹ng u(x, t) = ua(x, t) + ub(x, t) trong ®ã uα(x, t) l nghiÖm cña b i to¸n SH1α. KÕt hîp c¸c c«ng thøc (7.6.1) v (7.6.2) suy ra c«ng thøc sau ®©y. x + at x + at x + aτ 1 ∂  t  g 1 (ξ)dξ + ∫ h 1 (ξ)dξ + ∫ dτ ∫ f 1(ξ, t − τ)dξ   ∂t ∫ u(x, t) =  2a  x − at  x − at x − aτ 0 x x + η(t - )p(t - ) (7.6.3) a a §Þnh lý Cho c¸c h m f ∈ C(H, 3), g ∈ C2(D, 3), h ∈ C1(D, 3) v p ∈ C2(3+, 3) tho¶ g(0) = 0, h(0) = 0 v f(0, t) = 0 B i to¸n SH1 cã nghiÖm duy nhÊt v æn ®Þnh x¸c ®Þnh theo c«ng thøc (7.6.3) víi f1, g1 v h1 t−¬ng øng l kÐo d i lÎ cña c¸c h m f, g v h lªn to n 3. . Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 125
  2. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 7. Ph−¬ng Tr×nh TruyÒn Sãng .d o .d o c u -tr a c k c u -tr a c k ∂2u ∂2u = 4 2 + 2xt víi (x, t) ∈ 3+×3+ VÝ dô Gi¶i b i to¸n ∂t 2 ∂x ∂u u(x, 0) = sinx, (x, 0) = 2x ∂t u(0, t) = sint Do c¸c h m f, g v h l h m lÎ nªn c¸c h m kÐo d i lÎ f1 = f, g1 = g v h1 = h. Thay v o c«ng thøc (7.6.3) chóng ta cã x+2t x +2t x+2 τ 1 ∂  t x x  sin ξdξ + ∫ 2ξdξ + ∫ dτ ∫ 2(t − τ)ξdξ  + η(t - )sin(t - ) ∫2 t u(x, t) = 4  ∂t x −  2 2   x −2 t x −2 τ 0 x x 13 xt + η(t - )sin(t - ) víi (x, t) ∈ 3+× 3+ = sinxcos2t + 2xt + 6 2 2 NhËn xÐt Ph−¬ng ph¸p trªn cã thÓ sö dông ®Ó gi¶i c¸c b i to¸n gi¶ Cauchy kh¸c. §7. B i to¸n hçn hîp thuÇn nhÊt B i to¸n HH1a Cho c¸c miÒn D = [0, l], H = D × [0, T] v c¸c h m g, h ∈ C(D, 3) T×m h m u ∈ C(H, 3) tho¶ m n ph−¬ng tr×nh truyÒn sãng ∂2u ∂2u = a2 2 víi (x, t) ∈ H0 (7.7.1) ∂t 2 ∂x ®iÒu kiÖn ban ®Çu ∂u u(x, 0) = g(x), (x, 0) = h(x) (7.7.2) ∂t v ®iÒu kiÖn biªn u(0, t) = 0, u(l, t) = 0 (7.7.3) • B i to¸n HH1a ®−îc gi¶i b»ng ph−¬ng ph¸p t¸ch biÕn m néi dung cña nã nh− sau T×m nghiÖm cña b i to¸n HH1a d¹ng t¸ch biÕn u(x, t) = X(x)T(t) §¹o h m u(x, t) hai lÇn theo x, theo t sau ®ã thÕ v o ph−¬ng tr×nh (7.7.1) X ′′(x) T ′′(t ) ≡λ∈3 X(x)T”(t) = a2X”(x)T(t) suy ra =2 X(x ) a T (t ) ThÕ h m u(x, t) v o ®iÒu kiÖn biªn (7.7.3) u(0, t) = X(0)T(t) = 0 v u(l, t) = X(l)T(t) = 0 víi T(t) ≠ 0 . Trang 126 Gi¸o Tr×nh To¸n Chuyªn §Ò
  3. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 7. Ph−¬ng Tr×nh TruyÒn Sãng .d o .d o c u -tr a c k c u -tr a c k Chóng ta nhËn ®−îc hÖ ph−¬ng tr×nh vi ph©n hÖ sè h»ng sau ®©y X”(x) + λX(x) = 0 (7.7.4) T”(t) + λa2T(t) = 0 (7.7.5) X(0) = X(l) = 0 víi λ ∈ 3 (7.7.6) • Ph−¬ng tr×nh vi ph©n (7.7.4) cã ph−¬ng tr×nh ®Æc tr−ng k2 + λ = 0 NÕu λ = - α2 th× ph−¬ng tr×nh (7.7.4) cã nghiÖm tæng qu¸t X(x) = C1e-αx + C2eαx ThÕ v o ®iÒu kiÖn (7.7.6) gi¶i ra ®−îc C1 = C2 = 0. HÖ chØ cã nghiÖm tÇm th−êng. NÕu λ = 0 th× ph−¬ng tr×nh (7.7.4) cã nghiÖm tæng qu¸t X(x) = C1 + C2x Tr−êng hîp n y hÖ còng chØ cã nghiÖm tÇm th−êng. NÕu λ = α2 th× ph−¬ng tr×nh (7.7.4) cã nghiÖm tæng qu¸t X(x) = C1cosαx + C2sinαx kπ ThÕ v o ®iÒu kiÖn (7.7.6) gi¶i ra ®−îc C1 = 0, C2 tuú ý v α = . l Suy ra hÖ ph−¬ng tr×nh (7.7.4) v (7.7.6) cã hä nghiÖm riªng trùc giao trªn [0, l] 2 kπ  kπ  x víi Ak ∈ 3 v λk =   , k ∈ ∠* Xk(x) = Aksin l l ThÕ c¸c λk v o ph−¬ng tr×nh (7.7.5) gi¶i ra ®−îc kπa kπa t víi (Bk, Ck) ∈ 32, k ∈ ∠* Tk(t) = Bkcos t + Cksin l l Suy ra hä nghiÖm riªng ®éc lËp cña b i to¸n HH1a kπa kπa kπ t )sin x víi ak = AkBk , bk = AkCk , k ∈ ∠* uk(x, t) = (akcos t + bksin l l l • T×m nghiÖm tæng qu¸t cña b i to¸n HH1a d¹ng chuçi h m kπa kπa  kπ +∞ +∞  ∑ u k (x, t) = ∑ a t + b k sin t  sin u(x, t) = (7.7.7) cos x k l l l  k =1 k =1 ThÕ v o ®iÒu kiÖn ban ®Çu (7.7.3) kπ ∂u kπa kπ +∞ +∞ u(x, 0) = ∑ a k sin (x, 0) = ∑ x = g(x) v x = h(x) b k sin ∂t l l l k =1 k =1 NÕu c¸c h m g v h cã thÓ khai triÓn th nh chuçi Fourier trªn ®o¹n [0, l] th× kπ kπ l l 2 2 ∫ g(x) sin l xdx v bk = kπa ∫ h(x) sin l xdx ak = (7.7.8) l0 0 §Þnh lý Cho c¸c h m g ∈ C2(D, 3) v h ∈ C1(D, 3) tho¶ m n g(0) = g(l) = 0 v h(0) = h(l) = 0 Chuçi h m (7.7.7) víi hÖ sè ak v bk tÝnh theo c«ng thøc (7.7.8) l nghiÖm duy nhÊt v æn ®Þnh cña b i to¸n HH1a. . Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 127
  4. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 7. Ph−¬ng Tr×nh TruyÒn Sãng .d o .d o c u -tr a c k c u -tr a c k Chøng minh • C¸c h m g v h theo gi¶ thiÕt tho¶ m n ®iÒu kiÖn Dirichlet do ®ã khai triÓn ®−îc th nh chuçi Fourier héi tô ®Òu v cã c¸c chuçi ®¹o h m héi tô ®Òu trªn ®o¹n [0, l]. Suy ra chuçi h m (7.7.7) víi c¸c hÖ sè ak v bk tÝnh theo c«ng thøc (7.7.8) l héi tô ®Òu v c¸c chuçi ®¹o h m riªng ®Õn cÊp hai cña nã còng héi tô ®Òu trªn miÒn H. Do vËy cã thÓ ®¹o h m tõng tõ hai lÇn theo x, theo t trªn miÒn H. KiÓm tra trùc tiÕp thÊy r»ng chuçi (7.7.7) v c¸c chuçi ®¹o h m riªng cña nã tho¶ m n ph−¬ng tr×nh (7.7.1) v c¸c ®iÒu kiÖn phô (7.7.2), (7.7.3) • LËp luËn t−¬ng tù nh− b i to¸n CH1 suy ra tÝnh æn ®Þnh v duy nhÊt nghiÖm. VÝ dô X¸c ®Þnh dao ®éng tù do cña d©y cã hai ®Çu mót x = 0, x = l cè ®Þnh, ®é lÖch ban ∂u ®Çu u(x, 0) = x(l - x) v vËn tèc ban ®Çu (x, 0) = 0. ∂t Thay v o c«ng thøc (7.7.8) nhËn ®−îc k = 2n 0 kπ 1  8l 2 ak = ∫ x(l − x) sin k = 2n + 1 v bk = 0 víi k ∈ ∠ * xdx =  l  π 2 (2n + 1) 2  0 Suy ra nghiÖm cña b i to¸n (2 n + 1)πa (2 n + 1)π +∞ 8l 2 1 ∑ (2n + 1) u(x, t) = cos t sin x π3 3 l l n =0 §8. B i to¸n hçn hîp kh«ng thuÇn nhÊt B i to¸n HH1b Cho c¸c miÒn D = [0, l], H = D × [0, T], c¸c h m f ∈ C(H, 3) v g, h ∈ C(D, 3) T×m h m u ∈ C(H, 3) tho¶ m n ph−¬ng tr×nh truyÒn sãng ∂2u ∂2u = a2 2 + f(x, t) víi (x, t) ∈ H0 ∂t 2 ∂x ®iÒu kiÖn ban ®Çu ∂u u(x, 0) = 0, (x, 0) = 0 ∂t v ®iÒu kiÖn biªn u(0, t) = 0, u(l, t) = 0 • T×m nghiÖm b i to¸n HH1b d−íi d¹ng chuçi h m kπ +∞ ∑ T (t ) sin u(x, t) = (7.8.1) x k l k =1 Khai triÓn Fourier h m f(x, t) trªn ®o¹n [0, l] . Trang 128 Gi¸o Tr×nh To¸n Chuyªn §Ò
  5. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 7. Ph−¬ng Tr×nh TruyÒn Sãng .d o .d o c u -tr a c k c u -tr a c k kπ kπx l +∞ 2 ∑ f k (t ) sin x víi fk(t) = ∫ f (x, t ) sin f(x, t) = dx l l0 l k =1 Sau ®ã thÕ v o b i to¸n HH1b   2  Tk′(t ) +  kπa  Tk (t )  sin kπ x = kπ +∞ +∞ ∑ ∑f ′   (t ) sin x  k l l l k =1   k =1 kπ kπ +∞ +∞ ∑T x = 0 v ∑ T k (0) sin ′ x =0 k (0) sin l l k =1 k =1 Chóng ta nhËn ®−îc hä ph−¬ng tr×nh vi ph©n hÖ sè h»ng 2  kπa  Tk′(t) +  ′  Tk(t) = fk(t) l ′ Tk(0) = 0, T k (0) = 0 víi k ∈ ∠* (7.8.2) • Gi¶i hä ph−¬ng tr×nh vi ph©n tuyÕn tÝnh hÖ sè h»ng (7.8.2) t×m c¸c h m Tk(t) sau ®ã thÕ v o c«ng thøc (7.8.1) suy ra nghiÖm cña b i to¸n HH1b. Hä ph−¬ng tr×nh (7.8.2) cã thÓ gi¶i b»ng ph−¬ng ph¸p to¸n tö Laplace nãi ë ch−¬ng 5 hoÆc b»ng mét trong c¸c ph−¬ng ph¸p gi¶i ph−¬ng tr×nh vi ph©n tuyÕn tÝnh hÖ sè h»ng ® biÕt n o ®ã. LËp luËn t−¬ng tù nh− b i to¸n HH1a chóng ta cã kÕt qu¶ sau ®©y. §Þnh lý Cho h m f ∈ C(H, 3) ∩ C1(D, 3). Chuçi h m (7.8.1) víi c¸c h m Tk(t) x¸c ®Þnh tõ hä ph−¬ng tr×nh (7.8.2) l nghiÖm duy nhÊt v æn ®Þnh cña b i to¸n HH1b. B i to¸n HH1 Cho c¸c miÒn D = [0, l], H = D × [0, T], c¸c h m f ∈ C(H, 3), g, h ∈ C(D,3) v c¸c h m p, q ∈ C([0, T], 3). T×m h m u ∈ C(H, 3) tho¶ m n ph−¬ng tr×nh truyÒn sãng 2∂ u ∂2u 2 + f(x, t) víi (x, t) ∈ H0 =a ∂t 2 ∂x 2 ®iÒu kiÖn ban ®Çu ∂u u(x, 0) = g(x), (x, 0) = h(x) ∂t v ®iÒu kiÖn biªn u(0, t) = p(t), u(l, t) = q(t) • T×m nghiÖm b i to¸n HH1 d−íi d¹ng x u(x, t) = v(x, t) + w(x, t) + p(t) + (q(t) - p(t)) (7.8.3) l Trong ®ã h m v(x, t) l nghiÖm cña b i to¸n HH1a . Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 129
  6. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 7. Ph−¬ng Tr×nh TruyÒn Sãng .d o .d o c u -tr a c k c u -tr a c k ∂2v ∂2v = a2 2 ∂t 2 ∂x x v(x, 0) = g(x) - p(0) - (q(0) - p(0)) = g1(x) l ∂v x (x, 0) = h(x) - p’(0) - (q’(0) - p’(0)) = h1(x) ∂t l v(0, t) = v(l, t) = 0 (7.8.4) víi c¸c ®iÒu kiÖn biªn g1(0) = g1(l) = 0 ⇔ g(0) = p(0), g(l) = q(0) h1(0) = h1(l) = 0 ⇔ h(0) = p’(0), h(l) = q’(0) H m w(x, t) l nghiÖm cña b i to¸n HH1b ∂2w ∂2w ∂2w x = a2 2 + f(x, t) - p”(t) - (q”(t) - p”(t)) = a2 2 + f1(x, t) ∂t 2 ∂x ∂x l ∂w w(x, 0) = 0, (x, 0) = 0 ∂t w(0, t) = w(l, t) = 0 (7.8.5) • Gi¶i c¸c b i to¸n (7.8.4) v (7.8.5) t×m c¸c h m v(x, t) v w(x, t) sau ®ã thÕ v o c«ng thøc (7.8.3) suy ra nghiÖm cña b i to¸n HH1. §Þnh lý Cho c¸c h m f ∈ C(H, 3) ∩ C1(D, 3), g ∈ C2(D, 3), h ∈ C1(D, 3) v c¸c h m p, q ∈ C2([0,T], 3) tho¶ m n g(0) = p(0), g(l) = q(0) v h(0) = p’(0), h(l) = q’(0) H m u(x, t) x¸c ®Þnh theo c«ng thøc (7.8.3) víi c¸c h m v(x, t) v w(x, t) l nghiÖm cña c¸c b i to¸n (7.8.4) v (7.8.5) l nghiÖm duy nhÊt v æn ®Þnh cña b i to¸n HH1. ∂2u ∂2u víi (x, t) ∈ [0, 1] × [0, T] VÝ dô Gi¶i b i to¸n = 4 2 + xt ∂t 2 ∂x ∂u u(x, 0) = sinπx, (x, 0) = x v u(0, t) = 0, u(1, t) = t ∂t • T×m nghiÖm cña b i to¸n d−íi d¹ng u(x, t) = v(x, t) + w(x, t) + xt trong ®ã h m v(x, t) l nghiÖm cña b i to¸n HH1a víi g1(x) = sinπx v h1(x) = 0 cßn h m w(x, t) l nghiÖm cña b i to¸n HH1b víi f1(x, t) = xt. Gi¶i b i to¸n HH1 1 ak = 2 ∫ sin πx sin kπxdx =  1 k = 1 v bk = 0 víi k ∈ ∠*  0 k >1  0 Suy ra v(x, t) = cos2πtsinπx . Trang 130 Gi¸o Tr×nh To¸n Chuyªn §Ò
  7. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 7. Ph−¬ng Tr×nh TruyÒn Sãng .d o .d o c u -tr a c k c u -tr a c k Gi¶i b i to¸n HH2a 2(-1) k +1 1 fk(t) = 2t ∫ x sin kπxdx = t víi k ∈ ∠* kπ 0 Gi¶i hä ph−¬ng tr×nh vi ph©n hÖ sè h»ng 2(-1) k +1 T k′ (t ) + (2kπ)2Tk(t) = ′ ′ t , Tk(0) = 0, Tk (0) = 0 kπ T×m ®−îc c¸c h m (-1) k +1   1 t − sin 2 kπt  víi k ∈ ∠* Tk(t) = 2( kπ )  2 kπ 3  Suy ra nghiÖm cña b i to¸n (-1) k +1  +∞  1 1 ∑ t − sin 2 kπt  sin kπx u(x, t) = xt + cos2πtsinπx +  2 kπ 2π 3 3  k k =1 NhËn xÐt B»ng c¸ch kÐo d i liªn tôc c¸c h m liªn tôc tõng khóc, c¸c c«ng thøc trªn vÉn sö dông ®−îc trong tr−êng hîp c¸c h m g v h cã ®¹o h m liªn tôc tõng khóc. B i tËp ch−¬ng 7 • §−a vÒ chÝnh t¾c c¸c ph−¬ng tr×nh ®¹o h m riªng tuyÕn tÝnh cÊp 2 sau ®©y. ∂2u ∂2u ∂2u 1. +2 + 5 2 - 16u = 0 ∂x∂y ∂x 2 ∂y ∂2u ∂2u ∂2u ∂u ∂u 2. -2 + +9 -9 + 9u = 0 ∂x∂y ∂x ∂y ∂x ∂y 2 2 ∂2u ∂2u ∂2u ∂u ∂u 3. 2 +3 + +7 -4 =0 ∂x∂y ∂x ∂y ∂x 2 ∂y 2 ∂2u ∂2u ∂2u ∂u - cos2x 2 + sinx 4. - 2sinx =0 ∂x∂y ∂y ∂x ∂y 2 • LËp b i to¸n ph−¬ng tr×nh VËt lý - To¸n tõ c¸c b i to¸n sau ®©y. 7. D©y rÊt m¶nh cã ®é d i l ®Æt trªn trôc Ox, mót x = 0 cè ®Þnh, mót x = l chuyÓn ®éng theo qui luËt Asinωt, dao ®éng trong m«i tr−êng cã lùc c¸n tû lÖ víi vËn tèc, hÖ sè tû lÖ l λ, ®é lÖch ban ®Çu l g(x), vËn tèc ban ®Çu l h(x). X¸c ®Þnh dao ®éng cña d©y? 8. §Üa rÊt máng ®ång chÊt b¸n kÝnh R ®Æt trong mÆt ph¼ng Oxy, mËt ®é nguån nhiÖt trong tû lÖ víi kho¶ng c¸ch ®Õn t©m, nhiÖt ®é m«i tr−êng gi÷ ë nhiÖt ®é u0, nhiÖt ®é ban ®Çu l g(x, y). X¸c ®Þnh ph©n bè nhiÖt trªn ®Üa? . Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 131
  8. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 7. Ph−¬ng Tr×nh TruyÒn Sãng .d o .d o c u -tr a c k c u -tr a c k • Gi¶i b i to¸n Cauchy ∂2u ∂2u ∂u = a2 2 ut=0 = ex, = e-x 9. t=0 ∂t 2 ∂t ∂x ∂2u 2∂ u ∂u 2 + te-x 10. =a ut=0 = sinx, = x + cosx t=0 ∂t ∂t ∂x 2 2 ∂2u ∂2u ∂u = a2 2 + tsinx 11. ut=0 = cosx, =x t=0 ∂t 2 ∂t ∂x ∂2u ∂2u ∂u = a2 2 + tcosx 12. ut=0 = sinx, = 2x t=0 ∂t 2 ∂t ∂x • Gi¶i b i to¸n gi¶ Cauchy ∂2u ∂2u ∂u = a2 2 + te-x 13. ut=0 = sinx, = x, u(0, t) = 0 t=0 ∂t 2 ∂t ∂x ∂2u ∂2u ∂u = a2 2 + tsinx = sinx, u(0, t) = e-t 14. ut=0 = xcosx, t=0 ∂t 2 ∂t ∂x ∂2u ∂2u ∂u ∂u = a2 2 + xsinx = 3 x 2, 15. ut=0 = cosx, (0, t) = 0 t=0 ∂t 2 ∂t ∂x ∂x ∂2u ∂2u ∂u ∂u = a2 2 + xcosx 16. ut=0 = sinx, = cosx, (0, t) = 0 t=0 ∂t 2 ∂t ∂x ∂x • Gi¶i c¸c b i to¸n hçn hîp sau ®©y víi H = [0, l] × 3+ ∂ 2u ∂u ∂2u = a2 2 17. ut=0 = x(l - x), = 0 v u(0, t) = u(l, t) = 0  ∂t t=0 ∂t 2 ∂x ∂ 2u ∂u ∂2u = a2 2 18. ut=0 = 0, = xsinx v u(0, t) = u(l, t) = 0  ∂t t=0 ∂t 2 ∂x ∂ 2u ∂u ∂2u = a2 2 19. ut=0 = xcosx, = 0 v u(0, t) = t, u(l, t) = 0  ∂t t=0 ∂t 2 ∂x ∂ 2u ∂u ∂2u = a2 2 + bshx 20. ut=0 = 0, = 0 v u(0, t) = u(l, t) = 0  ∂t t=0 ∂t 2 ∂x ∂ 2u ∂u ∂2u = a2 2 + tcosx 21. ut=0 = sinx, = x v u(0, t) = 0, u(l, t) = t  ∂t t=0 ∂t 2 ∂x ∂ 2u ∂u ∂2u = 0 v u(0, t) = 0, u(l, t) = Asinωt = a2 2 22. ut=0 = 0,  ∂t t=0 ∂t 2 ∂x ∂2u ∂2u ∂u ∂u + 2λ = a2 2 23. ut=0 = g(x), = h(x) v u(0, t) = u(l, t) = 0 t=0 ∂t 2 ∂t ∂t ∂x . Trang 132 Gi¸o Tr×nh To¸n Chuyªn §Ò
  9. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c .d o .d o c u -tr a c k c u -tr a c k Ch−¬ng 8 Ph−¬ng tr×nh truyÒn nhiÖt §1. B i to¸n Cauchy thuÇn nhÊt B i to¸n CP1a Cho c¸c miÒn D = 3, H = D × 3+ v h m g ∈ C(D, 3). T×m h m u ∈ C(H, 3) tho¶ m n ph−¬ng tr×nh truyÒn nhiÖt ∂2u ∂u = a2 2 víi (x, t) ∈ H0 (8.1.1) ∂t ∂x v ®iÒu kiÖn ban ®Çu u(x, 0) = g(x) (8.1.2) • T×m nghiÖm riªng bÞ chÆn cña b i to¸n CP1a d¹ng t¸ch biÕn u(x, t) = X(x)T(t) ThÕ v o ph−¬ng tr×nh (8.1.1) ®−a vÒ hÖ ph−¬ng tr×nh vi ph©n T’(t) + λa2T(t) = 0 X”(x) + λX(x) = 0 HÖ ph−¬ng tr×nh vi ph©n trªn cã hä nghiÖm riªng bÞ chÆn 2 T(t) = e −( αa ) t v X(x) = A(α)cosαx + B(α)sinαx víi α ∈ 3+ Suy ra hä nghiÖm riªng bÞ chÆn cña b i to¸n CP1a 2 uα(x, t) = e −( αa ) t (A(α)cosαx + B(α)sinαx), α ∈ 3+ • T×m nghiÖm tæng qu¸t cña b i to¸n CP1a d¹ng tÝch ph©n suy réng +∞ +∞ − ( αa ) 2 t ∫ u α (x, t )dα = ∫e [A(α) cos αx + B(α ) sin αx]dα u(x, t) = (8.1.3) 0 0 ThÕ v o ®iÒu kiÖn ban ®Çu (8.1.2) +∞ ∫ [A(α) cos αx + B(α) sin αx]dα = g(x) u(x, 0) = 0 NÕu h m g cã thÓ khai triÓn th nh tÝch ph©n Fourier th× +∞ +∞ 1 1 A(α) = ∫ g(ξ) cos(αξ )dξ v B(α) = ∫ g(ξ) sin(αξ )dξ π −∞ π −∞ Thay v o c«ng thøc (8.1.3) v biÕn ®æi +∞ +∞ 1  − ( αa ) 2 t ∫∞ ∫ g(ξ) cos α(ξ − x)dξ e dα u(x, t) = π−  0    §æi thø tù lÊy tÝch ph©n . Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 133
  10. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 8. Ph−¬ng Tr×nh TruyÒn NhiÖt .d o .d o c u -tr a c k c u -tr a c k +∞ +∞ 1  − ( αa ) 2 t  u(x, t) = ∫  ∫ e cos α(ξ − x)dα g(ξ)dξ (8.1.4) π − ∞ 0    • §æi biÕn β = αa t ⇒ dβ = a t dα ξ−x ⇒ ξ = x + 2a t s, dξ = 2a t ds s= 2a t BiÕn ®æi tÝch ph©n bªn trong cña tÝch ph©n (8.1.4) +∞ +∞ 1 1 2 −β 2 − ( αa ) t ∫e ∫e cos α(ξ − x)dα = cos 2sβ dβ = I(s) at0 at 0 §¹o h m I(s), sau ®ã tÝch ph©n tõng phÇn, nhËn ®−îc ph−¬ng tr×nh vi ph©n +∞ π π −s 2 −β 2 ∫ sin 2sβde ⇒ I(s) = I’(s) = = -2sI(s) v I(0) = e 2 2 0 Thay v o tÝch ph©n (8.1.4) suy ra c«ng thøc sau ®©y. ( ξ − x )2 +∞ +∞ 1 1 − −s2 ∫ g(x + 2a ∫ g(ξ)e dξ 4a 2t u(x, t) = t s)e ds = (8.1.5) π 2a πt −∞ −∞ §Þnh lý Cho h m g ∈ C(D, 3) ∩ B(D, 3). B i to¸n CP1a cã nghiÖm duy nhÊt v æn ®Þnh x¸c ®Þnh theo c«ng thøc (8.1.5) Chøng minh • Theo gi¶ thiÕt h m g liªn tôc v bÞ chÆn 2 2 ∀ (x, t) ∈ H, ∀ s ∈ 3,  g(x + 2a t s) e −s  ≤ M e −s Suy ra tÝch ph©n (8.1.5) bÞ chÆn ®Òu. Do ®ã cã thÓ lÊy giíi h¹n v ®¹o h m qua dÊu tÝch ph©n theo x hai lÇn, theo t mét lÇn. KiÓm tra trùc tiÕp h m u(x, t) l nghiÖm cña ph−¬ng tr×nh (8.1.1) tho¶ m n ®iÒu kiÖn ban ®Çu (8.1.2) ( ξ −x )2 +∞ ∂u ξ−x − ∫ g( ξ ) 4a dξ 4a 2 t = e ∂x πt 3 3/2 −∞ (ξ −x )2 +∞ −1 (ξ − x ) 2 ∂2u  − ∫  4a πt 3 / 2 8a πt 5 / 2 g(ξ) 3 +5 dξ e 4a 2 t =  ∂x 2   −∞ ( ξ −x )2 +∞ −1 (ξ − x ) 2 ∂2u ∂u  − ∫  4a πt 3 / 2 8a πt 5 / 2 g(ξ) +3 dξ = a2 e 4a 2 t =  ∂t ∂x 2   −∞ +∞ 1 2 t s)e − s ds = g(x) ∫ g(x + 2a lim u(x, t) = lim t →0 + π t →0 + −∞ ∂2u ∂u • NÕu ui l hai nghiÖm cña b i to¸n = a2 2 , u(x, 0) = gi ∂t ∂x ∂2u ∂u = a2 2 , u(x, 0) = g1 - g2 = g th× u = u1 - u2 l nghiÖm cña b i to¸n ∂t ∂x . Trang 134 Gi¸o Tr×nh To¸n Chuyªn §Ò
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2