Giáo trình phân tích quy trình ứng dụng các định lý của hình học phẳng trong dạng đa phân giác p1
lượt xem 10
download
Trớc hết biến hai đờng tròn lồng nhau hai đờng thẳng song song bằng cách biến điểm i th nh điểm ∞. Sau đó dùng phép tĩnh tiến v phép vi tự để điều chỉnh băng ngang th nh băng ngang đối xứng v có độ rộng thích hợp. Cuối cùng dùng phép quay để nhận đợc băng đứng. Ví dụ 6 Tìm h m giải tích w = f(z) biến hình bảo giác miền D = {| z |
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Giáo trình phân tích quy trình ứng dụng các định lý của hình học phẳng trong dạng đa phân giác p1
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c .d o .d o c u -tr a c k c u -tr a c k Ch−¬ng 1 Giáo trình phân tích quyètrình ứng dụng các định S phøc lý của hình học phẳng trong dạng đa phân giác §1. Tr−êng sè phøc • KÝ hiÖu ∀ = 3 × 3 = { (x, y) : x, y ∈ 3 }. Trªn tËp ∀ ®Þnh nghÜa phÐp to¸n céng v phÐp to¸n nh©n nh− sau ∀ (x, y), (x’, y’) ∈ ∀ (x, y) + (x’, y’) = (x + x’, y + y’) (x, y) × (x’, y’) = (xx’ - yy’, xy’ + x’y) (1.1.1) VÝ dô (2, 1) + (-1, 1) = (1, 2) v (2, 1) × (-1, 1) = (-3, 1) §Þnh lý (∀, +, × ) l mét tr−êng sè. Chøng minh KiÓm tra trùc tiÕp c¸c c«ng thøc (1.1.1) PhÐp to¸n céng cã tÝnh giao ho¸n, tÝnh kÕt hîp, cã phÇn tö kh«ng l (0, 0) ∀ (x, y) ∈ ∀, (x, y) + (0, 0) = (x, y) Mäi phÇn tö cã phÇn tö ®èi l -(x, y) = (-x, -y) ∀ (x, y) ∈ ∀, (x, y) + (-x, -y) = (0, 0) PhÐp to¸n nh©n cã tÝnh giao ho¸n, tÝnh kÕt hîp, cã phÇn tö ®¬n vÞ l (1, 0) ∀ (x, y) ∈ ∀, (x, y) × (1, 0) = (x, y) −y Mäi phÇn tö kh¸c kh«ng cã phÇn tö nghÞch ®¶o l (x, y)-1 = ( 2 x 2 , 2 ) x + y x + y2 −y x ∀ (x, y) ∈ ∀ - {(0, 0)}, (x, y) × ( ,2 ) = (1, 0) x + y x + y2 2 2 Ngo i ra phÐp nh©n l ph©n phèi víi phÐp céng • Tr−êng (∀, +, × ) gäi l tr−êng sè phøc, mçi phÇn tö cña ∀ gäi l mét sè phøc. Theo ®Þnh nghÜa trªn mçi sè phøc l mét cÆp hai sè thùc víi c¸c phÐp to¸n thùc hiÖn theo c«ng thøc (1.1.1). Trªn tr−êng sè phøc phÐp trõ, phÐp chia v phÐp luü thõa ®Þnh nghÜa nh− sau. ∀ (n, z, z’) ∈ ∠ × ∀ × ∀* víi ∀* = ∀ - { (0, 0) } z = z × (z’)-1 v z0 = 1, z1 = z v zn = zn-1 × z z - z’ = z + (- z’), (1.1.2) z' • B»ng c¸ch ®ång nhÊt sè thùc x víi sè phøc (x, 0) . Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 5
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 1. Sè Phøc .d o .d o c u -tr a c k c u -tr a c k x ≡ (x, 0), 1 ≡ (1, 0) v 0 ≡ (0, 0) tËp sè thùc trë th nh tËp con cña tËp sè phøc. PhÐp céng v phÐp nh©n c¸c sè phøc h¹n chÕ lªn tËp sè thùc trë th nh phÐp céng v phÐp nh©n c¸c sè thùc quen thuéc. x + x’ ≡ (x, 0) + (x’, 0) = (x + x’, 0) ≡ x + x’, ... Ngo i ra trong tËp sè phøc cßn cã c¸c sè kh«ng ph¶i l sè thùc. KÝ hiÖu i = (0, 1) gäi l ®¬n vÞ ¶o. Ta cã i2 = (0, 1) × (0, 1) = (-1, 0) ≡ -1 Suy ra ph−¬ng tr×nh x2 + 1 = 0 cã nghiÖm phøc l x = − 1 ∉ 3. Nh− vËy tr−êng sè thùc (3, +, ×) l mét tr−êng con thùc sù cña tr−êng sè phøc (∀, +, ×). §2. D¹ng ®¹i sè cña sè phøc • Víi mäi sè phøc z = (x, y) ph©n tÝch (x, y) = (x, 0) + (0, y) = x(1, 0) + y(0, 1) §ång nhÊt ®¬n vÞ thùc (1, 0) ≡ 1 v ®¬n vÞ ¶o (0, 1) ≡ i, ta cã z = x + iy (1.2.1) D¹ng viÕt (1.2.1) gäi l d¹ng ®¹i sè cña sè phøc. Sè thùc x = Rez gäi l phÇn thùc, sè thùc y = Imz gäi l phÇn ¶o v sè phøc z = x - iy gäi l liªn hîp phøc cña sè phøc z. KÕt hîp c¸c c«ng thøc (1.1.1) - (1.2.1) suy ra d¹ng ®¹i sè cña c¸c phÐp to¸n sè phøc. (x + iy) + (x’ + iy’) = (x + x’) + i(y + y’) (x + iy) × (x’ + iy’) = (xx’ - yy’) + i(xy’ + x’y) xx ′ + yy ′ x ′y − xy ′ x + iy =2 +i 2 , ... (1.2.2) x ′ + iy ′ x ′ + y′ 2 x ′ + y′ 2 VÝ dô Cho z = 1 + 2i v z’ = 2 - i 1 + 2i z z × z’ = (2 + 2) + i(-1 + 4) = 4 + 3i, = =i 2−i z' z2 = (1 + 2i) × (1 + 2i) = -3 + 5i, z3 = z2 × z = (-3 + 5i) × (1 + 2i) = -13 - i • Tõ ®Þnh nghÜa suy ra z =z ⇔ z∈3 z = - z ⇔ z ∈ i3 z=z z z = Re2z + Im2z z + z = 2Rez z - z = 2iImz (1.2.3) Ngo i ra liªn hîp phøc cßn cã c¸c tÝnh chÊt sau ®©y. §Þnh lý ∀ (n, z, z’) ∈ ∠ × ∀ × ∀ . Trang 6 Gi¸o Tr×nh To¸n Chuyªn §Ò
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 1. Sè Phøc .d o .d o c u -tr a c k c u -tr a c k z + z' = z + z' 1. z n = (z ) n 2. zz' = z z' z z z −1 = ( z ) −1 = 3. z′ z′ Chøng minh 1. Suy ra tõ ®Þnh nghÜa zz' = (x + iy) × (x ′ + iy ′) = (xx’ - yy’) - i(xy’ + x’y) 2. Ta cã z z' = (x - iy) × (x’ - iy’) = (xx’ - yy’) + i(-xy’ -x’y) Qui n¹p suy ra hÖ thøc thø hai. zz −1 = z z −1 = 1 ⇒ z −1 = ( z )-1 3. Ta cã z / z ′ = z(z ′) −1 = z z ′ −1 Suy ra • Víi mäi sè phøc z = x + iy, sè thùc | z | = x 2 + y 2 gäi l module cña sè phøc z. NÕu z = x ∈ 3 th× | z | = | x |. Nh− vËy module cña sè phøc l më réng tù nhiªn cña kh¸i niÖm trÞ tuyÖt ®èi cña sè thùc. Tõ ®Þnh nghÜa suy ra | Rez |, | Imz | ≤ | z | | z | = | -z | = | z | = | - z | z z = z z = | z |2 z 1 z-1 = 1 2 z = z(z’)-1 = z z' (1.2.4) | z' | 2 z' |z| Ngo i ra module cña sè phøc cßn cã c¸c tÝnh chÊt sau ®©y. §Þnh lý ∀ (n, z, z’) ∈ ∠ × ∀ × ∀ |z|≥0 |z|=0⇔z=0 1. | z z’ | = | z || z’ | | zn | = | z |n 2. z |z| | z-1 | = | z |-1 3. = z′ | z′ | | z + z’ | ≤ | z | + | z’ | || z | - | z’|| ≤ | z - z’ | 4. Chøng minh 1. Suy ra tõ ®Þnh nghÜa | zz’ |2 = zz’ zz' = (z z )(z’ z ′ ) = (| z || z’| )2 2. Ta cã Qui n¹p suy ra hÖ thøc thø hai. | z z-1 | = | z || z-1| = 1 ⇒ | z-1 | = 1 / | z | 3. Ta cã | z / z’ | = | z (z’)-1 | = | z | | (z’)-1 | Suy ra z z ′ + z z’ = 2Re(z z ′ ) ≤ | z z ′ = | z || z’| 4. Ta cã | z + z’ 2 = (z + z’)( z + z' ) = z 2 + 2Re(z z ′ ) + | z’|2 ≤ (| z | + | z’|)2 Suy ra §3. D¹ng l−îng gi¸c cña sè phøc . Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 7
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 1. Sè Phøc .d o .d o c u -tr a c k c u -tr a c k • Víi mäi sè phøc z = x + iy ∈ ∀* tån t¹i duy nhÊt sè thùc ϕ ∈ (-π, π] sao cho y x cosϕ = v sinϕ = (1.3.1) |z| |z| TËp sè thùc Argz = ϕ + k2π, k ∈ 9 gäi l argument, sè thùc argz = ϕ gäi l argument chÝnh cña sè phøc z. Chóng ta qui −íc Arg(0) = 0. KÝ hiÖu r = | z | tõ c«ng thøc (1.3.1) suy ra x = rcosϕ v y = rsinϕ Thay v o c«ng thøc (1.2.1) nhËn ®−îc z = r(cos + isinϕ) (1.3.2) D¹ng viÕt (1.3.2) gäi l d¹ng l−îng gi¸c cña sè phøc. • Tõ ®Þnh nghÜa suy ra argz = ϕ ⇒ arg(-z) = ϕ - π, arg z = - ϕ v arg(- z ) = π - ϕ x < 0, argx = π x > 0, argx = 0 y > 0, arg(iy) = π/2 y < 0, arg(iy) = -π/2 ... (1.3.3) Ngo i ra argument cña sè phøc cßn cã c¸c tÝnh chÊt sau ®©y. §Þnh lý ∀ (n, z, z’) ∈ ∠ × ∀ × ∀ arg(zz’) = argz + argz’ [2π] arg(zn) = n argz [2π] 1. arg(z-1) = - argz [2π] arg(z / z’) = argz - argz’ [2π] 2. Chøng minh 1. Gi¶ sö z = r(cosϕ + isinϕ) v z’ = r’(cosϕ’ + isinϕ’) Suy ra zz’ = rr’[(cosϕcosϕ’ - sinϕsinϕ’) + i(sinϕcosϕ’ + cosϕsinϕ’)] = rr’[cos(ϕ + ϕ’) + isin(ϕ + ϕ’)] Qui n¹p suy ra hÖ thøc thø hai. 2. Ta cã arg(zz-1) = arg(z) + arg(z-1) = 0 [2π] ⇒ arg(z-1) = - arg(z) [2π] Suy ra arg(z / z’) = arg(zz’-1) = argz + arg(z’-1) VÝ dô Cho z = 1 + i v z’ = 1 + 3 i zz’ = [ 2 (cos π + isin π )][2(cos π + isin π )] = 2 2 (cos 5π + isin 5π ) Ta cã 4 4 6 6 12 12 z100 = ( 2 )100[cos(100 π ) + isin(100 π )] = -250 4 4 • Víi mäi sè thùc ϕ ∈ 3, kÝ hiÖu eiϕ = cosϕ + i sinϕ (1.3.4) . Trang 8 Gi¸o Tr×nh To¸n Chuyªn §Ò
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 1. Sè Phøc .d o .d o c u -tr a c k c u -tr a c k Theo c¸c kÕt qu¶ ë trªn chóng ta cã ®Þnh lý sau ®©y. §Þnh lý ∀ (n, ϕ, ϕ’) ∈ ∠ × 3 × 3 eiϕ ≠ 0 eiϕ = 1 ⇔ ϕ = k2π e iϕ = e-iϕ 1. ei(ϕ+ϕ’) = eiϕeiϕ’ (eiϕ)-1 = e-iϕ (eiϕ)n = einϕ 2. Chøng minh Suy ra tõ c«ng thøc (1.3.4) v c¸c kÕt qu¶ ë trªn HÖ qu¶ ∀ (n, ϕ) ∈ ∠ × 3 (cosϕ + isinϕ)n = cosnϕ + isinnϕ 1. (1.3.5) 1 1 cosϕ = (eiϕ + e-iϕ) sinϕ = (eiϕ - e-iϕ) 2. (1.3.6) 2 2i C«ng thøc (1.3.5) gäi l c«ng thøc Moivre, c«ng thøc (1.3.6) gäi l c«ng thøc Euler. n n ∑ cos kϕ v S = ∑ sin kϕ VÝ dô TÝnh tæng C = k =0 k =0 i ( n +1) ϕ −1 n e ∑e ikϕ Ta cã C + iS = = iϕ e −1 k =0 1 cos( n + 1)ϕ − cos nϕ + cos ϕ − 1 1 sin( n + 1)ϕ − sin nϕ − sin ϕ Suy ra C= v S= cos ϕ − 1 cos ϕ − 1 2 2 • Sè phøc w gäi l c¨n bËc n cña sè phøc z v kÝ hiÖu l w = n z nÕu z = wn NÕu z = 0 th× w = 0 z = reiϕ ≠ 0 v w = ρeiθ XÐt tr−êng hîp wn = ρneinθ = reiϕ Theo ®Þnh nghÜa ρn = r v nθ = ϕ + m2π Suy ra ϕ + m 2π víi m ∈ 9 ρ= n r v θ = Hay n n Ph©n tÝch m = nq + k víi 0 ≤ k < n v q ∈ 9. Ta cã ϕ ϕ + m 2π ≡ + k 2π [2π] n n n n Tõ ®ã suy ra ®Þnh lý sau ®©y. §Þnh lý C¨n bËc n cña sè phøc kh¸c kh«ng cã ®óng n gi¸ trÞ kh¸c nhau ϕ ϕ wk = n r [cos ( + k 2π ) + isin( + k 2π )] víi k = 0 ... (n - 1) (1.3.7) n n n n VÝ dô . Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 9
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Giáo trình phân tích quy trình ứng dụng nguyên lý tích hợp trong điều chỉnh tối ưu của hệ thống p2
5 p | 78 | 6
-
Giáo trình phân tích quy trình ứng dụng tinh lọc tính dính kết trong quy trình tạo alit p7
5 p | 57 | 5
-
Giáo trình phân tích quy trình ứng dụng tinh lọc tính dính kết trong quy trình tạo alit p10
5 p | 46 | 5
-
Giáo trình phân tích quy trình ứng dụng nguyên lý tích hợp trong điều chỉnh tối ưu của hệ thống p5
5 p | 64 | 4
-
Giáo trình phân tích quy trình ứng dụng tinh lọc tính dính kết trong quy trình tạo alit p9
5 p | 63 | 4
-
Giáo trình phân tích quy trình ứng dụng tinh lọc tính dính kết trong quy trình tạo alit p8
5 p | 80 | 4
-
Giáo trình phân tích quy trình ứng dụng tinh lọc tính dính kết trong quy trình tạo alit p5
5 p | 56 | 4
-
Giáo trình phân tích quy trình ứng dụng tinh lọc tính dính kết trong quy trình tạo alit p4
5 p | 48 | 4
-
Giáo trình phân tích quy trình ứng dụng tinh lọc tính dính kết trong quy trình tạo alit p3
5 p | 55 | 4
-
Giáo trình phân tích quy trình ứng dụng tinh lọc tính dính kết trong quy trình tạo alit p1
5 p | 65 | 4
-
Giáo trình phân tích quy trình ứng dụng nguyên lý tích hợp trong điều chỉnh tối ưu của hệ thống p10
5 p | 72 | 4
-
Giáo trình phân tích quy trình ứng dụng nguyên lý tích hợp trong điều chỉnh tối ưu của hệ thống p4
5 p | 71 | 3
-
Giáo trình phân tích quy trình ứng dụng nguyên lý tích hợp trong điều chỉnh tối ưu của hệ thống p9
5 p | 56 | 3
-
Giáo trình phân tích quy trình ứng dụng tinh lọc tính dính kết trong quy trình tạo alit p6
5 p | 54 | 3
-
Giáo trình phân tích quy trình ứng dụng nguyên lý tích hợp trong điều chỉnh tối ưu của hệ thống p3
5 p | 62 | 3
-
Giáo trình phân tích quy trình ứng dụng nguyên lý tích hợp trong điều chỉnh tối ưu của hệ thống p8
5 p | 64 | 3
-
Giáo trình phân tích quy trình ứng dụng nguyên lý tích hợp trong điều chỉnh tối ưu của hệ thống p6
5 p | 79 | 3
-
Giáo trình phân tích quy trình ứng dụng tinh lọc tính dính kết trong quy trình tạo alit p2
5 p | 64 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn