Giáo trình thực tập chuyên đề Phân tích và xử lý tín hiệu số (DSP) - ĐH Khoa học tự nhiên
lượt xem 79
download
Giáo trình thực tập chuyên đề "Phân tích và xử lý tín hiệu số (DSP)" trình bày nội dung kiến thức về: các tín hiệu cơ bản, phân tích tín hiệu và hệ thống LTI trong miền thời gian, lấy mẫu và khôi phục tín hiệu, phân tích tín hiệu và hệ thống LTI trong miền tần số-biến đổi Z, biến đổi DFT và FFT, thiết kế mach lọc FIR, thiết kế mạch lọc IIR, thiết kế mạch lọc số bằng công cụ Sptool.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Giáo trình thực tập chuyên đề Phân tích và xử lý tín hiệu số (DSP) - ĐH Khoa học tự nhiên
- Trường Đại Học Khoa Học Tự Nhiên Giáo Trình Thực Tập Chuyên Đề 4 Khoa Vật Lý- Vật Lý Kỹ Thuật, Bộ Môn Vật Lý Điện Tử Phân Tích Và Xử Lý Tín Hiệu Số (DSP) BÀI 1: CÁC TÍN HIỆU CƠ BẢN 1.1 Định nghĩa: Tín hiệu là sự biến thiên biên độ theo thời gian. 1.2 Phân loại tín hiệu: Xét về dạng sóng và sự liên tục, người ta phân tín hiệu ra thành 2 loai cơ bản là tín hiệu tương tự (analog) hay liên tục thời gian và tín hiệu số (digital) hay rời rạc thời gian Tín hiệu biến thiên liên tục về biên độ là tín hiệu tương tự, thường đươc ký hiệu là x(t). Tín hiệu thời gian rời rạc được biểu diễn như một dãy số nguyên từ -∞ đến ∞, ký hiệu là x[n]. 1.3 Một số tín hiệu tương tự cơ bản: 1.3.1 Tạo sóng vuông 1.3.2 Tạo sóng sin f=10000; f=10000; t=0:1/f:1.5; t=0:1/f:1.5; x=square(2*pi*50*t,50); x=sin(2*pi*50*t); plot(t,x); plot(t,x); axis([0 0.1 -2 2]); axis([0 0.1 -2 2]); 1.3.3 Tạo sóng răng cưa f=10000; t=0:1/f:1.5; x=sawtooth(2*pi*50*t); plot(t,x); axis([0 0.1 -2 2]); Trang 1
- Trường Đại Học Khoa Học Tự Nhiên Giáo Trình Thực Tập Chuyên Đề 4 Khoa Vật Lý- Vật Lý Kỹ Thuật, Bộ Môn Vật Lý Điện Tử Phân Tích Và Xử Lý Tín Hiệu Số (DSP) 1.4 Một số tín hiệu rời rạc cơ bản 1.4.1 Tạo xung lực đơn vị Dãy xung lực đơn vị có chiều dài N mẫu n=0:1:10; N=length(n); delta=[1 zeros(1,N-1)] stem(n,delta); axis([0 10 0 1.2]) Dãy xung lực đơn vị có chiều dài N bị trễ M mẫu (M
- Trường Đại Học Khoa Học Tự Nhiên Giáo Trình Thực Tập Chuyên Đề 4 Khoa Vật Lý- Vật Lý Kỹ Thuật, Bộ Môn Vật Lý Điện Tử Phân Tích Và Xử Lý Tín Hiệu Số (DSP) 1.4.2 Tạo tín hiệu bậc đơn vị n=0:1:10; N=length(n); unit=[ones(1,N)]; stem(n,unit); axis([0 10 0 1.2]) Để biểu diễn tín hiệu bậc đơn vị có dạng tổng quát Với n1 n0 n2 , ta dùng hàm Matlab có cú pháp sau: function [x,n] = stepseq(n0,n1,n2) n=[n1:n2]; x=[(n-n0)>=0]; 1.4.3 Tạo tín hiệu dốc đơn vị n=0:1:10; y=n; stem(n,y); 1.4.4 Tạo tín hiệu mũ thực n=0:1:20; y=0.9.^n; stem(n,y); Trang 3
- Trường Đại Học Khoa Học Tự Nhiên Giáo Trình Thực Tập Chuyên Đề 4 Khoa Vật Lý- Vật Lý Kỹ Thuật, Bộ Môn Vật Lý Điện Tử Phân Tích Và Xử Lý Tín Hiệu Số (DSP) 1.4.5 Tạo tín hiệu mũ phức: n=0:1:10; y=exp((2+3j)*n; stem(n,y); 1.5 Các phép toán trên chuỗi tín hiệu rời rạc 1.5.1 Phép cộng hai tín hiệu Phép cộng hai tín hiệu trong Matlab được thực hi ện bởi toán t ử “+”. Tuy nhiên, chi ều dài c ủa hai tín hiệu phải bằng nhau. Nếu dài dài của hai tín hi ệu khác nhau, hay gốc to ạ đ ộ c ủa 2 chu ỗi tín hiệu khác nhau thì ta không thể sử dụng trực tiếp toán tử “+”. Do đó , ta c ần ph ải bi ến đ ổi x 1(n) và x2(n) sao cho có cùng vị trí n trước khi thực hiện phép cộng hai tín hiệu. Phép cộng được thực hiện bởi hàm Matlab sau function[y n]=sigadd(x1,n1,x2,n2) n=min(min(n1),min(n2)):max(max(n1),max(n2)); y1=zeros(1,length(n)); y2=y1; y1(find(n>=min(n1))&(n=min(n2))&(n=min(n1))&(n=min(n2))&(n
- Trường Đại Học Khoa Học Tự Nhiên Giáo Trình Thực Tập Chuyên Đề 4 Khoa Vật Lý- Vật Lý Kỹ Thuật, Bộ Môn Vật Lý Điện Tử Phân Tích Và Xử Lý Tín Hiệu Số (DSP) 1.5.3 Phép dịch và gấp tín hiệu Tín hiệu x(n) được dịch chuyển đi n0 mẫu để tạo thành tín hiệu y(n)=x(n-n0). Đặt m=n-n0, ta có n=m+n0, tín hiệu y(n) được viết lại thành y(m+n0)=x(m). Đó đó thuật toán này không tác động vào tín hiệu x(n) mà chỉ có vecto n được dịch chuyển đi n0 mẫu Phép dịch được thực hiện bởi hàm Matlab sau: function[y n]=sigshift(x,m,n0) n=m+n0; y=x; Tín hiệu x(n) được gấp qua gốc n=0 để tạo thành tín hiệu y(n)=x(-n). Phép gấp được thực hiện bởi hàm Matlab sau: function[y n]=sigfold(x,n) y=fliplr(x); n=-fliplr(n); 1.6 Bài tập 1>Vẽ tín hiệu lũy thừa thực có biểu thức x(n)=0.2(1.2)n .Vẽ lại tín hiệu trên sau khi đã trì hõan N=10 mẫu. 2> Vẽ tín hiệu sin thực rời rạc thờ i gian x(n)=1.5 sin(0.2πn).Tín hiệu tuần hoàn với chu kỳ, tần số bao nhiêu? Trang 5
- Trường Đại Học Khoa Học Tự Nhiên Giáo Trình Thực Tập Chuyên Đề 4 Khoa Vật Lý- Vật Lý Kỹ Thuật, Bộ Môn Vật Lý Điện Tử Phân Tích Và Xử Lý Tín Hiệu Số (DSP) Biến đổi chương trình trên để vẽ và hiển thị dãy có chiều dài N=50 mẫu, tần số 0.08, biên độ 2.5 và độ dịch pha 90o. 3>Vẽ tín hiệu sin phức x[n]=e(-0.1+j0.3)n với −10 n 10 . Vẽ các thành phần biên độ, pha, phần thực và phần ảo trong 4 đồ thị riêng 4> Cho tín hiệu x(n)=[1,2,3,4,5,6,7,6,5,4,3,2,1]. Vẽ các tín hiệu sau a) x1(n)=2x(n-5)-3x(n+4) b) x2(n)=x(3-n)+x(n)x(n-2) 5> Viết chương trình tạo một hàm Matlab thực hiện việc tách tín hiệu thành hai phần chẵn và lẻ với quy định sau: function [xe,xo,m]=evenodd(x,n) Ứng dụng hàm vừa viết để vẽ thành phần chẵn và lẻ của tín hiệu x(n)=u(n)-u(n-10) Trang 6
- Trường Đại Học Khoa Học Tự Nhiên Giáo Trình Thực Tập Chuyên Đề 4 Khoa Vật Lý- Vật Lý Kỹ Thuật, Bộ Môn Vật Lý Điện Tử Phân Tích Và Xử Lý Tín Hiệu Số (DSP) CHƯƠNG 2: PHÂN TÍCH TÍN HIỆU VÀ HỆ THỐNG LTI TRONG MIỀN THỜI GIAN 2.1 Định nghĩa Hệ thống rời rạc thời gian: còn được gọi là hệ thống xử lý tín hiệu số, bi ến đổi tín hi ệu x[n] thành tín hiệu y[n] với những tính chất mong muốn.Thường ta giả sử hệ thống rời rạc thời gian là tuyến và bất biến thời gian (linear and invariant time-LTI) để thu ận l ợi trong vi ệc phân tích và thiết kế. Hệ thống cũng thường được giả sử là nhân quả và thư giãn. Phân tích hệ thống là tìm tín hiệu ra, còn gọi là đáp ứng,đối với tín hi ệu vào khi hệ th ống đã được biết. Đáp ứng xung::đáp ứng xung là tín hiệu ra của hệ thống khi tín hiệu vào là xung lực đơn vị. Lọc (filter) là thuật ngữ chung dùng để chỉ một hệ thống tuyến và bất bi ến th ời gian đ ược thiết kế cho việc lọc lựa tần số. do đó, một hệ thống LTI r ời tạc th ời gian còn đ ược g ọi là b ộ l ọc số. Có 2 loại lọc số chính Lọc FIR: Nếu đáp ứng xung của hệ thống LTI là hữu hạn thời gian thì hệ thống được gọi là lọc FIR Lọc IIR: Nếu đáp ứng xung của hệ thống LTI là vô hạn thời gian thì hệ thống được gọi là lọc IIR 2.2 Đáp ứng xung và phương trình sai phân Trong Matlab người ta sử dụng lệnh h=impz(num,den,N) để tính đáp ứng xung của hệ thống thời gian rời rạc LTI. Với num: là các hệ số tín hiệu vào, den: hệ số các tín hiệu ra,N: số đáp ứng xung. Để mô phỏng các hệ thống rời rạc thời gian LTI nhân quả có phương trình sai phân N M � y[n − k ] = � a k =0 k b m=0 m x[n − m] Trong Matlab ta có thể sử dụng lệnh y=filter(num,den,x) hay y=filter(num,den,x,ic) Với ic=[y[-1] y[-2] …y[-N]] là vecto điều kiện ban đầu Ví dụ: Tính và vẽ 50 đáp ứng xung của hệ thống có phương trình sai phân sau: y[n]-0.4y[n-1]+0.75y[n- 2]=2.2403x[n] +2.4908x[n- 1]+2.2403x[n- 2] Chương trình: clf; N=50; num=[2.2403 2.4908 2.2403]; den=[1 -0.4 0.75]; h=impz(num,den,N); stem(h); Trang 7
- Trường Đại Học Khoa Học Tự Nhiên Giáo Trình Thực Tập Chuyên Đề 4 Khoa Vật Lý- Vật Lý Kỹ Thuật, Bộ Môn Vật Lý Điện Tử Phân Tích Và Xử Lý Tín Hiệu Số (DSP) 2.3 Một số tính chất của hệ thống 2.3.1. Tính chất tuyến tính và phi tuyến Nếu a1x1[n]+a2x2[n] a1y1[n]+a2y2[n], a1 và a2 là hằng số thì hệ thống là tuyến tính, nếu không hệ thống là phi tuyến Hệ thống tuyến tính là hệ thống có quan hệ bậc nhất giữa phản ứng và tác động, đồng thời thoả mãn nguyên lý xếp chồng Ví dụ : Khảo sát tính chất tuyến tính của hệ thống có phương trình sai phân sau: y[n]=2.2403x[n] + 2.4908x[n-1] + 2.2403x[n-2] + 0.4y[n-1] với x1[n]= cos(0.2πn), x2[n]=cos(0.8πn), a=2, b=-3. Chương trình: a=2; b=-3; x1=cos(2*pi*0.1*n); x2=cos(2*pi*0.4*n); x=a*x1+b*x2; num=[2.2403 2.4908 2.2403]; den=[1 -0.4]; y1=filter(num,den,x1); y2=filter(num,den,x2); y=filter(num,den,x); yt=a*y1+b*y2; d=y-yt; subplot(3,1,1); stem(n,y); subplot(3,1,2); stem(n,yt); subplot(3,1,3); stem(n,d); Trang 8
- Trường Đại Học Khoa Học Tự Nhiên Giáo Trình Thực Tập Chuyên Đề 4 Khoa Vật Lý- Vật Lý Kỹ Thuật, Bộ Môn Vật Lý Điện Tử Phân Tích Và Xử Lý Tín Hiệu Số (DSP) 2.3.2. Tính chất bất biến thời gian Nếu y’[n-k]=y[n-k]: hệ thống bất biến thời gian Nếu y’[n-k]≠y[n-k]: hệ thống bất biến thời gian Hệ thống bất biến thời gian là hệ thống hễ có tác động x(n) dịch k m ẫu thì phản ứng y(n) cũng ch ỉ dịch cùng chiều k mẫu mà không bị biến đổi dạng. Ví dụ : Khảo sát tính bất biến thời gian của hệ thống có phương trình sai phân sau y[n]=2.2403x[n]+2.4908x[n-1]+2.2403x[n-2]+0.4y[n-1] với tín hiệu vào x[n]=0.3cos(0.2πn)-2cos(0.8πn). Chương trình clf; n=0:40; n0=10; a=0.3; b=-2; xn=a*cos(2*pi*0.1*n)+b*cos(2*pi*0.4*n); xn0=[zeros(1,n0) xn]; num=[2.2403 2.4908 2.2403]; den=[1 -0.4]; yn=filter(num,den,xn); yn0=filter(num,den,xn0); dn=yn-yn0(1+n0:41+n0); subplot(3,1,1); stem(n,yn); subplot(3,1,2); stem(n,yn0(1:41)); subplot(3,1,3); stem(n,dn); Trang 9
- 2.3.3. Tính chất ổn định Một hệ thống LTI ổn định theo nghĩa BIBO khi và chỉ khi đáp ứng xung đơn vị của nó có tổng tuyệt đối. Đối với hệ thống IIR thì điều kiện cần để hệ thống này ổn định là đáp ứng xung c ủa h ệ phải suy giảm tới 0 khi số lượng mẫu đủ lớn. Để kiểm tra tính ổn định của hệ thống,đáp ứng xung đơn vị được đánh giá theo công thức Khi k tăng và kiểm tra các giá trị của |h(k)| tại m ỗi b ước 1ặp.N ếu giá tr ị c ủa |h(k)| nh ỏ h ơn 10 thì có thể coi tổng S(k) hội tụ -6 Ví dụ: Kiểm tra tính ổn định của hệ thống LTI có phương rình sai phân: y[n]=x[n]- 0.8x[n-1]- 1.5y[n-1]- 0.9y[n-2] Chương trình: clf; num=[1 -0.8]; den=[1 1.5 0.9]; N=200; h=impz(num,den,N+1); sum=0; for k=1:N+1; sum=sum+abs(h(k)); if abs(h(k))
- Ví dụ : Thực hiện nhân chập 2 tín hiệu sau.Tìm tín hiệu ra y(n) h(n)=[0,1,2,1,-1,0] và x(n)= [0,1,2,3,1,0] Chương trình h=[3 11 7 0 -1 4 2]; x=[2 3 0 5 -2 1 ]; y=conv(h,x) y = 6 31 47 36 47 21 13 8 22 1 0 2 Để tính nhân chập cho 2 tín hiệu có gốc n=0 tại 1 giá trị bất kỳ ta dùng hàm Matlab sau function [y ny]=conv_m(x,nx,h,nh) nyb=nx(1)+nh(1); nye=nx(length(x))+nh(length(h)); ny=[nyb:nye]; y=conv(x,h) Ví dụ: Tính nhân chập hai tín hiệu sau h=[3 11 7 0 -1 4 2]; x=[2 3 0 5 -2 1 ]; Chương trình x=[3 11 7 0 -1 4 2]; nx=[-3:3]; h=[2 3 0 5 -2 1 ]; nh=[-1:4]; [y ny]=conv_m(x,nx,h,nh) y = 6 31 47 36 47 21 13 8 22 1 0 2 ny = -4 -3 -2 -1 0 1 2 3 4 5 6 7 Để giải nhân chập,hay là việc chia một đa thức cho một đa thức người ta sử dụng cú pháp trong Matlab [p r]=deconv(b,a). Lệnh này thực hiện việc tính toán chia đa thức b cho đa thức a được kết quả là đa thức p và phần dư là r 2.5 Bài tập 1. Tính và vẽ 45 mẫu đầu tiên đáp ứng xung của hệ thống LTI nhân quả sau: y[n]+0.71y[n-1]-0.46y[n-2]-0.62y[n-3]=0.9x[n]-0.45x[n-1]-0.35x[n-2]+0.002x[n-3] Viết chương trình Matlab tìm đáp ứng của hệ thống đối với xung bậc đơn vị của hệ thống đã cho. Gợi ý: dùng hàm filter 2. Tính và vẽ đáp ứng xung đơn vị của hệ thống có phương trình sai phân y[n]=x[n]-4y[n-1]+3x[n-2]+1.7y[n-1]-y[n-2] Hệ thống này có ổn định không? 3. Thực hiện nhân chập 2 tín hiệu sau x[n]= [0 1 2 3 4 0], h[n]=[0,2,0,2,0]
- BÀI 3: LẤY MẪU VÀ KHÔI PHỤC TÍN HIỆU 3.1. Lấy mẫu tín hiệu 3.1.1 Định lý lấy mẫu Sự lấy mẫu tín hiệu: là đổi một tín hiệu liên tục thời gian thành tín hiệu rời rạc thờ i gian, còn được gọi là tín hiệu số .Vấn đề lấy mẫu phải như thế nào để từ các mẫu người ta có thể phúc hồi lại tín hiệu tương tự ban đầu khi cần Để các mẫu biểu diễn đúng tín hiệu tương tự, tức từ các mẫu ta có thể phục hồi tín hi ệu t ương t ự ban đầu, tốc độ lấy mẫu phải lớn hơn hay ít nhất là bằng hai lần tần số cao nhất của tín hiệu tương tự Để giữ cho tần số lấy mẫu f S không lớn lắm thì fM phải được giới hạn bằng một lọc thông thấp thật hiệu quả (cắt bỏ tất cả tần số lớn hơn fM của tín hiệu tương tự) 3.1.2 Lấy mẫu tín hiệu hình sin Vì Matlab không thể phát ra tín hiệu thời gian liên tục đúng nghĩa của nó được, nên ta sẽ phát ra dãy {xa[nT]} từ xa(t) bằng cách lấy mẫu nó với tần số rất cao sao cho các mẫu lấy rất sát nhau giống như tín hiệu thời gian liên tục.: xa(t)= sin(2πft) Chương trình clf; t=0:0.0005:1; f=13; xa=sin(2*pi*f*t); subplot(2,1,1); plot(t,xa); xlabel('Thoi gian'); ylabel('Tin hieu thoi gian lien tuc'); axis([0 1 -1.2 1.2]); subplot(2,1,2); T=0.03; n=0:T:1; k=0:length(n)-1; xs=sin(2*pi*f*n); stem(k,xs); xlabel('Chi so thoi gian');
- ylabel('Tin hieu thoi gian roi rac'); axis([0 length(n)-1 -1.2 1.2])
- 3.1.3 Tín hiệu không tuần hoàn và phổ biên độ trong miền tần số Để biểu diễn tín hiệu tương tự trong miền tần số, ta có thể sử dụng biến đổi Fourier liên tục thời gian để phân tích và vẽ tín hiệu Ví dụ: Cho tín hiệu tương tự xa(t)=e(-1000|t|). Xác định và vẽ tín hiệu trong miền tần số. Giải: Từ công thức biến đổi Fourier liên tục thời gian Ta phân tích được Để xác định được phổ biên độ, đầu tiên ta cần phải xấp xỉ tín hiệu tương tự thành tín hiệu có chu kỳ xác định. Sử dụng xấp xỉ e-5≈0, ta lấy giới hạn của t trong khoảng [-0.005,0.005] (hay từ [-5,5] ms). Tương tự để Xa(jΩ) ≈0 thì ta tìm được tần số tối đa là 2π(2000). Tín hiệu được vẽ theo chương trình sau: Dt = 0.00005; t = -0.005:Dt:0.005; xa = exp(-1000*abs(t)); Wmax = 2*pi*2000; K = 500; k = 0:1:K; W = k*Wmax/K; Xa = xa * exp(-j*t'*W) * Dt; Xa = real(Xa); W = [-fliplr(W), W(2:501)]; Xa = [fliplr(Xa), Xa(2:501)]; subplot(1,1,1) subplot(2,1,1);plot(t*1000,xa); xlabel('t in msec.'); ylabel('xa(t)') title('Analog Signal') subplot(2,1,2);plot(W/(2*pi*1000),Xa*1000); xlabel('Frequency in KHz'); ylabel('Xa(jW)*1000') title('Continuous-time Fourier Transform')
- 3.2. Hiện tượng biệt danh (chồng phổ) Khi tín hiệu được lấy mẫu dưới mức, tức lấy mẫu ở tần số chậm hơn tốc độ Nyquist, thì khi tái lập tín hiệu bằng cách lọc thì thành phần tần số cao c ủa ph ổ l ặp s ẽ l ẫn vào thành ph ần t ần s ố cao của phổ trung tâm, và như vậy tín hiệu được tái lập sẽ không đúng.Về mặt thời gian, người ta gọi hiện tượng này là biệt danh (tên giả).Còn về mặt tần số người ta gọi hiện tượng này là chồng phổ. Để khắc phục hiện tượng này ta phải dùng tiền lọc chống biệt danh trước khi thực hiện việc lấy mẫu. Ví dụ: Thực hiện lấy mẫu tín hiệu xa(t)=e(- 1000|t|) tại các tần số khác nhau. Vẽ phổ biên độ của tín hiệu a) Fs=5000Hz, tín hiệu rời rạc thu được là x1(n) Do tần số tối đa của tín hiệu là fM=2000Hz nên Fs>2fM, không xảy ra hiện tượng biệt danh (chồng phổ). Chương trình Dt = 0.00005; t = -0.005:Dt:0.005; xa = exp(-1000*abs(t)); Ts = 0.0002; n = -25:1:25; x = exp(-1000*abs(n*Ts)); K = 500; k = 0:1:K; w = pi*k/K; X = x * exp(-j*n'*w); X = real(X); w = [-fliplr(w), w(2:K+1)]; X = [fliplr(X), X(2:K+1)]; subplot(1,1,1) subplot(2,1,1);plot(t*1000,xa); xlabel('t in msec.'); ylabel('xa(t)') title('Discrete Signal'); hold on stem(n*Ts*1000,x); hold off subplot(2,1,2);plot(w/pi,X); xlabel('Frequency in pi units'); ylabel('X(w)') title('Discrete-time Fourier Transform') b) Fs=1000Hz, tín hiệu rời rạc thu được là x2(n) Fs < 2FM nên tín hiệu được lấy mẫu dưới mức và xảy ra hiện tượng chồng phổ trong miền tần số Chương trình Dt = 0.00005; t = -0.005:Dt:0.005;
- xa = exp(-1000*abs(t)); Ts = 0.001; n = -25:1:25; x = exp(-1000*abs(n*Ts)); K = 500; k = 0:1:K; w = pi*k/K; X = x * exp(-j*n'*w); X = real(X); w = [-fliplr(w), w(2:K+1)]; X = [fliplr(X), X(2:K+1)]; subplot(1,1,1) subplot(2,1,1);plot(t*1000,xa); xlabel('t in msec.'); ylabel('xa(t)') title('Discrete Signal'); hold on stem(n*Ts*1000,x); hold off subplot(2,1,2);plot(w/pi,X); xlabel('Frequency in pi units'); ylabel('X(w)') title('Discrete-time Fourier Transform') 3.3 Khôi phục tín hiệu Chuyển từ dạng tín hiệu rời rạc x(nT) sang dạng tín hi ệu tương tự x(t). Quá trình khôi ph ục tín hiệu bao gồm 2 bước ; - Bước 1: các mẫu được chuyển đổi thành chuỗi các xung trọng số - Bước 2: Chuỗi xung được lọc thông qua một lọc thông thấp lý t ưởng có băng thông gi ới hạn từ [-Fs/2 Fs/2 ]
- Hai quá trình này được thực hiện bằng cách sử dụng công thức toán học sau Với sinc(x)=sinπx/πx Hình ảnh minh hoạ cho qúa trình khôi phục tín hiệu Thực hiện các lệnh trong Matlab trong trường hợp tổng quát như sau: n=n1:n2;t=t1:t2;Fs=1/Ts;nTs=n*Ts; xa=x*sinc(Fs*(ones(length(n),1)*t-nTs'*ones(1,length(t))));
- Ví dụ: Khôi phục tín hiệu x1(n) và x2(n) thành tín hiệu xa(t) từ ví dụ trên dùng hàm sinc(x) Chương trình Ts = 0.0002; % x1(n) Fs = 1/Ts; n = -25:1:25; nTs = n*Ts; x = exp(-1000*abs(nTs)); Dt = 0.00005; t = -0.005:Dt:0.005; xa = x * sinc(Fs*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); error = max(abs(xa - exp(-1000*abs(t)))) plot(t*1000,xa); xlabel('t in msec.'); ylabel('xa(t)') title('Reconstructed Signal from x1(n) using sinc function'); hold on stem(n*Ts*1000,x); hold off error = 0.0363 error = 0.1852
- 3.4 Bài tập Cho tín hiệu tương tự xa(t)=sin(20π t),0 ≤ t ≤ 1. Tín hiệu được lấy mẫu tại Ts=0.01s, 0.05s và 0.1s để có tín hiệu rời rạc x(n). a) Với mỗi Ts, vẽ x(n) tương ứng. b) Khôi phục tín hiệu ya(t) từ các tín hiệu x(n) trên dùng hàm sinc (cho Δt=0.001) và nhận xét cho mỗi trường hợp
- BÀI 4 : PHÂN TÍCH TÍN HIỆU VÀ HỆ THỐNG LTI TRONG MIỀN TẦN SỐ-BIẾN ĐỔI Z 4.1 Biến đổi Fourier rời rạc thời gian DTFT Dùng cho các tín hiệu không tuần hoàn và x(n) hiện hữu ở mọi thời gian Biến đổi DTFT thuận và nghịch X (Ω ) = x (n)e − jnΩ n =− 1 Π x ( n) = X (Ω)e jnΩ d Ω 2Π −Π Biến đổi Fourier hiện hữu nếu chuỗi hội tụ, tức x (n) < n =− Ví dụ 1: Xác định DTFT của tín hiệu x(n)=(0.5) nu(n). Vẽ tín hiệu X(ejω) với 501 điểm trong khoảng [0,∏ ] với 4 thành phần: phổ biên độ, phổ pha, phần thực và phần ảo. Chương trình w = [0:1:500]*pi/500; X = exp(j*w) ./ (exp(j*w) - 0.5*ones(1,501)); magX = abs(X); angX = angle(X); realX = real(X); imagX = imag(X); subplot(2,2,1); plot(w/pi,magX); grid xlabel('frequency in pi units'); title('Magnitude Part'); ylabel('Magnitude') subplot(2,2,3); plot(w/pi,angX); grid xlabel('frequency in pi units'); title('Angle Part'); ylabel('Radians') subplot(2,2,2); plot(w/pi,realX); grid xlabel('frequency in pi units'); title('Real Part'); ylabel('Real') subplot(2,2,4); plot(w/pi,imagX); grid xlabel('frequency in pi units'); title('Imaginary Part'); ylabel('Imaginary') Nếu x(n) là một chuỗi xác định N giá trị trong khoảng [n1,n2] thì DTFT trong Matlab được viết như sau: k=[0:M]; n=[n1:n2]; X=x*(exp(-j*pi/M)).^(n'*k);
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài thức tập chuyên đề PLC
15 p | 838 | 405
-
Giáo trình Thực hành hàn hồ quang: Tập 1
118 p | 603 | 247
-
Giáo trình thực hành động cơ I
256 p | 480 | 240
-
Giáo trình thực hành viễn thông chuyên ngành part 1
28 p | 241 | 66
-
Giáo trình thực hành viễn thông chuyên ngành part 2
28 p | 167 | 50
-
Giáo trình thực hành viễn thông chuyên ngành part 3
28 p | 148 | 40
-
Giáo trình thực hành viễn thông chuyên ngành part 9
28 p | 91 | 32
-
Giáo trình thực hành viễn thông chuyên ngành part 8
28 p | 116 | 31
-
Giáo trình thực hành viễn thông chuyên ngành part 7
28 p | 107 | 30
-
Giáo trình thực hành viễn thông chuyên ngành part 10
27 p | 109 | 30
-
Giáo trình thực hành viễn thông chuyên ngành part 4
28 p | 117 | 30
-
Giáo trình thực hành viễn thông chuyên ngành part 6
28 p | 110 | 29
-
Giáo trình thực hành viễn thông chuyên ngành part 5
28 p | 117 | 29
-
Giáo trình Thực tập tốt nghiệp (Nghề: Cắt gọt kim loại - Trình độ: Cao đẳng) - Trường Cao đẳng nghề Cần Thơ
58 p | 11 | 5
-
Giáo trình Thực tập tốt nghiệp (Nghề: Cắt gọt kim loại - Trình độ: Trung cấp) - Trường Cao đẳng nghề Cần Thơ
58 p | 18 | 5
-
Giáo trình Anh văn chuyên ngành (Nghề: Hàn - Cao đẳng) - Trường CĐ nghề Việt Nam - Hàn Quốc thành phố Hà Nội
139 p | 31 | 3
-
Bài tập thực hành: Thực tập chuyển mạch và tổng đài - CĐ Kinh tế Kỹ thuật TP.HCM
78 p | 48 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn