Giáo trình Vi sinh vật thực phẩm - Nghề: Chế biến thực phẩm - CĐ Kỹ Thuật Công Nghệ Bà Rịa-Vũng Tàu
lượt xem 2
download

Giáo trình Vi sinh vật thực phẩm - Nghề: Chế biến thực phẩm - CĐ Kỹ Thuật Công Nghệ Bà Rịa-Vũng Tàu

(NB) Giáo trình Vi sinh vật thực phẩm cung cấp cho người học các kiến thức: Hình thái, cấu tạo và các yếu tố ảnh hưởng đến hoạt động sống của vi sinh vật; Sự phân giải của hợp chất hữu cơ dưới tác dụng của Vi sinh vật và ứng dụng trong công nghiệp; Một số vi sinh vật thường gặp; Vi sinh vật trong bảo quản và chế biến thịt, cá, tôm, mực, động vật nhuyễn thể;...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Giáo trình Vi sinh vật thực phẩm - Nghề: Chế biến thực phẩm - CĐ Kỹ Thuật Công Nghệ Bà Rịa-Vũng Tàu
- ỦY BAN NHÂN DÂN TỈNH BÀ RỊA – VŨNG TÀU TRƯỜNG CAO ĐẲNG KỸ THUẬT CÔNG NGHỆ TÀI LIỆU MÔ ĐUN/MÔN HỌC VI SINH THỰC PHẨM (Lưu hành nội bộ) 1
- Bà Rịa – Vũng Tàu, năm 2018 PHẦN I – LÝ THUYẾT Bài 1: Hình thái, cấu tạo và các yếu tố ảnh hưởng đến hoạt động sống của vi sinh vật 1. Hình thái, cấu tạo của vi sinh vật Vi sinh vật là những sinh vật vô cùng nhỏ bé mà mắt thường không thể nhìn thấy được mà phải quan sát bằng kính hiển vi. Vi sinh vật gồm: vi khuẩn, xạ khuẩn, vi khuẩn lam; nấm men, nấm mốc, tảo, nguyên sinh động vật. 1.1 Hình thái, cấu tạo của vi khuẩn Vi khuẩn (bacteria) là nhóm vi sinh vật có nhiều hình dạng, có nhân nguyên thủy và sinh sản bằng cách phân đôi. Các nhóm vi khuẩn Kích thước Hình dạng Cầu khuẩn Hình tròn, ovan,... Gồm 6 nhóm: Đơn cầu khuẩn: Micrococcus Đường kính Song cầu khuẩn Diplococcus 0,5 – 1 micromet Tứ cầu khuẩn: Tetracoccus Bát cầu khuẩn: Sarcina Tụ cầu khuẩn: Staphylococcus Liên cầu khuẩn: Streptococcus Hình que Trực khuẩn Gồm 5 nhóm: Bacillus: Gram (+), sinh bào tử Bacterium: Gram (), không sinh bào tử, thường có chu mao 0,51 x 14 Pseudomonas: Gram (), không sinh bào tử, có 1 micromet tiêm mao Corynebacterium: Gram (+), không sinh bào tử, có hình dạng thay đổi tùy loại Clostridium: Gram (+), sinh bào tử hình thoi hoặc hình dùi trống Xoắn khuẩn (0,53)x(540) Là vi khuẩn có từ hai vòng xoắn trở lên, Gram (+) µm 2
- Phẩy khuẩn (0,53)x(510) Là vi khuẩn có hình dấu phẩy, dưới 2 vòng xoắn µm Cấu tạo của vi khuẩn: Gồm màng nhầy (màng tế bào) có vai trò duy trì áp suất thẩm thấu, khống chế sự vận chuyển, trao đổi ra vào của các chất dinh dưỡng và các sản phẩm trao đổi chất, sinh tổng hợp các chất, tiến hành phosphoryl hóa và phosphoryl quang hợp, ... Tế bào chất gồm toàn bộ phần nằm trong màng tế bào, là vùng dịch thể dạng keo khi tế bào non và có cấu trúc phức tạp khi tế bào già. Gồm cơ chất tương bào chứa enzim, các cơ quan con như mesosome, ribosome, không bào, hạt sắc tố, chất dự trữ. Chất nhân Bào tử Tiên mao và nhung mao Hình 1: Cấu tạo của vi khuẩn 1.2 Hình thái, cấu tạo của nấm men Hình dạng:hình cầu, hình trứng, hình oval,... Cấu tạo: gồm màng tế bào, tế bào chất: lưới nội chất, nhân, ribosome, ty thể, lysosome, golgi Hình 2: Hình dạng và cấu tạo của nấm men 1.3 Hình thái, cấu tạo của nấm mốc Hình sợi Sinh sản bằng bào tử, có các dạng: bào tử đính, bào nử nang, 3
- Hình 3: Hình thái của nấm mốc 2. Ảnh hưởng của yếu tố lý học đối với sự sinh trưởng , phát triển của vi sinh vật và ứng dụng trong bảo quản chế biến thực phẩm 2.1Ảnh hưởng của tác nhân vật lý Độ ẩm Hoạt động sống của vi sinh vật đều liên quan đến nước và tỷ lệ nước trong tế bào của chúng rất cao. Nấm men 7382%, nấm mốc 84 90%, vi khuẩn 7585%. Vì vậy thiếu nước tế bào có thể bị chết do hiện tượng loại nước ra khỏi tế bào. Sự đề kháng của vi sinh vật với trạng thái khô phụ thuộc vào: +Nguồn gốc vi sinh vật: vi sinh vật trong không khí chịu khô tốt hơn vi sinh vật trong đất, nước. +Loại hình vi sinh vật: sự đề kháng với trạngthái khô của nhóm xạ khuẩn > vi khuẩn > nấm mốc. +Trạng thái tế bào:tế bào già, tế bào có nha bào đề kháng đè kháng tốt hơn tế bào khô, tế bào không có nha bào. Do vi khuẩn cần độ ẩm nhất định để sinh trưởng nên bằng cách phơi khô hoặc sấy khô, ta có thể bảo quản được lâu dài nhiều loại sản phẩm (hoa quả khô, cỏ khô, ruốc thịt khô,...). Nhiệt độ Hoạt động trao đổi chất của vi khuẩn có thể coi là kết quả của các phản ứng hóa học. Vì các phản ứng này phụ thuộc chặt chẽ vào nhiệt độ, nên yếu tố nhiệt độ rõ ràng ảnh hưởng sâu sắc đến các quá trình sống của tế bào. Tế bào thu được nhiệt độ chủ yếu từ môi trường bên ngoài, một phần cũng do cơ thể thải ra, do kết quả của hoạt động trao đổi chất. Như đã nói trên, hoạt động của vi sinh vật bị giới hạn trong môi trường chứa nước ở dạng có thể hấp thụ. Vùng này của nước nằm từ 20 đến khoảng 1000 gọi là vùng sinh động học. Hầu hết tế bào sinh dưỡng của vi sinh vật bị chết ở nhiệt độ cao protein bị biến tính, một hoặc hàng loạt enzyme bị bất hoạt. Các enzyme hô hấp đặc biệt là các enzyme trong chu trình Krebs rất mẫn cảm với nhiệt độ. Sự chết của vi khuẩn ở nhiệt độ cao cũng có thể còn là hậu quả của sự bất hoạt hóa ARN và sự phá hoại màng tế bào chất (nói chung các acid nucleic ít mẫn cảm với nhiệt độ so với các enzyme). Nhiệt độ thấp: (dưới vùng sinh động học) có thể làm bất hoạt các chất vận chuyển các chất hòa tan qua màng tế bào chất, do thay đổi cấu hình không gian của permease chứa trong màng hoặc ảnh hưởng đến việc hình thành và tiêu thụ ATP cần cho quá trình vận chuyển chủ động các chất dinh dưỡng. Vi khuẩn thường chịu đựng được nhiệt độ thấp. Ở nhiệt độ dưới điểm băng hoặc thấp hơn chúng không thể hiện hoạt động trao đổi chất rõ rệt. Nhiệt độ thấp có thể coi là yếu tố chế khuẩn nếu làm lạnh quá nhanh. Trong trường hợp làm lạnh dần dần xuống dưới điểm băng, cấu trúc tế bào bị tổn hại do các tinh thể băng được tạo thành nhưng kích thước nhỏ, do tế bào không bị phân hủy. Nếu làm lạnh trong chân không, các tinh thể băng sẽ thăng hoa, đó là phương pháp đông khô vi sinh vật 4
- Nhiệt độ cao: Nhiệt độ cao trên 65oC sẽ gây tác hại cho vi sinh vật và ở nhiệt độ 100oC hoặc hơn vi sinh vật sẽ bị tiêu diệt gần hết trong một thời gian nhất định. Đó là do nhiệt độ cao đã làm biến tính protein tế bào, enzyme bất hoạt, mang tế bào bị phá hủy và có thể tế bào bị đốt cháy hoàn toàn. Tác dụng của nhiệt độ cao đối với vi sinh vật còn có quan hệ với các nhân tố khác như thời gian tác động, sức chịu nhiệt của vi sinh vật , sức chịu nhiệt phụ thuộc vào bản chất tế bào đó là tính di truyền, tuổi và có hay không có nha bào và sau cùng là sự tồn tại của chúng trong môi trường có độ pH, thẩm áp và hợp chất hữu cơ khác nhau. Đây chính là cơ sở của việc khử trùng nhiêt độ cao có hiệu quả. Giới hạn giữa nhiệt độ cực tiểu và nhiệt độ cực đại là vùng nhiệt sinh trưởng của vi sinh vật. Giới hạn này rất khác nhau giữa các loài vi khuẩn: tương đối rộng ở các vi khuẩn hoại sinh nhưng rất hẹp ở các vi khuẩn gây bệnh. Tùy theo quan hệ với vùng nhiệt có thể chia vi khuẩn thành một số nhóm. + Vi khuẩn ưa lạnh: sinh trưởng tốt nhất ở nhiệt độ dưới 20oC thường gặp trong nước biển, các hồ sâu và suối nước lạnh, chẳng hạn vi khuẩn phát quang, vi khuẩn sắt, hoạt tính trao đổi chất ở các vi khuẩn này thấp. Trong điều kiện phòng thí nghiệm, nhiều vi khuẩn ưa lạnh dễ dàng thích ứng với nhiệt độ cao hơn. + Vi khuẩn ưa ấm: chiếm đa số, cần nhiệt độ trong khoảng 20 400C. Ngoài các dạng hoại sinh ta còn gặp các dạng ký sinh gây bệnh cho người và động vật, chúng sinh trưởng tốt nhất ở 37 oC (tương ứng với nhiệt độ cơ thể người và động vật). + Vi khuẩn ưa nóng: giới hạn nhiệt độ sinh trưởng là 3070oC, thích hợp 5560oC gồm các vi sinh vật sinh trưởng trong đất, phân rác, suối nước nóng. Các vi khuẩn ưa nóng gồm chủ yếu là các xạ khuẩn, các vi khuẩn sinh bào tử. Thường gặp chúng trong suối nước nống, trong phân ủ. Các giới hạn nhiệt độ cực tiểu, tối thích và cực đại được trình bày trong bảng sau. Các loài Bacillus sống trong đất, thường có nhiệt độ sinh trưởng khá rộng (15 – 40 oC). Vi khuẩn E. coli có nhiệt độ sinh trưởng 10 47,5oC. Vi khuẩn gây bệnh lậu gonococcus phát triển ở nhiệt độ 36 – 40oC. Năm 1983 J. A. Baross đã phát hiện có một loài vi khuẩn ưa nhiệt, sinh trưởng thích hợp ở 25 – 30oC. Áp suất thẩm thấu Áp suất thẩm thấu và áp lực thủy tĩnh cũng ảnh hưởng đến sự phát triển của tế bào vi khuẩn. Màng tế bào vi khuẩn là màng bán thấm và việc điều chỉnh thẩm áp qua các hệ thống permease đều có liên quan đến màng này. Trong môi trường ưu trương tế bào mất khả năng hút nước và các chất hòa tan, tế bào chịu trạng thái khô sinh lý, bị co nguyên sinh chất và có thể chết nếu kéo dài. Trong thực tế người ta áp dụng hiện tượng này để bảo quản cá bằng muối, muối dưa, bảo quản trái cây. Ngược lại khi đưa vi khuẩn vào dung dịch nhược trương nước sẽ xâm nhập vào tế bào, áp lực bên trong tế bào tăng lên. Đa số vi khuẩn sinh trưởng tốt hơn trong môi trường chứa ít hơn 20% muối. Nồng độ muối cao hơn có hại cho tế bào, nhưng cũng có loại vi khuẩn sinh trưởng tốt trong môi trường chứa 30% muối, ta gọi chúng là vi khuẩn ưa muối, nhiều vi khuẩn ở biển thuộc nhóm này. Chúng có thể phát triển tốt trong môi trường có nồng độ đường cao gọi là vi khuẩn ưa đường. Sóng siêu âm Sóng âm thanh đặc biệt là trong vùng siêu âm có ảnh hưởng lớn đến sự phát triển của vi khuẩn. Với tần số 8.8008.900Hz xử lý trong 4060 phút sẽ giảm 99% vi khuẩn. Các tế bào sinh dưỡng bị chết nhanh chóng, tế bào non mẫn cảm hơn nhiều so với tế bào già. Mẫn cảm nhất là tác dụng của sóng siêu âm lên các tế bào hình sợi, ít mẫn cảm nhất là các tế bào hình cầu. Nhưng sóng siêu âm hầu như không có tác dụng với các bào tử và các tế bào vi khuẩn kháng acid. Do tác dụng của siêu âm mà độ nhớt của môi trường tăng lên, xuất hiện các chất nâng cao sức căng bề mặt và trong nguyên sinh chất hình thành bọt khí nhỏ. Kết quả là tế bào bị hủy hoại. Hiện nay 5
- người ta ứng dụng siêu âm để thu nhận các chế phẩm vô bào hoặc để tách các enzyme nội bào, phân lập một số thành phần của tế bào, riboxom, thành tế bào và màng tế bào chất. Sức căng bề mặt Khi sinh trưởng trong môi trường dịch thể, vi khuẩn chịu ảnh hưởng của sức căng bề mặt của môi trường. Đa số các môi trường dịch thể dùng trong phòng thí nghiệm có sức căng bề mặt trong khoảng 5,7 0,63 mN/cm. Những thay đổi mạnh mẽ của sức căng bề mặt có thể làm ngừng sinh trưởng và làm chết tế bào. Khi sức căng bề mặt thấp, các thành phần tế bào bị tách khỏi tế bào. Điều này chứng tỏ thành tế bào bị tổn thương. Các chất nâng cao sức căng bề mặt, hầu hết là các muối vô cơ, các chất làm giảm sức căng bề mặt hầu hết là các acid béo, anchol, các chất này được gọi là các chất có hoạt tính bề mặt. Tác dụng của chúng thể hiện trong việc làm thay đổi các đặc tính của bề mặt tế bào vi khuẩn, trước hết là nâng cao tính thấm của tế bào. Trong thực tế người ta ứng dụng hiện tượng này trong nuôi cấy vi khuẩn kháng acid. Khác với các vi khuẩn khác, vi khuẩn kháng acid, có bề mặt kỵ nước và giảm sức căng bề mặt của môi trường sẽ kích thích sinh trưởng của chúng. Sức căng bề mặt còn ngăn cản vi khuẩn gắn vào bề mặt cứng, tránh cho chúng khỏi cạnh tranh sinh trưởng. Tia bức xạ Ánh sáng có thể gây ra những biến đổi hóa học và tổn thương sinh học, nếu tế bào hấp thu. Mức độ gây hại tùy thuộc vào mức năng lượng trong lượng tử ánh sáng hay tùy thuộc vào chiều dài bước sóng ánh sáng. Các tia bức xạ gây nên những biến đổi hóa học của các nguyên tử và phân tử có chiều dài sóng khoảng 10000 A0 . Thuộc loại sau: ánh sáng mặt trời, tia tử ngoại, tia X, tia Gamma và tia vũ trụ, các tia sáng này có frnăng lượng rất lớn. Khi được vật chất hấp phụ chúng có thể làm bắn ra các electron từ vật chất đó. Vì vậy các tia này được gọi là tia bức xạ ion hóa. Những bức xạ với chiều dài bước sóng lớn hơn có năng lượng quá nhỏ, không đủ gây nên những biến đổi hóa học và tác dụng biểu hiện chủ yếu là nhiệt như tia hồng ngoại. Ánh sáng mặt trời: Là nguồn tia sáng chiếu tự nhiên và có tác dụng phá hủy tế bào vi khuẩn (ngoại lệ vi khuẩn quang hợp sử dụng ánh sáng mặt trời làm nguồn năng lượng). Tác dụng này bị yếu đi nếu vi khuẩn chứa sắc tố hay vỏ nhầy. Ánh sáng mặt trời cũng có thể gián tiếp tác động lên tế bào làm biến đổi môi trường. Chẳng hạn, các tụ cầu khuẩn Staphylococcus không sinh trưởng được trong môi trường thạch bị chiếu tia sáng mặt trời vài giờ. Ảnh hưởng của ánh sáng mặt trời lên tế bào vi khuẩn được tăng cường khi xử lý tế bào bằng một số thuốc nhuộm (metylen,...). Người ta gọi hiện tượng này là có tác dụng quang động học ánh sáng. Tia tử ngoại (tia cực tím UV) : So với các bức xạ ion thì tia tử ngoại có năng lượng nhỏ hơn. Khi bị vật chất hấp phụ, tia tử ngoại không gây nên hiện tượng ion hóa nhưng kích thích các phân tử, nghĩa là chuyển điện tử đến một mức cao hơn. Tác dụng mạnh nhất của tia tử ngoại là là vùng có chiều dài bước sóng khoảng 254260 nm nghĩa là vùng hấp thụ cực đại của acid nucleic và nucleoprotein. Dưới ảnh hưởng của tia tử ngoại, vi khuẩn bị chết hoặc bị đột biến theo loại vi khuẩn và liều lượng chiếu, bào tử của mốc có sức đề kháng cao. Điều đáng chú ý là những hư hại do tia tử ngoại gây ra cho tế bào phần nào có tính đảo ngược. Nếu sau khi chiếu tia tử ngoại, ta lại cho vi khuẩn chịu tác dụng của ánh sáng ban ngày, thì nhiều vi khuẩn có khả năng sống sót và tiếp tục phân chia.. Tia sáng mặt trời tuy có chứa một phần tia tử ngoại nhưng phần lớn những tia này bị khí quyển (mây, ozon,...) giữ lại. Vì vậy ánh nắng có tác dụng diệt khuẩn nhỏ hơn so với tia tử ngoại dùng trong phòng thí nghiệm. Do lực xuyên sâu của tia tử ngoại kém, chỉ xuyên qua lớp nước trong và thủy tinh mỏng nên thường được sử dụng trong khử trùng không khí, như buồng cấy vi sinh vật, phòng mổ. 2.1.1 Ứng dụng trong bảo quản chế biến thực phẩm 6
- Dưới tác động của các yếu tố lý học, tế bào vi sinh vật bị ức chế một phần hoặc hoàn toàn. Trên cơ sở đó, người ta áp dụng các phương pháp vật lý để bảo quản thực phẩm khỏi tác hại của vi sinh vật Thanh trùng, tiệt trùng sản phẩm: sử dụng nhiệt độ cao để tiêu diệt vi sinh vật Khử trùng dụng cụ, buồng cấy bằng tia UV Bảo quản rau quả bằng cách ướp đường, ướp muối… 2.2 Ảnh hưởng của các yếu tố hóa học đến sự sinh trưởng, phát triển của vi sinh vật và ứng dụng trong bảo quản chế biến thực phẩm 2.2.1 Ảnh hưởng của yếu tố hóa học đối với sự sinh trưởng, phát triển của vi sinh vật Độ pH Độ pH có quan hệ rất lớn đối với sự sinh trưởng của VSV. Giới hạn pH của sự sinh trưởng: là khoảng pH từ cực tiểu đến cực đại mà vsv có khả năng sinh trưởng. Trong khoảng pH này có pH thích hợp nhất, ở đó vsv có sự sinh trưởng và phát triển cao nhất. Tác dụng của pH có ảnh hưởng trực tiếp đến quá trình trao đổi chất của tế bào vì pH cần cho hoạt động của nhiều enzyme, nồng độ ion H còn ảnh hưởng trực tiếp đến độ hòa tan của một số muối khoáng như K, Na, Mg… do đó ảnh hưởng đến sự sinh trưởng và phát triển của vsv. Đa số vsv thích ứng ở pH từ 4,5 đến 9,0, tùy từng chủng giống vsv khác nhau mà thích ứng khác nhau. Ví dụ: Rhizobium , pH thích hợp ở 6,5 đến 7,5 Saccharomyces, pH thích hợp ở 4,0 đến 6,0 Điện thế oxi hóa khử Trong hoạt động sống của vsv chịu ảnh hưởng rất lớn của điện thế oxi hóa khử trong môi trường, thường thì vsv yếm khí chịu được ở rH2 thấp từ 012 vôn, đối với vsv hảo khí từ 1030 vôn. Tùy từng chủng giống vsv khác nhau mà chịu được rH2 khác nhau. 2.2.1.1 Các chất sát trùng, ức chế, diệt khuẩn Chất sát trùng là chỉ những chất có thể giết chết vsv gây bệnh hoặc không gây bệnh nhưng không giết chết được nha bào Chất ức chế là những chất chỉ làm ngừng quá trình sinh trưởng, phát triển, vsv không bị giết chết mà ở trạng thái tiềm tàng. Chất diệt khuẩn là chỉ các chất có thể giết chết toàn bộ vi khuẩn kể cả nha bào. Ví dụ: HgCl, AgNO3, CuSO4… Một chất có thể vừa là chất sát trùng, ức chế hay diệt khuẩn… tùy thuộc vào nồng độ, thời gian, loại vsv tác động và các yếu tố khác. 2.2.1.2 Các chất hóa trị liệu Các chất hóa trị liệu gồm các chất có thể tổng hợp được bằng phương pháp hóa học, có tác dụng độc đối với vsv nhưng hầu như không gây hại cho động vật. Các chất hóa trị liệu có hoạt tính cao nên đã tranh chỗ trong phản ứng sinh tổng hợp của tế bào, vì vậy đã hình thành nên các hợp chất không cần thiết cho cơ thể làm cho các phản ứng sinh hóa của tế bào bị kìm hãm, gây ức chế quá trình sinh trưởng, phát triển của tế bào vi khuẩn. Ví dụ: sunfolamit. Các chất kháng sinh Kháng sinh là chất do vsv sinh ra, ngay ở nồng độ thấp, kháng sinh cũng có khả năng ức chế hoặc tiêu diệt các vsv một cách đặc hiệu, mỗi kháng sinh chỉ tác động lên một vi khuẩn hoặc một nhóm vi khuẩn bằng cách gây rối loạn phản ứng sinh vật ở ngưỡng phân tử. Cơ chế tác động của thuốc kháng sinh lên vsv: 7
- + Ức chế sinh tổng hợp hoặc phá hủy vách tế bào, nên vi khuẩn sinh ra không có vách tế bào, do đó bị tiêu diệt + Gây rối loạn chức năng màng nguyên sinh, đặc biệt là chức năng thẩm thấu, chọn lọc, do đó làm ngừng quá trình trao đổi chất + Làm ngừng quá trình tổng hợp protein + Gây ức chế sự tổng hợp axit nucleic, ngăn cản sự sao chép AND, ngăn cản ính tổng hợp ARN polimeraza, tức là ức chế sinh tổng hợp những chất cần thiết cho tế bào. Tùy từng chủng giống vsv khác nhau mà khả năng chịu được các loại thuốc và liều lượng kháng sinh khác nhau. 2.2.2 Ứng dụng trong bảo quản chế biến thực phẩm Căn cứ vào tác động của các chất hóa học lên tế bào vi sinh vật mà có các cách bảo quản chế biến thực phẩm khác nhau. Ứng dụng giảm pH để bảo quản rau quả trong các sản phẩm rau quả dầm giấm, rau quả muối chua. Sử dụng một số chất bảo quản có bản chất là chất ức chế vi sinh vật… Bài 2: Sự phân giải của hợp chất hữu cơ dưới tác dụng của Vi sinh vật và ứng dụng trong công nghiệp 1 Sự phân giải của các hợp chất hữu cơ có Nitơ Nitrogen cycle chu trình nitơ, sự tuần hoàn của nitơ giữa các sinh vật và môi trường. Nitơ dạng khí trong khí quyển chỉ được sử dụng trực tiếp bởi một số vi sinh vật (clostridium) và một số tảo lam (nostoc). Chúng biến đổi nitơ thành dạng amon, nitrit và nitrat, những chất này sau đó được giải phóng vào đất bởi các quá trình bài tiết và phân giải. Có một cách khác để niư tơ khí quyền được cố định là nhờ các tia lửa điện của sấm sét. Phần lớn thực vật chỉ có thể sử dụng nitơ dưới dạng nitrat, trừ một số thực vật cộng sinh với vi khuẩn nốt s ần Rhizobium hoặc các sinh vật khác tạo nốt sẵn của rễ. Khi thực vật và động vật chất thì nitơ hữu cơ trong chúng biến đổi trở lại thành dạng nitrat trong quá trình gọi là nitrat hoá. Một phần nitrat này được thực vật hấp thụ, còn một phần bị mất do quá trình khử nitrit và quá tình rửa trôi. Sự tăng cường sử dụng phân bón trong nông nghiệp (nitrat amon) hiện nay trở thành một nhân tố quan trọng trong chu trình nitơ .x.nitrogen fixation. 1.1 Vai trò của vi sinh vật trong vòng tuần hoàn Nitơ Trong các môi trường tự nhiên, nitơ tồn tại ở các dạng khác nhau, từ nitơ phân tử ở dạng khí cho đến các hợp chất hữu cơ phức tạp có trong cơ thể động, thực vật và con người. Trong cơ thể sinh vật, nitơ tồn tại chủ yếu dưới dạng các hợp chất đạm hữu cơ như protein, axit amin. Khi cơ thể sinh vật chết đi, lượng nitơ hữu cơ này tồn tại ở trong đất. Dưới tác dụng của các nhóm vi sinh vật hoại sinh, protein được phân giải thành các axit amin. Các axit amin lại được một nhóm 8
- vi sinh vật phân giải thành NH3 hoặc NH4+ gọi là nhóm vi khuẩn amôn hoá. Quá trình này còn gọi là sự khoáng hoá chất hữu cơ vì qua đó nitơ hữu cơ được chuyển thành dạng nitơ khoáng. Dạng NH4+ sẽ được chuyển hoá thành dạng NO3 nhờ nhóm vi khuẩn nitrat hoá. Các hợp chất nitrat lại được chuyển hoá thành dạng nitơ phân tử, quá trình này gọi là sự phản nitrat hoá được thực hiện bởi nhóm vi khuẩn phản nitrat. Khí nitơ sẽ được cố định lại trong tế bào vi khuẩn và tế bào thực vật sau đó chuyển hoá thành dạng nitơ hữu cơ nhờ nhóm vi khuẩn cố định nitơ. Như vậy, vòng tuần hoàn nitơ được khép kín. Trong hầu hết các khâu chuyển hoá của vòng tuần hoàn đều có sự tham gia của các nhóm vi sinh vật khác nhau. Nếu sự hoạt động của một nhóm nào đó ngừng lại, toàn bộ sự chuyển hoá của vòng tuần hoàn cũng sẽ bị ảnh hưởng nghiêm trọng. 1.2 Quá trình amôn hoá Trong thiên nhiên tồn tại nhiều dạng hợp chất nitơ hữu cơ như protein, axit amin, axit nucleic, urê ... Các hợp chất này đi vào đất từ nguồn xác động, thực vật, các loại phân chuồng, phân xanh, rác rưởi. Thực vật không thể đồng hoá được dạng nitơ hữu cơ phức tạp như trên, nó chỉ có thể sử dụng được sau quá trình amôn hoá. Qua quá trình amôn hoá, các dạng nitơ hữu cơ được chuyển hoá thành dạng NH4+ hoặc NH3. 1.3 Sự amôn hoá urê Urê có trong thành phần nước tiểu của người và động vật, chiếm khoảng 2,2% nước tiểu. Urê chứa tới 46,6% nitơ, vì thế nó là một nguồn dinh dưỡng đạm tốt với cây trồng. Tuy nhiên, thực vật không thể đồng hoá trực tiếp Urê mà phải qua quá trình amôn hoá. Quá trình amiin hoá Urê chia ra làm 2 giai đoạn, giai đoạn đầu dưới tác dụng của enzym ureaza tiết ra bởi các vi sinh vật Urê sẽ bị thuỷ phân tạo thành muối cacbonat amoni, giai đoạn 2 cacbonat amoni chuyển hoá thành NH3, CO2 và H2O: Trong nước tiểu còn có axit uric, tồn tại trong đất một thời gian axit uric sẽ bị phân giải thành urê và axit tactronic. Sau đó urê sẽ tiếp tục bị phân giải thành NH3. Nhóm vi sinh vật phân giải Urê và axit uric còn có khả năng amôn hoá cyanamid canxi là một loại phân bón hoá học. Chất này sau khi đi vào đất cũng bị chuyển hoá thành Urê rồi sau đó qua quá trình amôn hoá được chuyển thành NH3: Nhiều loài vi khuẩn có khả năng amôn hoá Urê, chúng đều tiết ra enzym ureaza. Trong đó có một số loài có hoạt tính phân giải cao như Planosarcina ureae, Micrococcus ureae, Bacillus amylovorum, Proteus vulgaris ... Một số loài vi khuẩn có khả năng amôn hoá Urê. Đa số vi sinh vật phân giải Urê thuộc nhóm háo khí hoặc kỵ khí không bắt buộc, chúng ưa pH trung tính hoặc hơi kiềm. Bởi vậy khi sử dụng Urê làm phân bón người ta thường kết hợp với bón vôi hoặc tro, đồng thời xới xáo làm thoáng đất. 9
- 1.4 Sự amôn hoá protein Khác với lên men, cơ chất của quá trình thối rữa là protein. Protein là một trong những thành phần quan trọng của xác động vật, thực vật và vi sinh vật. Protein thường chứa khoảng 15,0 17,6% nitơ (tính theo chất khô). Nếu như tổng lượng cacbon trong cơ thể các sinh vật sống trên mặt đất là vào khoảng 700 tỉ tấn thì tổng lượng nitơ ít ra cũng tới 10 25 tỉ tấn. Trong lớp đất sâu 30 cm bao quanh Trái Đất người ta còn thấy thường xuyên có khoảng 3 7,5 tỉ tấn nitơ mà phần lớn là tồn tại trong các hợp chất hữu cơ chứa nitơ. Sự phân giải các hợp chất hữu cơ chứa nitơ có ý nghĩa rất lớn đối với nông nghiệp và đối với vòng tuần hoàn vật chất trong tự nhiên. Người ta còn gọi là quá trình phân giải này là quá trình amôn hoá. Muốn phân giải protein, cũng giống như đối với các hợp chất cao phân tử khác, đầu tiên vi sinh vật phải tiết ra các enzym phân giải protein ngoại bào và làm chuyển hoá protein thành các hợp chất có phân tử nhỏ hơn (các polipeptit và các oligopeptit). Các chất này hoặc tiếp xúc được phân huỷ thành axit amin nhờ các peptidaza ngoại bào, hoặc được xâm nhập ngay vào tế bào vi sinh vật sau đó mới chuyển hoá thành axit amin. Một phần các axit amin này được vi sinh vật sử dụng trong quá trình tổng hợp protein của chúng, một phần khác được tiếp tục phân giải theo những con đường khác nhau để sinh NH3, CO2 và nhiều sản phẩm trung gian khác. Những vi sinh vật không có khả năng sinh ra các enzym phân giải protein ngoại bào rõ ràng là không có khả năng đồng hoá được các loại protein thiên nhiên. Chúng chỉ có thể sử dụng được các sản phẩm thuỷ phân của protein (polipeptit, oligopeptit, axit amin) + Một số axit amin bị deamin hoá bởi VSV nhờ enzym deaminaza, 1 số phản ứng, một trong những sản phẩm cuối cùng là amôn, ví dụ: Đối với các axit amin có vòng như Triptophan, khi phân giải sẽ tạo thành các hợp chất có mùi thối như Indo vàScaton. Khi phân giải các axit amin chứa S như Metionin, Xistin, vi sinh vật giải phóng ra H2S, chất này độc đối với cây trồng. Một số hợp chất amin sinh ra trong quá trình amôn hoá có tác dụng độc đối với người và động vật. Ví dụ như histamin, acmatin ... đó chính là nguyên nhân bị nhiễm độc khi ăn thịt cá thiu thối hoặc thịt hộp để quá lâu (ô nhiễm thực phẩm). Tỷ lệ C : N trong đất rất quan trọng đối với nhóm vi sinh vật phân huỷ protein. Nếu như tỷ lệ này quá cao, trong đất quá ít đạm vi sinh vật sẽ tranh chấp thức ăn đạm đối với cây trồng, chúng phân huỷ được bao nhiêu là hấp thụ hết vào tế bào. Nếu tỷ lệ C : N quá thấp, đạm dư thừa, quá trình phaâ huỷ sẽ chậm lại, cây trồng không có đạm khoáng mà hấp thụ. Nhiều công trình nghiên cứu đã rút ra tỷ lệ C:N bằng 20 là thích hợp nhất cho quá trình amôn hoá protein, có lợi nhất đối với cây trồng. Nhiều vi sinh vật có khả năng amôn hoá protein. Trong nhóm vi khuẩn có Bacillus mycoides, Bacillus mesentericus, B. subtilis, Pseudomonas fluorescens, Clostridium sporogenes ... Xạ khuẩn có Streptomyces rimosus, Stretomyces griseus ... Vi nấm có Aspergillus oryzae, A. flavour, A. niger, Penicilium camemberti v.v.... 10
- Ngoài protein và ure, nhiều loài vi sinh vật có khả naăg amôn hoá kitin là một hợp chất cacbon chứa gốc amin. Kitin là thành phần của vỏ nhiều loại côn trùng, giáp xác. Hàng năm kitin được tích luỹ lại trong đất với một lượng không nhỏ. Nhóm vi sinh vật phân huỷ kitin có khả năng tiết enzym kitinaza và kitobiaza phân huỷ phân tử kitin thành các gốc đơn phân tử, sau đó gốc amin được amôn hoá tạo thành NH3. 1.5 Quá trình nitrat hoá Sau quá trình amôn hoá, NH3 được hình thành một phần được cây trồng hấp thụ, một phần phản ứng với các anion trong đất tạo thành các muối amôn. Một phần các muối amôn cũng được cây trồng và vi sinh vật hấp thụ. Phần còn lại được oxy hoá thành dạng nitrat gọi là quá trình nitrat hoá. Trước kia người ta cho rằng quá trình nitrat hoá là một quá trình hoá học thuần tuý. Sau này người ta mới tìm ra bản chất vi sinh vật học của nó. Nhóm vi sinh vật tiến hành quá trình này gọi chung là nhóm vi khuẩn nitrat hoá bao gồm hai nhóm tiến hành 2 giai đoạn của quá trình. Giai đoạn oxy hoá NH4+ thành NO2 gọi là giai đoạn nitrat hoá, giai đoạn oxy hoá NO2 thành NO3 gọi là giai đoạn nitrat hoá. Giai đoạn nitrit hoá Quá trình oxy hoá NH4+ tạo thành NO2+ được tiến hành bởi nhóm vi khuẩn nitrit hoá. Chúng thuộc nhóm vi sinh vật tự dưỡng hoá năng có khả năng oxy hoá NH4+ bằng oxy không khí và tạo ra năng lượng: NH4+ + 3/2 O2 → NO2+ + H2O + 2H + Năng lượng Năng lượng này dùng để đồng hoá CO2 → Cacbon hữu cơ Enzym xúc tác cho quá trình này là các enzym của quá trình hô hấp háo khí. Nhóm vi khuẩn nitrit hoá bao gồm 4 chi khác nhau: Nitrozomonas, Nitrozocystis, Nitrozolobus và Nitrosospira chúng đều thuộc loại tự dưỡng bắt buộc, không có khả năng sống trên môi trường thạch. Bởi vậy phân lập chúng rất khó, phải dùng silicagen thay cho thạch. Giai đoạn nitrat hóa Quá trình oxy hoá NO2 thành NO3 được thực hiện bởi nhóm vi khuẩn nitrat. Chúng cũng là những vi sinh vật tự dưỡng hoá năng có khả năng oxy hoá NO2 tạo thành năng lượng. Năng lượng này được dùng để đồng hoá CO2 tạo thành đường. NO2 + 1/2 O2 → NO3 + Năng lượng Nhóm vi khuẩn tiến hành oxy hoá NO2 thành NO3 bao gồm 3 chi khác nhau; Niitrobacter, Nitrospira và Nitrococcus. Ngoài nhóm vi khuẩn tự dưỡng hoá năng nói trên, trong đất còn có một số loài vi sinh vật dị dưỡng cũng tiến hành quá trình nitrat hoá. Đó là các loài vi khuẩn và xạ khuẩn thuộc các chi Pseudomonas, Corynebacterium, Streptomyces ... Quá trình nitrat hoá là một khâu quan trọng trong vòng tuần hoàn nitơ, nhưng đối với nông nghiệp nó có nhiều điều bất lợi: Dạng đạm nitrat thường dễ bị rửa trôi xuống các tầng sâu, dễ bị đi vào quá trình phản nitrat hoá tạo thành khí nitơ làm cho đất mất đạm. Anion NO 3 thường kết hợp với ion H+ trong đất tạo thành HNO3 làm cho pH đất giảm xuống rất bất lợi đối với cây trồng. Hơn nữa, lượng NO3 dư thừa trong đất được cây trồng hấp thu nhiều làm cho hàm lượng nitrat trong sản phẩm lương thực, thực phẩm cao gây độc cho người. Bởi vậy ngày nay người ta thường hạn chế việc bón phân đạm hoá học có gốc nitrat. Quá trình phản nitrat hóa Các hợp chất đạm dạng nitrat ở trong đất rất dễ bị khử biến thành nitơ phân tử. Quá trình này gọi là quá trình phản nitrat hoá. Nó khác với quá trình oxy hoá nitrat tạo thành NH 4+ còn gọi là quá trình amôn hoá. Có thể phân biệt hai quá trình trên qua sơ đồ sau: 11
- Quá trình amôn hoá nitrat do một số vi khuẩn dị dưỡng tiến hành trong điều kiện hiếu khí có chức năng cung cấp NH4+ cho tế bào vi khuẩn để tổng hợp axit amin. Phản ứng khử NO3 → N2 chỉ xảy ra trong điều kiện kỵ khí. NO3 là chất nhận điện tử cuối cùng trong chuỗi hô hấp kỵ khí, năng lượng tạo ra được dùng để tổng hợp nên ATP. Nhóm vi sinh vật thực hiện quá trình phản nitrat hoá phân bố rộng rãi trong đất. Thuộc nhóm tự dưỡng hoá năng có Thibacillus denitrificans, Hydrogenomonas agilis ... Thuộc nhóm dị dưỡng có Pseudomonas denitrificant, Micrococcus denitrificanas ... sống trong điều kiện kỵ khí (ngập nước). Đối với nông nghiệp quá trình phản nitrat hoá là một quá trình bất lợi vì nó là cho đất mất đạm. Quá trình này xảy ra mạnh trong điều kiện kỵ khí. Oxy có tác dụng ức chế các enzym xúc tác cho quá trình khử nitrat, đó là các enzym nitrat reductaza và nitrit reductaza. Ở các ruộng lúa nước người ta thường làm cỏ xục bùn để hạn chế quá trình này, đồng thời bón đạm amôn chứ không bón đạm nitrat. Trong các môi trường tự nhiên ngoài quá trình phản nitrat sinh học nói trên còn có quá trình phản nitrat hoá học thường xảy ra ở pH
- Hình 3.1 Chu trình cacbon Vai trò của vi sinh vật trong vòng tuần hoàn cacbon Cacbon trong tự nhiên nằm ở rất nhiều dạng hợp chất khác nhau, từ các hợp chất vô cơ đến các hợp chất hữu cơ. Các dạng này không bất biến mà luôn luôn chuyển hoá từ dạng này sang dạng khác, khép kín thành một chu trình chuyển hoá hoặc vòng tuần hoàn cacbon trong tự nhiên. Vi sinh vật đóng một vai trò quan trọng trong một số khâu chuyển hoá của vòng tuần hoàn này. Các hợp chất cacbon hữu cơ chứa trong động vật, thực vật, vi sinh vật, khi các vi sinh vật này chết đi sẽ để lại một lượng chất hữu cơ khổng lồ trong đất. Nhờ hoạt động của các nhóm vi sinh vật dị dưỡng cacbon sống trong đất, các chất hữu cơ này dần dần bị phân huỷ tạo thnàh CO2. CO2 được thực vật và vi sinh vật sử dụng trong quá trình quang hợp lại biến thành các hợp chất cacbon hữu cơ của cơ thể thực vật. Động vật và con người sử dụng cacbon hữu cơ của thực vật biến thành cacbon hữu cơ của động vật và người. Người, động vật, thực vật đều thải ra CO2 trong quá trình sống, đồng thời khi chết đi để lại trong đất một lượng chất hữu cơ, vi sinh vật lại bị phân huỷ nó. Cứ thế trong tự nhiên các dạng hợp chất cacbon được chuyển hoá liên tục. Dưới đây ta xét đến các quá trình chuyển hoá chính mà vi sinh vật tham gia. 2.2 Sự phân giải một số các hợp chất cacbon do vi sinh vật 2.2.1 Sự phân giải xenluloza a.. Xenluloza trong tự nhiên Xenluloza là thành phần chủ yếu của màng tế bào thực vật. Ở cây bông, xenluloza chiếm tới 90% trọng lượng khô, ở các loại cây gỗ nói chung xenluloza chiếm 40 50%. Hàng ngày, hàng giờ, một lượng lớn xenluloza được tích luỹ lại trong đất do các sản phẩm tổng hợp của thực vật thải ra, cây cối chết đi, cành lá rụng xuống. Một phần không nhỏ do con người thải ra dưới dạng rác rưởi, giấy vụn, phoi bào, mùn cưa v.v.... Nếu không có quá trình phân giải của vi sinh vật thì lượng chất hữu cơ khổng lồ này sẽ tràn ngập trái đất. 13
- Xenluloza có cấu tạo dạng sợi, có cấu trúc phân tử là 1 polimer mạch thẳng, mỗi đơn vị là một disaccarrit gọi là xenlobioza. Xenlobioza có cấu trúc từ 2 phân tử D glucoza. Cấu trúc bậc 2 và bậc 3 rất phức tạp thành cấu trúc dạng lớp gắn với nhau bằng lực liên kết hydro. Lực liên kết hydro trùng hợp nhiều lần nên rất bền vững, bởi vậy xenluloza là hợp chất khó phân giải. Dịch tiêu hoá của người và động vật không thể tiêu hoá được chúng. Động vật nhai lại tiêu hoá được xenluloza là nhờ khu hệ vi sinh vật sống trong dạ dày cỏ. b. Cơ chế của quá trình phân giải xenluloza nhờ vi sinh vật Xenluloza là một cơ chất không hoà tan, khó phân giải. Bởi vậy vi sinh vật phân huỷ xenluloza phải có một hệ enzym gọi là hệ enzym xenlulaza bao gồm 4 enzym khác nhau. Enzym C 1 có tác dụng cắt đứt liên kết hydro, biến dạng xenluloza tự nhiên có cấu hình không gian thành dạng xenluloza vô định hình, enzym này gọi là xenlobiohydrolaza. Enzym thứ hai là Endoglucanaza có khả năng cắt đứt các liên kết β 1,4 bên trong phân tử tạo thành những chuỗi dài. Enzym thứ 3 là Exo gluconaza tiến hành phân giải các chuỗi trên thành disaccarit gọi là xenlobioza. Cả hai loại enzym Endo và Exo gluconaza được gọi là Cx. Enzym thứ 4 là β glucosidaza tiến hành thủy phân xenlobioza thành glucoza. c. Vi sinh vật phân huỷ xeluloza Trong thiên nhiên có nhiều nhóm vi sinh vật có khả năng phân huỷ xenluloza nhờ có hệ enzym xenluloza ngoại bào. Trong đó vi nấm là nhóm có khả năng phân giải mạnh vì nó tiết ra môi trường một lượng lớn enzym đầy đủ các thành phần. Các nấm mốc có hoạt tính phân giải xenluloza đáng chú ý là Tricoderma. Hầu hết các loài thuộc chi Tricoderma sống hoạt sinh trong đất và đều có khả năng phân huỷ xenluloza. Chúng tiến hành phân huỷ các tàn dư của thực vật để lại trong đất, góp phần chuyển hoá một lượng chất hữu cơ khổng lồ. Tricoderma còn sống trên tre, nứa, gỗ tạo thành lớp mốc màu xanh phá huỷ các vật liệu trên. Trong nhóm vi nấm ngoài Tricoderma còn có nhiều giống khác có khả năng phân giải xenluloza như Aspergillus, Fusarium. Mucor ... Nhiều loài vi khuẩn cũng có khả năng phân huỷ xenluloza, tuy nhiên cường độ không mạnh bằng vi nấm. Nguyên nhân là do số lượng enzym tiết ra môi trường của vi khuẩn thường nhỏ hơn, thành phần các loại enzym không đầy đủ. Thường ở trong đất có ít loài vi khuẩn có khả năng tiết ra đầy đủ 4 loại enzy, trong hệ enzym xenlulaza. Nhóm này tiết ra một loại enzym trong hệ enzym xenlulaza. Nhóm này tiết ra một loại enzym, nhóm khác tiết ra các loại khác, chúng phối hợp với nhau để phân giải cơ chất trong mối quan hệ hỗ sinh. Nhóm vi khuẩn hiếu khí bao gồm Pseudomonas, Xenllulomonas, Achromobacter. Nhóm vi khuẩn kị khí bao gồm Clostridium và đặc biệt là nhóm vi khuẩn sống trong dạ cỏ của động vật nhai lại. Chính nhờ nhóm vi khuẩn nàu mà trâu bò có thể sử dụng được xenluloza có trong cỏ, rơm rạ làm thức ăn. Đó là những cầu khuẩn thuộc chi Ruminococcus có khả năng phân huỷ xenluloza thành đường và các axit hữu cơ. Ngoài vi nấm và vi khuẩn, xạ khuẩn và niêm vi khuẩn cũng có khả năng phân huỷ xenluloza. Người ta thường sử dụng xạ khuẩn đặc biệt là chi Streptomyces trong việc phân huỷ rác thải sinh hoạt. Những xạ khuẩn này thường thuộc nhóm ưa nóng, sinh trưởng, phát triển tốt nhất ở nhiệt độ 45 500C rất thích hợp với quá trình ủ rác thải. 2.2.2 Sự phân giải tinh bột a. Tinh bột trong tự nhiên 14
- Tinh bột là chất dự trữ chủ yếu là của thực vật, bởi vậy nó chiếm một tỉ lệ lớn trong thực vật, đặc biệt là trong những cây có củ. Trong tế bào thực vật, nó tồn tại ở dạng cáchạt tinh bột. Khi thực vật chết đi, tàn dư thực ích luỹ ở trong đất một lượng lớn tinh bột. Nhóm vi sinh vật phân huỷ tinh bột sống đất sẽ tiến hành phân huỷ chất hữu cơ này thành những hợp chất đơn giản, chủ yếu là đường và ãit hữu cơ. Tinh bột gồm 2 thành phần amilo và amipectin. Amilo là những chuỗi không phân nhánh bao gồm hành trăm đơn vị glucoza liên kết với nhau bằng dãy nối 1,4 glucozit. Amilopectin là các chuỗi phân nhánh; các đơn vị glucoza liên kết với nhau bằng dây nối 1,4 và 1,6 glucozit (liên kết 1.6 glucozit tại những chổ phân nhánh). Amilopectin chính là dạng liên kết của các amilo thường chiếm 10 30%, amilopectin chiếm 30 70%. Đặc biệt có một số dạng tinh bột ở một vài loại cây chỉ chứa một trong hai thành phần amilo hoặc amilope/ctin. b. Cơ chế của quá trình phân giải tinh bột nhờ vi sinh vật Vi sinh vật phân giải tinh bột có khả năng tiết ra môi trường hệ enzym amilaza bao gồm 4 enzym: * α amilaza có khả năng tác động vào bất kỳ mối liên kết 1,4 glucozit nào trong phân tử tinh bột. Bởi thế α amilaza còn được gọi là endoamilaza. Dưới tác động của α amilaza phân tử tinh bột được cắt thành nhiều đoạn ngắn gọi là sự dịch hoá tinh bột. Sản phẩm của sự dịch hoá thường là các đường 3 cacbon gọi là Mantotrioza. * β amilaza chỉ có khả năng cắt đứt mối liên kết 1,4 glucozit ở cuối phân tử tinh bột bởi thế còn gọi là exoamilaza. Sản phẩm của β amilaza thường là đường disaccarit matoza. * Amilo 1,6 glucosidaza có khả năng cắt đứt mối liên kết 1,6 glucosit tại những chỗ phân nhánh của amilopectin. * Glucoamilaza phân giải tinh bột thành glucoza và các oligosaccarit. Enzym này có khả năng phân cắt cả hai loại liên kết 1,4 và 1,6 glucozit. Dưới tác động của 4 loại enzym trên, phân tử tinh bột được phân giải thành đường glucoza. c. Vi sinh vật phân giải tinh bột Trong đất có nhiều loại vi sinh vật có khả năng phân giải tinh bột. Một số vi sinh vật có khả năng tiết ra môi trường đầy đủ các loại enzym trong hệ enzym amilaza. Ví dụ như một số vi nấm bao gồm một số loài trong các chi Aspergillus, Fusarius, Rhizopus ... Trong nhóm vi khuẩn có một số loài thuộc chi Bacillus, Cytophaga, Pseudomonas ... Xạ khuẩn cũng có một số chi có khả năng phân huỷ tinh bột. Đa số các vi sinh vật không có khả năng tiết đầy đủ hệ enzym amilaza phân huỷ tinh bột. Chúng chỉ có thể tiết ra môi trường một hoặc một vài men trong hệ đó. Ví dụ như các loài Aspergillus candidus, A.niger, A.oryzae, Bacillus subtilis, B. mesenterices, Clostridium pasteurianum, C. butiricum ... chỉ có khả năng tiết ra môi trường một loại enzym α amilaza. Các loài Aspergillus oryzae, Clostridium acetobutilicum ... chỉ tiết ra môi trường β amiloza. Một số loài khác chỉ có khả năng tiết ra môi trường enzym glucoamilaza. Các nhóm này cộng tác với nhau trong quá trình phân huỷ tinh bột thành đường. 15
- Trong sản xuất người ta thường sử dụng các nhóm vi sinh vật có khả năng phân huỷ tinh bột. Ví dụ như các loại nấm mốc thường được dùng ở giai đoạn đầu của quá trình làm rượu, tức là giai đoạn thuỷ phân tinh bột thành đường. Trong chế biến rác thải hữu cơ người ta cũng sử dụng những chủng vi sinh vật có khả năng phân huỷ tinh bột để phân huỷ tinh bột có trong thành phần rác hữu cơ. 2.2.3 Sự phân giải đường đơn Ở phần trên chúng ta thấy kết quả của quá trình phân giải xenluloza và tinh bột đều tạo thành đường đơn (đường 6 cacbon). Đường đơn tích luỹ lại trong đất sẽ được tiếp tục phân giải các nhóm vi sinh vật phân giải đường. Có hai nhóm vi sinh vật phân giải đường: nhóm háo khí và nhóm lên men. Sự phân giải đường nhờ các quá trình lên men Sản phẩm của sự phân giải đường nhờ các quá trình lên men là những chất hữu cơ chưa được oxy hoá triệt để. Dựa vào các sản phẩm sinh ra người ta đặt tên cho các quá trình đó: Quá trình lên men etylic Quá trình lên men etylic còn được gọi là quá trình lên men rượu. Sản phẩm của quá trình là rượu etylic và CO2. Dưới tác dụng của một hệ thống enzym sinh ra bởi vi sinh vật, glucoza được chuyển hoá theo con đường Embden Mayerhof để tạo thành pyruvat. Pyruvat dưới tác dụng của men piruvat decacboxylaza và tiamin pirophotphat sẽ khử cacboxyl tạo thành axetaldehyt. Axetaldehyt sẽ bị khử thành rượu etylic. Đó chính là cơ chế của quá trình lên men rượu, quá trình này ngoài tác dụng của hệ thống enzym do vi sinh vật tiết ra còn đòi hỏi sự tham gia của photphat vô cơ. 2C6H12O6 + 2H3PO4 → 2CO2 + 2CH3CH2OH + 2H2O + fructoza 1,6 diphotphat Đó là kiểu lên men rượu bình thưuờng. Khi có mặt của NaHCO3 hay Na2HPO4 quá trình lên men sẽ sinh ra một sản phẩm khác là Glyxerin đồng thời hạn chế sự sịn ra rượu etylic. Nhiều loài vi sinh vật có khả năng lên men rượu, trong đó mạnh nhất là có ý nghĩa kinh tế nhất là nấm men Saccharomyces cerevisiae. Người ta thường ứng dụng quá trình lên men rượu để sản xuất rượu, bia nước giải khát lên men. Khi sử dụng nguồn tinh bột để chế tạo rượu thì người ta phải tiến hành 2 bước, bước 1 là quá trình phân huỷ tinh bột thành đường thường dùng các loài nấm mốc phân huỷ tinh bột. Bước 2 mới là quá trình lên men đường thành rượu thường sử dụng nấm men. Để rút ngắn và đơn giản hoá quá trình, một số nhà nghiên cứu đang tiến hành ghép gen phân huỷ tinh bột ở một loài nấm mốc có khả năng phân huỷ tinh bột vào Saccharomyces serevisiae. Quá trình lên men rượu còn được sử dụng trong công nghiệp làm bánh mỳ, CO 2 sinh ra trong quá trình lên men có tác dụng làm nở bột mỳ. Các nấm men có khả năng lên men rượu còn được dùng trong việc ủ men thức ăn. Thức ăn gia súc được ủ men có hương vị thơm ngon kích thích tiêu hoá của gia súc. Quá trình lên men Lactic Quá trình phân giải glucoza thành axit lactic được gọi là quá trình lên men lactic. Có 2 loại lên men lactic đồng hình và lên men lactic dị hình. Ở sự lên men lactic đồng hình glucoza bị phân giải theo con đường Embden Mayerhof tạo thành axit pyruvic, axit pyruvic khử thành axit lactic. 16
- Quá trình lên men lactic đồng hình được thực hiện bởi nhóm vi khuẩn Lactobacterium và Streptococcus. Ở sự lên men lactic dị hình glucoza bị phân giải theo con đường pentozophotphat. Sản phẩm của quá trình lên men ngoài axit lactic còn có rượu etylic, axit axetic và glyxerin. Vi khuẩn lactic thường đòi hỏi nhiều loại chất sinh trưởng, chúng khó có thể phát triển trên môi trường tổng hợp mà chỉ có thể sống trên môi trường có các chất hữu cơ như nước chiết nấm men, sữa, máu v.v... Chúng thường phân bố trên thực vật hoặc xác thực vật, trong sữa, các sản phẩm của sữa, trong ruột người và động vật. Quá trình lên men lactic được ứng dụng để chế tạo axit lactic, muối rau quả, chế biến sữa chua v.v... Rau quả được muối, sữa biến thành sữa chua sau quá trình lên men lactic đều có tác dụng tiêu hoá rất tốt. Việc ủ chua thức ăn gia súc cũng dựa trên sự lên men lactic. Trong quá trình muối dưa, áp suất thẩm thấu do muối tạo ra sẽ làm cho chất dịch bên trong tế bào rau đi ra ngoài. Vi khuẩn lactic có sẵn trong không khí sử dụng dịch tế bào đó để sống, lúc đầu cũng có cả những vi khuẩn hoại sinh khác, sau đó do axit lactic sinh ra làm hạ pH, ức chế các vi khuẩn khác. Đến một pH nhất định vi khuẩn lactic cũng bị ức chế, lúc đó sẽ xuất hiện váng dưa là một loại nấm men chịu pH thấp. Nấm men này phân huỷ axit lactic thành CO 2 và H2O làm cho dưa giảm độ chua, các loại vi khuẩn hoại sinh do pH lên cao lại phát triển trở lại làm cho dưa bị khú. Ngoài các quá trình lên men rượu, lên men lactic nói trên, trong thiên nhiên còn có nhiều nhóm vi sinh vật tiến hành phân giải đường nhờ các quá trình lên men khác. Ví dụ như sự lên men propionic, sản phẩm của quá trình là axit propionic, sự lên men focmic, lên men butiric, lên men metan ... sản phẩm của quá trình là axit focmic, rượu butiric, khí mêtan ... các nhóm vi khuẩn trên đều phân bố rộng rãi trong đất và tiến hành phân giải đường đơn thành các sản phẩm khác nhau. Đó là sự phân giải đường nhờ các quá trình lên men. Sự phân giải đường nhờ các quá trình oxy hoá Các nhóm vi sinh vật háo khí có khả năng phân huỷ triệt để đường glucoza thành CO 2 và H2O qua chu trình Crebs (đọc giáo trình sinh hoá học). Sản phẩm của các quá trình háo khí không phải là các chất hữu cơ như ở các quá trình lên men mà là CO2 và H2O. Như vậy nhờ các nhóm vi sinh vật khác nhau mà đường glucoza được sinh ra trong sự phân giải xenluloza và tinh bột lại được phân giải tiếp tục. Các sản phẩm của quá trình phân giải đường do lên men cũng được tiếp tục phân giải. Ví dụ như rượu etylic là sản phẩm của quá trình lên men rượu sẽ được nhóm vi khuẩn axetic chuyển hoá thành axit axetic, đó chính là cơ chế của quá trình sản xuất dấm ăn v.v... 17
- Các hợp chất cacbon hữu cơ trong đất được các nhóm vi sinh vật khác nhau phân huỷ cuối cùng thành CO2 và H2O. CO2 và H2O lại được nhóm vi khuẩn dinh dưỡng quang năng và thực vật đồng hoá thành chất hữu cơ, khép kín vòng tuần hoàn cacbon, nếu như không có sự hoạt động của các nhóm vi sinh vật trong đất thì vòng tuần hoàn cacbon không thể khép kín, các chất hữu cơ không được phân huỷ và lúc đó tai họa sinh thái sẽ xảy ra dẫn đến sự khủng hoảng sinh cầu, sự sống trên trái đất sẽ không thể tiếp diễn. Sự cố định CO2 Là quá trình quang hợp của cây xanh và vi sinh vật tự dưỡng quang năng. Quá trình này chuyển hoá CO2 thành chất hữu cơ sản phẩm của quá trình quang hợp. Tóm lại, các nhóm vi sinh vật tham gia trong quá trình chuyển hoá các hợp chất cacbon đã góp phần khép kín vòng tuần hoàn vật chất, giữ mối cân bằng vật chất trong thiên nhiên. Từ đó giữ được sự cân bằng sinh thái trong các môi trường tự nhiên. Sự phân bố rộng rãi của các nhóm vi sinh vật chuyển hoá các hợp chất cacbon còn góp phần làm sạch môi trường, khi môi trường bị ô nhiễm các hợp chất hữu cơ chứa cacbon. Người ta sử dụng những nhóm vi sinh vật này trong việc xử lý chất thải có chứa các hợp chất cacbon hữu cơ như xenluloza, tinh bột v.v... Bài 3: Một số vi sinh vật thường gặp 1 Vi sinh vật có lợi Trong thực tế đời sống hiện nay người ta đã biết lợi dụng những biến đổi có lợi của vi sinh vật để tạo ra những sản phẩm thực phẩm có chất lượng và phù hợp hơn cho nhu cầu dinh dưỡng ngày càng cao của con người. Như sử dụng sinh khối vi sinh vật làm nguồn thức ăn giàu dinh dưỡng, ứng dụng các quá trình lên men rộng rãi trong việc sản xuất các loại thực phẩm quan trọng như: rượu, bia, nước giải khát, bánh mì, nước mắm, mì chính,…cũng như làm gia tăng giá trị dinh dưỡng của các loại thực phẩm như tempeh, natto… được lên men từ đậu nành. 2 Vi sinh vật có hại 2.1 Gây hư hỏng thực phẩm: Hệ vi sinh vật thực phẩm được phát sinh từ nhiều nguồn khác nhau: Thực phẩm bị nhiễm vi sinh vật từ môi trường bên ngoài, tay công nhân, dụng cụ, quá trình chuyên chở, bảo quản… Thực phẩm bị nhiễm vi sinh vật từ bản thân nguyên liệu. Do thực phẩm thường là những chất chứa nhiều nước, nhiều chất dinh dưỡng, vitamin và khoáng chất nên đây là môi trường thuận lợi cho nhiều loài vi sinh vật có hại phát triển. Mỗi loại thực phẩm thường có một hệ vi sinh vật riêng và hoạt động của chúng gây nên những biến đổi sinh hoá, cơ lý trong thực phẩm và làm giảm chất lượng hoặc hư hỏng thực phẩm. Ta phải nghiên cứu để hiểu thật rõ về hệ vi sinh vật thực phẩm và những biến đổi do chúng gây nên nhằm mục đích bảo quản thực phẩm trong thời gian dài nhất với số lượng và chất lượng hao hụt của thực phẩm là ít nhất. 2.2 Thực phẩm mang vi sinh vật gây bệnh Khi chúng ta ăn phải các loại thực phẩm mang vi sinh vật gây bệnh hoặc độc tố của chúng sẽ gây ra nhiều bệnh cho cơ thể người là động vật có thể để lại hậu quả nghiêm trọng thậm chí dẫn đến tử vong. Các bệnh thường gặp là thương hàn do vi khuẩn Salmonella, tả do Shigella, lao do Micobacterium,... Ngoài ra còn có thể dẫn đến các triệu chứng ngộ độc nghiêm trọng nếu chúng ta ăn phải độc tố của vi khuẩn như độc tố botulin của vi khuẩn độc thịt Clostridium botulinum, độc tố của vi khuẩn tụ cầu vàng Staphylococcus aureus 18
- Bài 4: Vi sinh vật trong bảo quản và chế biến thịt, cá, tôm, mực,động vật nhuyễn thể 1 Hệ vi sinh vật của cá 1.1. Đặc điểm của cá Thành phần hoá học của cá gần giống thịt: hàm lượng nước từ 65÷85%, nhiều chất dinh dưỡng như lipid: 0,1÷33%, protein: 12÷23%, vitamin... Cá thường được bảo quản nguyên con, do có lớp nhớt nên chứa nhiều vi sinh vật sẽ gây hư hỏng khi bảo quản. Ngoài ra cá còn có hệ vi sinh vật đường ruột, khi vi sinh vật đường ruột phát triển mạnh sẽ thuỷ phân màng ruột, sau đó chúng theo ống xương đến những lớp thịt. Vi sinh vật ở mang cá rất nhiều, mang cá có nhiều mạch máu nên vi sinh vật xâm nhiễm đến thịt dễ dàng. Mặt khác khi đánh bắt cá không biết con nào mắc bệnh, khi bảo quản cả khối cá thì vi sinh vật nhiễm từ những con bị bệnh sang những con khác làm cho cả khối cá bị hư hỏng. Cá có nhiều protein đơn giản hơn thịt nên cá dễ bị thối rữa hơn thịt. 1.2. Hệ vi sinh vật của cá Hệ vi sinh vật trên bề mặt cá từ 103÷106 tế bào trên 1cm2. Hệ vi sinh vật ở cá thường phụ thuộc vào loài cá, thành phần lớp nhầy trên da cá và phụ thuộc vào các điều kiện khác như thời gian đánh bắt cá. Những loài cá sống ở tầng đáy, lớp bùn có nhiều vi sinh vật nên hệ vi sinh vật đa dạng hơn cá sống ở tầng mặt. Cá sống ở nước mặn ít vi sinh vật hơn cá sống ở nước ngọt. Lượng vi sinh vật trên bề mặt cá cũng phụ thuộc vào lượng vi sinh vật trong nước. Khi trời mưa vi sinh vật trong đất theo nước xuống ao hồ làm cho lượng vi sinh vật trên cá cũng tăng cao. Hệ vi sinh vật trên cá rất phong phú và đa dạng gồm: vi khuẩn, xạ khuẩn, nấm men, nấm mốc… Tuy nhiên vi khuẩn là chủ yếu: Micrcoccus cereus, Micrcoccus flavus, Pseudomonas fluorescen, Proteus vulgaris… và phụ thuộc vào môi trường. Trong mang cá có nhiều mạch máu, O 2, pH trung tính nên ở mang cá chủ yếu là vi sinh vật hô hấp hiếu khí, thích hợp pH trung tính nhiều nhất làPseudomonas fluorescen. Trong ruột cá có nhiều vi sinh vật trực khuẩn đường ruột hô hấp kỵ khí như: Clostridium sporogenes, Clostridium putrificum, Salmonella, Ecoli… Sự thối rữa cá 19
- Cá tươi sẽ không bảo quản được lâu nếu không xử lý sơ bộ như móc mang cá, ruột cá vì đây là những bộ phận chứa nhiều vi sinh vật có thể làm hư hỏng cá. Cũng như tất cả sinh vật khác, tế bào cá cũng có khả năng miễn dịch tự nhiên ức chế đối với các vi sinh vật khi còn sống. Khi bị chết khả năng này mất đi. Khi cá chết các vi sinh vật trong mang, ruột và trên da cá phát triển mạnh và xâm nhâp vào các mô làm cho cá bị ươn, sau đó protein bị thuỷ phân làm cho cá bị thối rữa, cá bắt đầu bị thối rữa khi tế số lượng vi sinh vật lên tới 107÷108 tế bào/ 1g. Sự ươn cá không những chỉ có quá trình vi sinh mà còn có cả quá trình sinh hoá do sự hoạt động của các enzyme, quá trình sinh hoá gọi là hiện tượng tự phân. Trước hết sự thối rữa bắt đấu từ ngoài rồi xâm nhập vào bên trong. Protein bị phân huỷ tạo thành các hợp chất có chứa nitơ làm cho thịt cá có tính kiềm sẽ tạo điều kiện cho các vi sinh vật hoại sinh phát triển. Thịt cá thay đổi màu sắc, có mùi khó ngửi do sự phân huỷ protein tao thành ammoniac, sulfuahydro, indol, cadaverin… Quá trình thối rữa cá rất phức tạp và phụ thuộc vào các điều kiện ngoại cảnh và thành phần vi sinh vật có mặt. Các vi khuẩn thường thấy là: Bacillus mycoides, Bacillus subtilis, Bacillus mesentericus, Chromobacterium progodiosum, Proteus vulgaris, Clostridium putrificus, Clostridium sporogenes. Các nấm mốc có khả năng phân huỷ thịt cá là: Aspergillus, Penicilium, Mucor…Đặc biệt nguy hiểm là loài vi khuẩn Clostridium botulinum trong quá trình phân huỷ protein thành chất độc botulin. 1.3 Vi sinh vật gây bệnh cá Các vi sinh vật trong đất, xác động vật nhiễm vào nước là nguyên nhân gây nên các bệnh cho cá. Khi gặp điều kiện thuận lợi những vi sinh vật này phát triển mạnh và chúng xâm nhập và cơ thể cá qua đường da, miệng, mang, ruột. Bình thường cá có sức đề kháng nhưng khi gặp điều kiện thuận lợi chúng xâm nhập vào các tổ chức hay tế bào thịt cá gây nên một số bệnh cho cá. Ví dụ như: bệnh đinh nhọt ở cá hồi do Bacterium salmonicida, bệnh lao do Mycobacterium piseium… Ngoài ra cá còn một số bệnh do virus, nấm, Branchiomyces sanguinis gây thối mang, một số nấm mọc thành sợi trên da cá. Thỉnh thoảng cá truyền bệnh cho nhau bằng các vật ký sinh trên da hoặc mang. Những vi khuẩn gây bệnh phát triển trên cá tương đối nhiều và đa dạng, khi số lượng nhiều chúng tạo ra độc tố, khi con người ăn phải những con cá này có thể sẽ bị ngộ độc. 1.4 Các phương pháp bảo quản và hệ vi sinh vật một số sản phẩm từ cá a. Cá ướp lạnh Bảo quản lạnh thường từ 1.6 ÷ 1.2o C đối với cá nước ngọt và 2oC đối với cá nước mặn. Thành phần và số lượng vi sinh vật của cá bảo quản lạnh không khác gì cá tươi. Thời gian bảo quản phụ thuộc vào mật độ vi sinh vật ban đầu. Mặt khác nếu người ta dùng kết hợp hoá chất với phương pháp bảo quản lạnh thì thời gian sẽ bảo quản lâu hơn. Hoá chất thông dụng thường dùng là: tetraxilin12ppm, NaNO2 0.15%, khí CO2 hoặc SO2 dạng tuyết từ 2070% so với cá. Bảo quản ở nhiệt độ thấp được dùng rộng rãi để giữ chất lượng ban đầu của cá. Những vi sinh vật nhiễm vào cá gồm các nhóm ưa lạnh, ưa ấm và ưa nhiệt. Một trong số chúng chịu được nhiệt độ lạnh và phát triển ở nhiệt độ 0oC hoặc thấp hơn, tuy rằng sự phát triển có hơi chậm và các vi sinh vật không bị chết hoàn toàn ở nhiệt độ đông lạnh. Ướp lạnh cá chủ yếu làm ức chế các quá trình hoạt động của enzyme và các vi sinh vật gây thối. Trong khi ướp thân nhiệt của cá chưa đến điểm đóng băng của dịch tế bào cá. Đây cũng là điểm khác nhau cơ bản giữa phương pháp ướp lạnh và phương pháp đông lạnh. Ướp lạnh không làm ngừng quá trình phân huỷ cá mà chỉ làm quá trình này chậm lại. 20

CÓ THỂ BẠN MUỐN DOWNLOAD
-
Giáo trình linh kiện điện tử ( Trương Văn Tám - ĐH Cần Thơ )
163 p |
2137 |
907
-
Giáo trình Công nghệ lên men: Phần 1 - PGS.TS. Lương Đức Phẩm
159 p |
986 |
467
-
Giáo trình Linh Kiện Điện Tử - ĐH Cần Thơ
164 p |
764 |
428
-
Giáo trình Cơ sở kỹ thuật cắt gọt kim loại (Máy và dụng cụ cắt gọt kim loại - Phạm vi ứng dụng): Phần 1 - NXB Giáo dục
146 p |
548 |
212
-
Giáo trình Thực hành Hàn MIG - Cao đẳng Công nghiệp Hà Nội
81 p |
391 |
181
-
Giáo trình Kỹ thuật phay - Nguyễn Tiến Đào
188 p |
459 |
151
-
Giáo trình An toàn và bảo hộ lao động trong ngành Xây dựng - Phần II
77 p |
204 |
83
-
Giáo trinh : PHƯƠNG PHÁP KIỂM NGHỆM VI SINH VẬT TRONG THỰC PHẨM part 6
6 p |
168 |
75
-
Giáo trình Kỹ thuật phay - Nguyễn Tiến Đào
188 p |
154 |
57
-
Giáo trình Công nghệ bảo quản lương thực: Phần 2
134 p |
212 |
51
-
Giáo trình: Cơ học kết cấu- Chuyên ngành xây dựng
81 p |
90 |
31
-
Các quá trình và thiết bị công nghệ sinh học : MÁY ĐIỆN DI part 1
6 p |
70 |
11
-
Giáo án Công nghệ lớp 7 : Tên bài dạy : TH ĐÁNH GIÁ CHẤT LƯỢNG THỨC ĂN VẬT NUÔI CHẾ BIẾN BẰNG PHƯƠNG PHÁP VI SINH VẬT
6 p |
115 |
11
-
Giáo trình phân tích sơ đồ thiết bị và đồ thị chu trình Renkin được áp dụng trong nhà máy phát điện p1
5 p |
75 |
10
-
Giáo trình hình thành phân kênh ứng dụng vận hành các trạm lặp kế hoạch hai tần số cho kênh RF p4
10 p |
51 |
5
-
Giáo trình Các phương pháp phân tích ngành công nghệ lên men (In lần thứ ba, có sửa chữa, bổ sung): Phần 2
185 p |
41 |
5
-
Giáo trình phân tích phương trình vi phân viết dưới dạng thuật toán đặc tính của hệ thống p10
5 p |
43 |
3


Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline:0933030098
Email: support@tailieu.vn
