intTypePromotion=3

Giáo trình hướng dẫn phân tích những phương pháp nghiên cứu chủ yếu của thiên văn cổ điển p3

Chia sẻ: Dfsdf Fdsgds | Ngày: | Loại File: PDF | Số trang:5

0
36
lượt xem
3
download

Giáo trình hướng dẫn phân tích những phương pháp nghiên cứu chủ yếu của thiên văn cổ điển p3

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Hệ địa tâm của Ptolemy. Tới thế kỷ III TCN Thiên văn bắt đầu tách thành một khoa học riêng biệt. Các nhà Thiên văn đã thực hiện các quan sát về chuyển động của các hành tinh (Xem lại phần nhập môn) . Họ đưa ra lý thuyết về nội luận, ngoại luận và tâm sai. Ptolemy (87(165) đã hoàn chỉnh các lý thuyết đó và xây dựng một mô hình vũ trụ gồm Mặt trời, Mặt trăng, các hành tinh: Thủy, Kim, Hỏa, Mộc, Thổ và Trái đất theo trật tự sau (trong tác phẩm “Almagest”): - Trái...

Chủ đề:
Lưu

Nội dung Text: Giáo trình hướng dẫn phân tích những phương pháp nghiên cứu chủ yếu của thiên văn cổ điển p3

  1. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic 2. Hệ địa tâm của Ptolemy. C C w w m m w w w w o o .c .c .d o .d o c u -tr a c k c u -tr a c k Tới thế kỷ III TCN Thiên văn bắt đầu tách thành một khoa học riêng biệt. Các nhà Thiên văn đã thực hiện các quan sát về chuyển động của các hành tinh (Xem lại phần nhập môn) . Họ đưa ra lý thuyết về nội luận, ngoại luận và tâm sai. Ptolemy (87(165) đã hoàn chỉnh các lý thuyết đó và xây dựng một mô hình vũ trụ gồm Mặt trời, Mặt trăng, các hành tinh: Thủy, Kim, Hỏa, Mộc, Thổ và Trái đất theo trật tự sau (trong tác phẩm “Almagest”): - Trái đất nằm yên ở trung tâm vũ trụ. - Giới hạn của vũ trụ là một vòm cầu trên có gắn các sao. Vòm cầu này quay đều quanh một trục xuyên qua Trái đất. - Mặt trăng, Mặt trời chuyển động đều quanh Trái đất cùng chiều với chiều quay của vòm cầu nhưng với chu kỳ khác nhau nên chúng dịch chuyển đối với các sao. - Các hành tinh chuyển động đều theo những vòng tròn nhỏ (Epicycle: Nội luận); tâm của vòng tròn nhỏ này chuyển động theo các vòng tròn lớn (deferent: ngoại luận) quanh Trái đất. Có thể tâm của vòng tròn lớn lệch khỏi Trái đất ( nó có tâm sai (eccentric). - Trái đất, Mặt trời, tâm vòng tròn nhỏ của Kim tinh, Thủy tinh luôn nằm trên một đường thẳng. Như vậy mô hình vũ trụ địa tâm của Ptolemy thỏa mãn cho việc giải thích chuyển động nhìn thấy của thiên thể trên thiên cầu. Đồng thời nó phù hợp với kinh thánh về sự sáng tạo ra thế giới của Chúa trong 6 ngày, với Trái đất là trung tâm. Vì vậy thuyết địa tâm Ptolemy được giáo hội tán đồng và tồn tại cả ngàn năm. Hình 4 : Hệ địa tâm Ptolemy Theo quan điểm cơ học về sự tương đối của chuyển động ta có thể chọn vật bất kỳ làm mốc tọa độ, cho nó đứng yên và so sánh sự chuyển động của vật khác đối với nó. Nếu ta chọn đúng thì việc tính toán, quan sát được dễ dàng. Ở đây Ptolemy đã gắn tâm của hệ với Trái đất. Đó là một việc làm không khôn ngoan nếu không nói là sai lầm, vì nó đưa đến những tính toán phức tạp, rối rắm. Các tu sĩ đã từng phải thốt lên khi học nó: “Tại sao Chúa lại sáng tạo ra một mô hình phiền toái đến thế”.
  2. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic II. HỆ NHẬT TÂM COPERNICUS ( CUỘC CÁCH MẠNG LỚN TRONG THIÊN VĂN). C C w w m m w w w w o o .c .c .d o .d o c u -tr a c k c u -tr a c k Mặc dù có nhiều phiền toái nhưng do được Giáo hội ủng hộ, mô hình Hệ địa tâm Ptolemy vẫn tồn tại nhiều thế kỷ. Nó đã khiến khoa học dậm chân tại chỗ. Nhiều nhà khoa học đã nghi ngờ về tính xác thực của nó. Nhưng trước thế lực Nhà thờ chưa ai dám nêu ra một giả thuyết khác. Mãi đến thời đại Phục hưng, vào thế kỷ 16 Nicolaus Copernicus, một nhà khoa học BaLan, mới dũng cảm vạch ra chân lý. Tuy vậy, trong những năm dài của cuộc đời, ông vẫn phục vụ nhà thờ với với cương vị thư ký và bác sĩ, trong sự che chở của ông bác là giáo chủ. Ông đã tham gia nhiều hoạt động xã hội, đã đi xuất dương du lịch học hỏi nhiều. Nhưng vốn yêu thích thiên văn và toán học, ông đã miệt mài nghiên cứu bầu trời trong những điều kiện hết sức khó khăn và bằng những dụng cụ thô sơ ông vẫn thu được những kết quả khá chính xác. Chỉ đến những ngày cuối đời ông mới dám công bố kết quả nghiên cứu của mình trong cuốn sách “De Revolutionibus orbis um coeleftium” (Về sự quay của Thiên cầu) để tránh sự trả thù của giáo hội. Hệ Nhật tâm Copernicus ra đời mở đầu cho cuộc cách mạng trong nhận thức của con người về vũ trụ. Mặc dù vẫn phải dùng các khái niệm nội luận, ngoại luận, tâm sai như Ptolemy nhưng Copernicus đã có khái niệm về tính tương đối của chuyển động. Ông đã nhận thấy việc Trái đất quay quanh Mặt trời là cái có thật, việc Trái đất đứng yên chỉ là ảo ảnh. Ông chỉ rõ: - Mặt trời là trung tâm của vũ trụ. - Các hành tinh (Thủy, Kim, Trái đất, Hỏa, Mộc, Thổ) chuyển động đều quanh Mặt trời theo qũi đạo tròn, cùng chiều và gần như ở trong cùng một mặt phẳng. Càng ở xa Mặt trời chu kỳ chuyển động của hành tinh càng lớn. - Trái đất cũng là một hành tinh chuyển động quanh Mặt trời, đồng thời tự quay quanh một trục xuyên tâm. - Mặt trăng chuyển động tròn quanh Trái đất (Vệ tinh của Trái đất). - Thủy tinh, Kim tinh ở gần Mặt trời hơn Trái đất (có quĩ đạo chuyển động bé hơn) Hỏa tinh, Mộc tinh, Thổ tinh có qũi đạo lớn hơn (ở xa Mặt trời hơn). Vậy cấu trúc của hệ là gồm Mặt trời ở tâm và các hành tinh theo thứ tự xa dần là: Thủy, Kim, Trái đất, Hỏa, Mộc, Thổ. - Ở một khoảng rất xa là mặt cầu có chứa các sao bất động. Hình 5 : Hệ Nhật tâm Copernicus - Mặc dù còn nhiều điểm thiếu chính xác cần phải hoàn thiện Copernicus đã đưa ra một mô hình đúng đắn về hệ Mặt trời. Cho đến nay người ta đã hoàn toàn công nhận nó. Nhưng cuộc đấu tranh để khẳng định chân lý này đã phải kéo dài hàng chục năm với sự dũng cảm hy sinh của nhiều nhà khoa học thời bấy giờ.
  3. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic III. KEPLER VÀ SỰ HOÀN THIỆN HỆ NHẬT TÂM. C C w w m m w w w w o o .c .c .d o .d o c u -tr a c k c u -tr a c k Sau Copernicus là thời kỳ tranh luận dữ dội về vị trí của Trái đất và Mặt trời. Tycho Brahe, một nhà Thiên văn giàu có xứ Đan mạch đã bỏ gần 30 năm trời quan sát và ghi chép rất kỹ về chuyển động của các hành tinh, hy vọng đó sẽ là cơ sở kiểm tra lý thuyết. Ông chết đi để lại toàn bộ số liệu cho cộng sự của mình là Kepler, một nhà thiên văn và toán học Đức xử lý. Qua nhiều lần tính toán, thử đi thử lại, Kepler thấy nếu coi hành tinh chuyển động đều trên qũi đạo tròn thì sẽ không khớp với số liệu. Ông cho là số liệu không thể sai được, mà hệ nhật tâm Copernicus là chưa chính xác. Ông đã bổ sung bằng 3 định luật sau: * Định luật 1: Định luật về qũi đạo: Các hành tinh chuyển động trên qũi đạo hình elip với Mặt trời ở tại một tiêu điểm. - Khi hành tinh chuyển động theo đường tròn thì nó luôn cách đều tâm (Mặt trời). Nhưng nếu nó chuyển động theo hình elip với Mặt trời ở tại một tiêu điểm thì có lúc nó ở gần Mặt trời, có lúc nó ở xa. Điểm gần nhất gọi là điểm cận nhật (Perihelion: P), điểm xa nhất gọi là viễn nhật (Aphelion: A). Khoảng cách trung bình từ Trái đất đến Mặt trời được gọi là một đơn vị thiên văn (1AU≈150.000.000km). Độ sai khác giữa đường tròn và elip được xác định bởi tâm sai e. Qũi đạo chuyển động của các hành tinh có tâm sai tương đối nhỏ nên có thể coi là tròn. Xét biểu thức toán học của định luật này: HB T r ϕ A P F 0 F’ Hình 6: Elip 0 : tâm elip F, F’ : tiêu điểm, Mặt trời tại F H : hành tinh r : bán kính vectơ của hành tinh trong hệ tọa độ cực tâm F φ : góc xác định vị trí H trong hệ tọa độ cực tâm F 0A = a = bán trục lớn 0B = b = bán trục nhỏ A : điểm viễn nhật; P : điểm cận nhật a 2 − b2 FO F ' O = = Tâm sai e = a a a rc = khoảng gần nhất = a (1(e) rv = khoảng xa nhất = a (1+ e) b2 = a(1- e2 ); (FT ⊥ AP) p = thông số tiêu = FT = a + Cách vẽ Elip trên giấy: Tại tâm 0 vẽ 2 đường tròn bán kính a và b 0A = Baùn truïc lôùn = a ⎫ ⎬0A ⊥ 0B 0B = Baùn truïc nhoû = b⎭ kẻ xyo bất kỳ cắt đường tròn nhỏ tại R, lớn tại Q, từ R kẻ rr’//0A, từ Q kẻ qq’/0B 2 đường này cắt nhau tại một điểm. Đó là một điểm của lip. Cứ thế xác định các điểm khác.
  4. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic Từ B quay một cung bán kính bằng 0A cắt 0a tại F và F’ là hai tiêu điểm của elip. C C w w m m w w w w o o .c .c .d o .d o c u -tr a c k c u -tr a c k Hình 6’ + Cách vẽ trên bảng: Elip có tính chất là tổng khoảng cách từ một điểm bất kỳ trên elip đến 2 tiêu là không đổi nên có thể áp dụng để vẽ hình: Tại 2 tiêu đóng 2 đinh. Cột một sợi dây cố định vào 2 điểm đó. Luồn phấn theo dây và quay sẽ tạo thành elip (hình 6’) Biểu thức toàn học của định luật 1 là phương trình đường elip trong hệ tọa độ cực: p r= 1 + e cos ϕ * Định luật 2: Định luật về tốc độ diện tích Đường nối giữa một hành tinh với Mặt trời (bán kính vectơ của hành tinh) quét những diện tích bằng nhau trong những khoảng thời gian bằng nhau. Hay : Tốc độ diện tích mà bán kính vectơ của hành tinh quét được là một hằng số. Diện tích mà bán kính vectơ r quét trong khoảng thời gian (t rất gần với diện tích của tam giác FTT’ có đáy là TT’, đường cao FT’. Diện tích đó là bằng : ĉ 1 = r 2 ∆ϕ 2 T’ r∆ϕ ∆ϕ T r F Hình 7 ∆φ : Góc mà bán kính vectơ quét được trong quãng thời gian ∆t. Khi ∆t càng nhỏ thì 1 diện tích tam giác càng gần với diện tích mà bán kính vectơ quét. Ta có :ds = r 2 dφ 2 Tốc độ diện tích là : dS 1 2 dϕ =r dt 2 dt Biểu thức toán học của định luật 2 là: dϕ r2 = const = C dt Hình 8
  5. h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic - Theo định luật này thì hành tinh sẽ không chuyển động đều trên qũi đạo. Trên hình ta C C w w m m w w w w o o .c .c .d o .d o c u -tr a c k c u -tr a c k thấy diện tích FH1H2 = FH3H4. Do đó cung H1H2 〉 H3H4, hay vận tốc của hành tinh ở cận điểm lớn hơn ở viễn điểm (với cùng ∆t). Nếu gọi v là vận tốc chuyển động tròn của hành tinh, vc: vận tốc tại cận điểm; vv: vận tốc tại viễn điểm thì: 1+ e vc = v 1− e 1− e vv = v 1+ e Với Trái đất v ≈ 29,8 km/s - Sau một chu kỳ chuyển động T hành tinh sẽ quét được toàn bộ elip, tức diện tích elip 2π ab . là πab. Vậy hằng số C sẽ là T * Định luật 3 : Định luật về chu kỳ Bình phương chu kỳ chuyển động của hành tinh tỷ lệ với lập phương bán trục lớn qũi đạo của nó. Giả sử với hành tinh 1 ta có : T12 ~ a1 3 Với hành tinh 2 là : T22 ~ a 3 2 Với hành tinh 3 thì T32 ~ a3 (với a : bán trục lớn; T : chu kỳ) 3 thì ta có tỷ lệ sau : T12 T22 T32 = 3 = 3 = K = const a1 a2 a3 3 Trong đó K là hằng số, hay hệ số tỷ lệ. Nếu lấy bán trục lớn qua đơn vị thiên văn (AU), lấy chu kỳ bằng chu kỳ chuyển động của Trái đất quanh Mặt trời (T = 1 năm) thì K = 1 T2 = a3 Khi đó - Như vậy hành tinh ở càng xa Mặt trời (a lớn) thì càng chuyển động chậm (T lớn). - Trong công thức này không có tâm sai nên dù hành tinh có quĩ đạo dẹt thế nào đi nữa, chỉ cần bán trục lớn không đổi thì chu kỳ chuyển động của nó cũng không đổi. Nhận xét: Như vậy Kepler đã hiệu chỉnh qũi đạo chuyển động của các hành tinh quanh Mặt trời một cách khá đúng đắn. Tuy nhiên, cũng như Copernicus ông không giải thích được nguyên nhân của chuyển động. Điều này phải đợi đến Newton. Nhưng trước tiên phải điểm qua công lao to lớn của Galileo đối với thiên văn và cơ học nói chung.

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản