intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Luận văn Thạc sĩ Giáo dục học: Nghiên cứu về giá trị lớn nhất và giá trị nhỏ nhất ở trung học phổ thông

Chia sẻ: Lavie Lavie | Ngày: | Loại File: PDF | Số trang:112

101
lượt xem
12
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Luận văn Thạc sĩ Giáo dục học: Nghiên cứu về giá trị lớn nhất và giá trị nhỏ nhất ở trung học phổ thông trình bày về nghiên cứu về quan hệ thể chế đối với giá trị lớn nhất và giá trị nhỏ nhất; nghiên cứu thực hành giảng dạy của giáo viên về giá trị lớn nhất và giá trị nhỏ nhất của hàm số.

Chủ đề:
Lưu

Nội dung Text: Luận văn Thạc sĩ Giáo dục học: Nghiên cứu về giá trị lớn nhất và giá trị nhỏ nhất ở trung học phổ thông

  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Nguyễn Quốc Tuấn NGHIÊN CỨU VỀ GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT Ở TRUNG HỌC PHỔ THÔNG LUẬN VĂN THẠC SĨ GIÁO DỤC HỌC Thành phố Hồ Chí Minh – 2013
  2. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Nguyễn Quốc Tuấn NGHIÊN CỨU VỀ GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT Ở TRUNG HỌC PHỔ THÔNG Chuyên ngành : Lý luận và phương pháp dạy học bộ môn Toán Mã số : 60 14 01 11 LUẬN VĂN THẠC SĨ GIÁO DỤC HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: TS. TRẦN LƯƠNG CÔNG KHANH Thành phố Hồ Chí Minh – 2013
  3. LỜI CẢM ƠN Trước tiên, tôi xin bày tỏ lòng biết ơn sâu sắc đến TS. Trần Lương Công Khanh, người đã truyền dạy những những kiến thức quý báu và đã tận tình chỉ dẫn, giúp đỡ tôi hoàn thành luận văn này. Tôi xin trân trọng cảm ơn: PGS.TS. Lê Thị Hoài Châu, PGS.TS. Lê Văn Tiến, PGS.TS Nguyễn Chí Thành, TS. Lê Thái Bảo Thiên Trung, TS. Nguyễn Thị Nga, TS. Vũ Như Thư Hương và các thầy cố đến từ Pháp đã nhiệt tình giảng dạy, giải đáp thắc mắc, giúp tôi tiếp thu tốt nhất những kiến thức chuyên ngành Didactic Toán. Tôi xin chân thành cảm ơn: Ban lãnh đạo và chuyên viên Phòng Sau Đại học, ban chủ nhiệm và giảng viên khoa Toán - Tin học trường Đại học Sư Phạm TP.HCM đã tạo mọi thuận lợi cho tôi trong suốt khóa học. Ban giám hiệu và giáo viên hai trường THPT Phú Quốc và THPT Dương Đông (huyện Phú Quốc, tỉnh Kiên Giang) đã tạo điều kiện cho tôi thực dự giờ, quan sát nhiều tiết học và tiến hành các thực nghiệm cần thiết cho luận văn. Cuối cùng, tôi xin gửi lời cảm ơn tha thiết đến gia đình và các bạn cùng khóa, những người luôn yêu mến, ủng hộ, chia sẻ và động viên tôi suốt quá trình học tập. Nguyễn Quốc Tuấn 1
  4. MỤC LỤC LỜI CẢM ƠN .............................................................................................................. 1 MỤC LỤC .................................................................................................................... 2 DANH MỤC CÁC CHỮ VIẾT TẮT ......................................................................... 4 MỞ ĐẦU....................................................................................................................... 5 1. Những ghi nhận ban đầu và câu hỏi xuất phát ............................................................5 2. Mục đích nghiên cứu và phạm vi lý thuyết tham chiếu ..............................................9 3. Phương pháp nghiên cứu và cấu trúc của luận văn ..................................................11 CHƯƠNG 1: NGHIÊN CỨU VỀ QUAN HỆ THỂ CHẾ ĐỐI VỚI GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT.................................................................. 12 1.1. Giá trị lớn nhất và giá trị nhỏ nhất ở lớp 11 ...........................................................12 1.1.1. Giá trị lớn nhất và giá trị nhỏ nhất trong chương trình toán lớp 11 ..................... 12 1.1.2. Giá trị lớn nhất và giá trị nhỏ nhất trong sách giáo khoa toán lớp 11 .................. 13 1.2. Giá trị lớn nhất và giá trị nhỏ nhất ở lớp 12 ...........................................................18 1.2.1. Giá trị lớn nhất và giá trị nhỏ nhất trong chương trình toán lớp 12 ..................... 18 1.2.2. Giá trị lớn nhất và giá trị nhỏ nhất trong sách giáo khoa toán lớp 12 .................. 19 1.3. Phân tích các đề thi tuyển sinh đại học, cao đẳng từ năm 2003 đến 2013 ............28 1.3.1. Nhóm 1: Nhóm các câu hỏi sử dụng đạo hàm “ngay từ ban đầu”. ...................... 29 1.3.2. Nhóm 2: Nhóm các câu hỏi không sử dụng đạo hàm. ......................................... 29 1.3.3 Nhóm 3: Nhóm các câu hỏi biến đổi biểu thức về hàm số một biến, sau đó sử dụng đạo hàm để tìm đáp án. .......................................................................................... 31 CHƯƠNG 2. NGHIÊN CỨU THỰC HÀNH GIẢNG DẠY CỦA GIÁO VIÊN VỀ GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ ............... 37 CHƯƠNG 3: THỰC NGHIỆM SƯ PHẠM............................................................ 60 3.1. Thực nghiệm đối với giáo viên ..................................................................................60 3.1.1. Mục đích xây dựng thực nghiệm .......................................................................... 60 3.1.2. Bộ câu hỏi thực nghiệm giáo viên ........................................................................ 60 3.1.3. Phân tích các câu trả lời của giáo viên ................................................................. 61 3.2. Thực nghiệm đối với học sinh ...................................................................................65 3.2.1. Các bài toán thực nghiệm ..................................................................................... 66 3.2.2. Phân tích tiên nghiệm ........................................................................................... 66 3.2.3. Phân tích hậu nghiệm ........................................................................................... 77 KẾT LUẬN ................................................................................................................ 81 PHỤ LỤC ................................................................................................................... 85 2
  5. 3
  6. DANH MỤC CÁC CHỮ VIẾT TẮT THPT : Trung học phổ thông GV : Giáo viên HS : Học sinh TXĐ : Tập xác định SGV11 : Sách giáo viên đại số và giải tích 11 nâng cao SGK11 : Sách giáo khoa đại số và giải tích 11 nâng cao SBT11 : Sách bài tập đại số và giải tích 11 nâng cao SGV12 : Sách giáo viên giải tích 12 nâng cao SGK12 : Sách giáo khoa giải tích 12 nâng cao SBT12 : Sách bài tập giải tích 12 nâng cao 4
  7. MỞ ĐẦU 1. Những ghi nhận ban đầu và câu hỏi xuất phát Ghi nhận và nhóm câu hỏi thứ nhất Bài toán tìm giá trị lớn nhất và giá trị nhỏ nhất là loại bài toán có rất nhiều ứng dụng trong đời sống thực tế, chẳng hạn: làm thế nào để quản lý một công ty sao cho chi phí, tài nguyên, nguồn lực tiết kiệm nhất mà mang lại hiểu quả cao nhất hay làm thế nào để sản xuất một loại thùng inox dạng hình trụ tròn xoay có thể tích cố định mà sao cho chiều cao và bán kính đáy của thùng là tiết kiệm vật liệu nhất,.… Bài toán tìm giá trị lớn nhất và giá trị nhỏ nhất có mặt đủ ở các cấp học, từ cấp tiểu học, trung học cơ sở đến trung học phổ thông và cao hơn nữa. Đặc biệt, trong các kì thi tốt nghiệp, các kì thi vào Đại học, Cao đẳng hàng năm gần đây, các bài toán liên quan đến việc tìm giá trị lớn nhất và giá trị nhỏ nhất thường xuyên xuất hiện trong các đề thi. Thực tế giảng dạy cho thấy, bài toán tìm giá trị lớn nhất và giá trị nhỏ nhất được giải bằng nhiều kỹ thuật khác nhau từ sơ cấp đến cao cấp và với nhiều trình độ khác nhau. Trong chương trình toán trung học phổ thông, dạng bài toán này đã xuất hiện ngay ở khối lớp 10, khối lớp 11 và ở khối lớp 12. Mặc dù giá trí lớn nhất và giá trị nhỏ nhất chưa được định nghĩa chính thức trong sách giáo khoa 10 và 11 nhưng dạng bài toán này đã xuất hiện và để giải chúng thì công cụ chủ yếu là sử dụng kỹ thuật “bất đẳng thức”. Cho đến khối lớp 12, giá trị lớn nhất và giá trị nhỏ nhất mới được định nghĩa và đưa vào giảng dạy một cách chính thức trong chương trình và việc tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số chủ yếu là dùng kỹ thuật “đạo hàm”, sử dụng tính đơn điệu và cực trị của hàm số. Đặt trọng tâm vào khối lớp 12, chúng tôi nhận thấy việc sử dụng đạo hàm như là một kỹ thuật chủ yếu để tìm giá trị lớn nhất và giá trị nhỏ nhất nên chúng tôi tiến hành một khảo sát nhỏ trên 71 học sinh ở 2 lớp 12 của trường THPT Phú Quốc nhằm tìm kiếm những ứng xử của học sinh đối với dạng bài toán này như thế nào thông qua 2 bài tập như sau: Câu 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số 𝑦 = 𝑥 2 − 4𝑥 + 1 trên đoạn [0 ; 5]. Câu 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số 3𝑥 2 −5𝑥+2 𝑦= , với x∈ R. 𝑥 2 +1 5
  8. Sau khi phân tích bài làm của học sinh, chúng tôi nhận thấy đa số học sinh đều sử dụng kỹ thuật đạo hàm để tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Bảng dưới đây sẽ trình bày các kỹ thuật mà học sinh sử dụng. Kỹ thuật đạo hàm Kỹ thuật bất đẳng thức Không giải Câu hỏi HS Tỉ lệ HS Tỉ lệ HS Tỉ lệ 1 71 100% 0 0% 0 0% 2 64 90% 2 3% 5 7% Trong đó : - Cột “kỹ thuật đạo hàm” dùng cho những lời giải có sử dụng đạo hàm. - Cột “Kỹ thuật bất đẳng thức” dùng cho những lời giải sử dụng định nghĩa, sử dụng bất đẳng thức,… không sử dụng đạo hàm. - Cột “Không giải” cho các bài không có lời giải. Đối với câu 1, 100% học sinh sử dụng kỹ thuật đạo hàm để tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số, sau khi lấy đạo hàm chúng ta có 2 cách tiếp cận để tiếp tục tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số, thứ nhất: lập bảng biến thiên, dựa vào bảng biến thiên để kết luận, thứ hai: sử dụng quy tắc mà sách giáo khoa đã đưa ra. Nhưng qua quan sát, chúng tôi nhận thấy phần lớn các em học sinh sử dụng quy tắc mà sách giáo khoa đã đưa ra (69/71 học sinh chọn, chiếm 97.2%), rất ít học sinh sử dụng bảng biến thiên (2/71 học sinh chọn, chiếm 2.8%). Từ đó chúng tôi nhận định rằng: nếu bài toán yêu cầu tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một đoạn thì đa số học sinh sẽ sử dụng “quy tắc” mà sách giáo khoa đã đưa ra để tìm đáp án. Đối với câu 2, tiếp tục cho thấy sự ưu tiên của học sinh trong việc sử dụng kỹ thuật “đạo hàm”. Nhưng qua quan sát bài làm của học sinh thì đa số học sinh không tìm được đáp án, cụ thể có một học sinh trình bày cách giải của mình như sau: Bài giải: 3𝑥 2 − 5𝑥 + 2 𝑦= 𝑥2 + 1 Tập xác định: D=R 5𝑥 2 + 2𝑥 − 5 𝑦′ = (𝑥 2 + 1)2 6
  9. ⎡𝑥 = −1 + √26 𝑦 ′ = 0 ⟺ 5𝑥 2 + 2𝑥 − 5 = 0 ⟺ ⎢⎢ 5 ⎢𝑥 = −1 − √26 ⎣ 5 𝑙𝑖𝑚 𝑦 = 3 𝑥→±∞ Bảng biến thiên: −1 − √26 −1 + √26 x -∞ +∞ 5 5 y’ + 0 - 0 + −1 − √26 3 𝑦( ) 5 y −1 + √26 3 𝑦( ) 5 Suy ra: −1 − √26 𝑚𝑎𝑥 𝑦 = 𝑦( ) 𝑥∈𝑅 5 −1 + √26 𝑚𝑖𝑛 𝑦 = 𝑦( ) 𝑥∈𝑅 5 Học sinh này cũng như hầu hết các học sinh khác đều không thể tính được hai giá trị −1−√26 −1+√26 y( ) và y( ), tuy nhiên vẫn có một số học sinh sử dụng máy tính cầm tay tính 5 5 được gần đúng hai giá trị trên và đi đến kết luận −1 − √26 max y = y( ) ≈ 5.0495 x∈R 5 −1 + √26 min 𝑦 = 𝑦 � � ≈ −0,0495 𝑥∈𝑅 5 Trở lại bảng thống kê, ta thấy có hai học sinh sử dụng kỹ thuật “bất đẳng thức” (trong trường hợp này chúng tôi gọi đây là kỹ thuật “tập giá trị” mà chúng tôi sẽ đề cập trong phần sau) cho kết quả chính xác. Tuy nhiên, qua quan sát bài làm của hai học sinh này, ban đầu hai học sinh này cũng tính đạo hàm nhưng không tìm được kết quả, sau đó hai học sinh này gạch bỏ phần bài làm của mình và làm bài lại với một kỹ thuật khác. Một điều cần lưu ý, đối với câu 2 việc sử dụng kỹ thuật “tập giá trị” sẽ cho ra kết quả chính xác và khá dễ dàng. Từ kết quả của việc khảo sát này dẫn chúng tôi đến các câu hỏi: Để tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số thì chương trình và sách giáo khoa 12 7
  10. đã lựa chọn những kỹ thuật nào để giải ? Sự lựa chọn của chương trình, sách giáo khoa đã ảnh hưởng như thế nào đến thực tế dạy và học ? Liệu giáo viên có quan tâm đến việc đa dạng hóa các kỹ thuật để tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số hay không? Ghi nhận và nhóm câu hỏi thứ hai Từ những ghi nhận ban đầu trên, cho thấy rằng đa số học sinh lớp 12 tập trung vào kỹ thuật “đạo hàm” để tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số, điều đó làm cho chúng tôi tự hỏi rằng: Liệu học sinh có thật sự làm chủ được kỹ thuật đạo hàm trong việc tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số hay không ? Từ đó, chúng tôi đề xuất một bài toán sau đây: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số 𝑓(𝑥) = 𝑥 3 − 3𝑥 + 1 trên khoảng (- 3 ; 3) Chúng tôi dự đoán học sinh có thể đưa ra cách giải như sau: Giải Ta có 𝑓′(𝑥) = 3𝑥 2 − 3 ; 𝑓 ′ (𝑥) = 0 ⟺ 𝑥 = ±1 . Sau đây là bảng biến thiên của f trên khoảng (-3;3) x -3 -1 1 3 f’(x) + 0 - 0 + 3 f(x) -1 Từ bảng biến thiên, ta được 𝑚𝑎𝑥 𝑓(𝑥) = 𝑓 (−1) = 3 𝑥∈(−3;3) 𝑚𝑖𝑛 𝑓(𝑥) = 𝑓 (1) = −1 𝑥∈(−3;3) Bài toán trên không tồn tại giá trị lớn nhất và giá trị nhỏ nhất, tuy nhiên sự lựa chọn của học sinh này là hoàn toàn sai, từ đó dẫn chúng tôi đến nhóm câu hỏi thứ hai: Khi sử dụng kỹ thuật “đạo hàm” để tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số thì học sinh có thật sự làm chủ được kỹ thuật này hay không ? Học sinh đã mắc phải những sai lầm nào ? Các sai lầm này xuất phát từ đâu ? Có những quy tắc hợp đồng nào được hình thành từ thể chế ? 8
  11. Sau khi phân tích những ghi nhân trên và đưa ra các câu hỏi cần giải đáp, chúng tôi quyết định chọn đề tài “Nghiên cứu về giá trị lớn nhất và giá trị nhỏ nhất ở Trung học phổ thông” làm chủ đề cho luận văn của mình. Tuy nhiên, do thời gian có hạn nên chúng tôi chỉ tập trung nghiên cứu về giá trị lớn nhất và giá trị nhỏ nhất của hàm số ở khối lớp 12. Đồng thời để thấy được tiến trình hình thành khái niệm giá trị lớn nhất và giá trị nhỏ nhất ở khối lớp 12, cũng như sự xuất hiện kỹ thuật “tập giá trị” nên chúng tôi quyết định phân tích một cách tổng quát các vấn đề liên quan đến giá trị lớn nhất và giá trị nhỏ nhất ở khối lớp 11. 2. Mục đích nghiên cứu và phạm vi lý thuyết tham chiếu Mục đích chính của luận văn này là nghiên cứu và tìm lời giải cho phép trả lời các câu hỏi mà chúng tôi đã nêu trên. Để làm được điều đó, chúng tôi sẽ vận dụng các công cụ của lý thuyết didactic toán, cụ thể là thuyết nhân học với các khái niệm quan hệ cá nhân, quan hệ thể chế, tổ chức toán học, tổ chức didactic và khái niệm hợp đồng didactic để phục vụ cho quá trình nghiên cứu của mình. Quan hệ thể chế, quan hệ cá nhân Quan hệ thể chế: Quan hệ R(I,O) của thể chế I với tri thức O là tập hợp các tác động qua lại mà thể chế I có với tri thức O. Nó cho biết O xuất hiện ở đâu, như thế nào, tồn tại ra sao, có vai trò gì,…trong thể chế I. Quan hệ cá nhân: Quan hệ R(X,O) của cá nhân X với tri thức O là tập hợp các tác động qua lại mà cá nhân X có với tri thức O. Nó cho biết X nghĩ gì, hiểu như thế nào về O, có thể thao tác O ra sao? Việc học tập của các nhân X về đối tượng tri thức O chính là quá trình thiết lập hay điều chỉnh mối quan hệ R(X,O). Hiển nhiên, đối với một tri thức O, quan hệ của thể chế I mà cá nhân X là một thành phần, luôn luôn để lại một dấu ấn trong quan hệ R(X,O). Muốn nghiên cứu R(X,O), ta cần đặt nó trong R(I,O). Tổ chức toán học Theo lý thuyết nhân học, một tổ chức toán học là một bộ phận gồm 4 thành phần [Τ, 𝜏, 𝜃, Θ] trong đó Τ là một kiểm nhiệm vụ, 𝜏 là kỹ thuật cho phép giải quyết kiểm nhiệm vụ T, 𝜃 là công nghệ giải thích cho kỹ thuật 𝜏, còn Θ là lý thuyết giải thích cho công nghệ 𝜃. 9
  12. Việc phân tích các tổ chức toán học liên quan đến đối tượng trị thức O cho phép vạch rõ mối quan hệ R(I,O), từ đó hiểu được quan hệ mà cá nhân X duy trì đối với tri thức O. Đồng thời, thông qua việc phân tích này, ta cũng xác định được một số quy tắc hợp đồng dạy học. Hợp đồng dạy học Hợp đồng dạy học là một sự mô hình hóa các quyền lợi và nghĩa vụ ngầm ẩn của giáo viên và học sinh đối với các đối tượng tri thức toán học đem giảng dạy. “Trong một buổi học có mục đích là dạy cho học sinh một kiến thức nhất định, học sinh hiểu tình huống được giới thiệu, những câu được hỏi đặt ra, những thông tin được cung cấp, những ràng buộc áp đặt, tùy theo những gì giáo viên thực hiện, có ý thức hay không, một cách lặp đi lặp lại trong thực tiễn giảng dạy của mình. Trong các thói quen này, ta quan tâm đặc biệt hơn đến những gì là đặc thù cho kiến thức giảng dạy: ta gọi hợp đồng dạy học là tập hợp những cách ứng xử (chuyên biệt) của thầy được học sinh trông đợi và tập hợp những ứng xử của học sinh mà thầy trông đợi”. G.Brousseau (1980) Hợp đồng dạy học là tập hợp những quy tắc phân chia và hạn chế trách nhiệm của mỗi bên, học sinh và giáo viên, đối với một tri thức toán học được giảng dạy. Khái niệm hợp đồng dạy học cho phép ta giải thích các ứng xử của giáo viên và học sinh, tìm ra ỹ nghĩa của những hoạt động mà họ tiến hành, từ đó có thể giải thích một cách rõ ràng và chính xác những sự kiện quan sát được trong lớp học. Sau khi trình bày sơ lược về các cộng cụ của didactic, chúng tôi sẽ giải thích ngắn gọn lý do tại sao chúng tội lại sử dụng các công cụ trên cho mục đích nghiên cứu của mình. Đối tượng O : là giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Cá nhân X : là người ở vị trí giáo viên hay học sinh. Thể chế I : là thể chế dạy học theo chương trình giải tích 12 hiện hành. Các thuật ngữ quan hệ R(I,O), quan hệ R(X,O) gắn liền với nhóm câu hỏi liên quan đến sự lựa chọn của chương trình và sách giáo khoa ảnh hưởng như thế nào lên hoạt động dạy của giáo viên và học của học sinh về O. Đồng thời, việc phân tích tổ chức toán học liên quan đến O sẽ cho phép làm rõ R(I,O) và đây cũng chính là một công cụ đắc lực để phân tích thực tế dạy và học. Liên quan đến việc giáo viên có quan tâm đến việc đa dạng kỹ thuật tìm giá trị lớn nhất và giá trị nhỏ nhất hay không? Những kiểu nhiệm vụ nào mà giáo viên muốn học sinh biết,... Chúng tôi sử dụng khái niệm tổ chức Didactic để nghiên cứu thực hành giảng dạy 10
  13. của giáo viên, phân tích các hoạt động của giáo viên trong lớp học. Ngoài ra, khái niệm hợp đồng didactic cho phép chúng tôi giải thích cách ứng xử của giáo viên và học sinh, cho phép giải thích một số sự kiện trong lớp học cũng như một số sai lầm mà học sinh mắc phải. Từ việc dựa theo khung lý thuyết tham chiếu đã chọn và những phân tích ban đầu, chúng tôi đề ra những câu hỏi nghiên cứu sau đây: CH1: Trong chương trình và sách giáo khoa toán lớp 12, đối tượng giá trị lớn nhất và giá trị nhỏ nhất tồn tại ra sao? Những kỹ thuật giải nào đã được lựa chọn? Những kỹ thuật nào được thể chế ưu tiên? Có sự giải thích nào được đưa ra cho sự lựa chọn đó? CH2: Trong thực tế dạy học, giáo viên thiết lập các tổ chức didactic nào để tiến hành giảng dạy các tổ chức toán học liên quan đến giá trị lớn nhất và giá trị nhỏ nhất của hàm số? Có sự khác biệt nào giữa tổ chức toán học được dạy với tổ chức toán học cần dạy ? CH3: Cách trình bày của sách giáo khoa về giá trị lớn nhất và giá trị nhỏ nhất có ảnh hưởng như thế nào đối với quan hệ cá nhân của giáo viên và học sinh với đối tượng này? 3. Phương pháp nghiên cứu và cấu trúc của luận văn Để đạt được mục tiêu nghiên cứu, chúng tôi tiến hành các phương pháp sau: Trước hết chúng tôi tiến hành phân tích chương trình và sách giáo khoa toán 11 và 12 để làm rõ mối quan hệ thể chế với đối tượng giá trị lớn nhất và giá trị nhỏ nhất nhằm để trả lời cho câu hỏi CH1. Đối với câu hỏi CH2 liên quan đến thực hành dạy học của giáo viên nên chúng tôi tiến hành quan sát lớp học, phân tích các điều kiện và ràng buộc ảnh hưởng đến hoạt động của giáo viên. Cuối cùng, thông qua nghiên cứu thực nghiệm trên đối tượng giáo viên và học sinh, chúng tôi sẽ kiểm chứng những giả thuyết được rút ra sau khi phân tích chương trình và sách giáo khoa, từ đó giúp chúng tôi tìm ra các yếu tố để trả lời cho câu hỏi CH3 còn lại. Với tiến trình như vậy, chúng tôi chia luận văn thành các phần sau: Mở đầu Chương 1. Nghiên cứu về quan hệ thể chế đối với giá trị lớn nhất và giá trị nhỏ nhất Chương 2. Nghiên cứu thực hành giảng dạy của giáo viên về giá trị lớn nhất và giá trị nhỏ nhất của hàm số Chương 3. Thực nghiệm sư phạm Kết luận. 11
  14. CHƯƠNG 1: NGHIÊN CỨU VỀ QUAN HỆ THỂ CHẾ ĐỐI VỚI GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT Mục tiêu của chương này là nghiên cứu quan hệ thể chế với đối tượng giá trị lớn nhất và giá trị nhỏ nhất. Để đạt được mục tiêu trên, chúng tôi chọn phân tích chương trình và sách giáo khoa toán 11 và 12 hiện hành theo chương trình nâng cao (sử dụng bộ sách giáo khoa nâng cao) nhằm trả lời các câu hỏi: CH1: Trong chương trình và sách giáo khoa toán lớp 12, đối tượng giá trị lớn nhất và giá trị nhỏ nhất tồn tại ra sao? Những kỹ thuật giải nào đã được lựa chọn? Những kỹ thuật nào được thể chế ưu tiên? Có sự giải thích nào được đưa ra cho sự lựa chọn đó? 1.1. Giá trị lớn nhất và giá trị nhỏ nhất ở lớp 11 1.1.1. Giá trị lớn nhất và giá trị nhỏ nhất trong chương trình toán lớp 11 Chương trình Đại số và Giải tích 11 nâng cao gồm 5 chương: Chương I. Hàm số lượng giác và phương trình lượng giác Chương II. Tổ hợp và xác suất Chương III. Dãy số, cấp số cộng và cấp số nhân Chương IV. Giới hạn Chương V. Đạo hàm. Trong 5 chương này, các bài toán về giá trị lớn nhất và giá trị nhỏ nhất chủ yếu được đề cập ở chương I với các bài học sau: Bài 1. Các hàm số lượng giác Bài 2. Phương trình lượng giác cơ bản Bài 3. Một số dạng phương trình lượng giác đơn giản Sau khi xem xét sách giáo khoa chúng tôi nhận thấy các bài toán về giá trị lớn nhất và giá trị nhỏ nhất chủ yếu nằm ở phần bài tập của các bài học. Các khái niệm về giá trị lớn nhất và giá trị nhỏ nhất chưa được định nghĩa và đưa vào giảng dạy một cách chính thức, có lẽ đây không phải là phần trọng tâm của chương này, bởi vì mục tiêu chính mà sách giáo viên đã nhấn mạnh rằng: “Về kiến thức Giúp học sinh - Hiểu khái niệm các hàm số lượng giác y=sinx, y=cosx, y=tanx, y=cotx và tính chất tuần hoàn của chúng; 12
  15. - Nắm được sự biến thiên và hình dáng đồ thị của các hàm số lượng giác nêu trên; - Hiểu cách tìm nghiệm của các phương trình lượng giác cơ bản và phương pháp giải một số dạng phương trình lượng giác đơn giản. Về kĩ năng Giúp học sinh - Biết xét sự biến thiên, vẽ đồ thị của các hàm số lượng giác y=sinx, y=cosx, y=tanx, y=cotx và một số hàm lượng giác đơn giản khác; - Giải thành thạo các phương trình lượng giác cơ bản; - Biết cách giải một số dạng phương trình lượng giác không quá phức tạp có thể quy được về phương trình bậc nhất và bậc hai đối với một hàm số lượng giác.” [15, tr.15] 1.1.2. Giá trị lớn nhất và giá trị nhỏ nhất trong sách giáo khoa toán lớp 11 Khái niệm giá trị lớn nhất và giá trị nhỏ nhất của một hàm số chưa được định nghĩa nhưng các bài toán liên quan đến đối tượng này lại xuất hiện trong sách giáo khoa và để tìm kiếm các vấn đề liên quan đến giá trị lớn nhất và giá trị nhỏ nhất, chúng tôi có lưu ý đến một vài nhận xét mà sách giáo khoa đã trình bày: “Khi x thay đổi, hàm số y = sinx nhận mọi giá trị thuộc đoạn [-1 ; 1]. Ta nói tập giá trị của hàm số y = sinx là đoạn [-1 ; 1].” “Khi x thay đổi, hàm số y = cosx nhận mọi giá trị thuộc đoạn [-1 ; 1]. Ta nói tập giá trị của hàm số y = sinx là đoạn [-1 ; 1].” Sách giáo khoa có đề cập đến khái niệm tập giá trị của hàm số y = sinx, y = cosx một cách đơn giản bằng cách nêu lên nhận xét. Từ đó chúng tôi nhận thấy, có sự ngầm ẩn về giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = sinx và y = cosx thông qua khái niệm tập giá trị. Chẳng hạn: 𝜋 Hàm số y = sinx có giá trị lớn nhất là 1 khi 𝑥 = + 𝑘2𝜋 (𝑘 𝑛𝑔𝑢𝑦ê𝑛) và giá trị nhỏ 2 𝜋 nhất là -1 khi 𝑥 = − + 𝑘2𝜋 (𝑘 𝑛𝑔𝑢𝑦ê𝑛) 2 Hàm số y = cosx có giá trị lớn nhất là 1 khi 𝑥 = 𝑘2𝜋 (𝑘 𝑛𝑔𝑢𝑦ê𝑛) và giá trị nhỏ nhất là -1 khi 𝑥 = 𝜋 + 𝑘2𝜋 (𝑘 𝑛𝑔𝑢𝑦ê𝑛) 13
  16. Với những nhận xét trên, chúng tôi cho đây chính là công nghệ để giải thích cho kỹ thuật giải các kiểu nhiệm vụ liên quan đến giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác. Các tổ chức toán học gắn với giá trị lớn nhất và giá trị nhỏ nhất của hàm số Kiểu nhiệm vụ Tlg1: “Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số chứa sinu (hoặc cosu), với u là hàm số theo biến x” Ví dụ: Bài tập 3 [14, tr.14] với hướng dẫn nêu ra trong [15, tr.22] “Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau: 𝜋 a) 𝑦 = 2 𝑐𝑜𝑠 �𝑥 + � + 3 b) 𝑦 = �1 − 𝑠𝑖𝑛(𝑥 2 ) − 1 3 c) 𝑦 = 4𝑠𝑖𝑛√𝑥 Hướng dẫn: 𝜋 a) Do hàm số 𝑦 = 𝑐𝑜𝑠 �𝑥 + � đạt giá trị lớn nhất là 1, giá trị nhỏ nhất là -1 (để ý 3 𝜋 rằng 𝑢 = 𝑥 + lấy mọi giá trị thực tùy ý khi x thay đổi) nên hàm số 3 𝜋 𝑦 = 2 𝑐𝑜𝑠 �𝑥 + � + 3 đạt giá trị lớn nhất là 5, giá trị nhỏ nhất là 1. 3 𝜋 b) Do 𝑦 = 𝑠𝑖𝑛(𝑥 2 ) đạt giá trị lớn nhất là 1 (khi 𝑥 2 = + 𝑘2𝜋, k nguyên không âm), 2 𝜋 đạt giá trị nhỏ nhất là -1 (khi 𝑥 2 = − + 𝑘2𝜋, k nguyên dương) nên hàm số 𝑦 = 2 �1 − 𝑠𝑖𝑛(𝑥 2 ) − 1 đạt giá trị lớn nhất là √2 − 1 và giá trị nhỏ nhất là -1. 𝜋 c) Do 𝑦 = 𝑠𝑖𝑛�√𝑥� đạt giá trị lớn nhất là 1 (khi √𝑥 = + 𝑘2𝜋, k nguyên không âm), 2 𝜋 đạt giá trị nhỏ nhất là -1 (khi √𝑥 = − + 𝑘2𝜋, k nguyên dương) nên hàm số 𝑦 = 2 4𝑠𝑖𝑛√𝑥 đạt giá trị lớn nhất là 4 và giá trị nhỏ nhất là -4.” Kỹ thuật τlg1: 𝜋 - Hàm số y = sinu có giá trị lớn nhất là 1 khi 𝑢 = + 𝑘2𝜋, 𝑘 𝑛𝑔𝑢𝑦ê𝑛 và giá trị nhỏ 2 𝜋 nhất là -1 khi 𝑢 = − + 𝑘2𝜋, 𝑘 𝑛𝑔𝑢𝑦ê𝑛 (hoặc hàm số y = cosu có giá trị lớn nhất là 1 khi 2 𝑢 = 𝑘2𝜋, 𝑘 𝑛𝑔𝑢𝑦ê𝑛 và giá trị nhỏ nhất là -1 khi 𝑢 = 𝜋 + 𝑘2𝜋, 𝑘 𝑛𝑔𝑢𝑦ê𝑛) - Sử dụng các phép toán đại số để tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Công nghệ θlg1: Từ nhận xét: 14
  17. “Khi x thay đổi, hàm số y = sinx nhận mọi giá trị thuộc đoạn [-1;1]. Ta nói tập giá trị của hàm số y = sinx là đoạn [-1;1].” “Khi x thay đổi, hàm số y = cosx nhận mọi giá trị thuộc đoạn [-1;1]. Ta nói tập giá trị của hàm số y = sinx là đoạn [-1;1].” Kiểu nhiệm vụ Tlg2: “Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số 𝒚 = 𝒂𝒄𝒐𝒔𝒙+𝒃𝒔𝒊𝒏𝒙+𝒄 có tập xác định là R” 𝒂′𝒄𝒐𝒔𝒙+𝒃′𝒔𝒊𝒏𝒙+𝒄′ Ví dụ: Bài tập 1.31 [16, tr.12] “1.31.a) Từ khẳng định “khi x thay đổi, hàm số y = sinx nhận mọi giá trị tùy ý thuộc đoạn [-1;1]”, hãy chứng minh rằng: khi x thay đổi, hàm số y = asinx + bcosx (a,b là hằng số, 𝑎2 + 𝑏2 ≠ 0) lấy mọi giá trị tùy ý thuộc đoạn �−√𝑎2 + 𝑏2 ; √𝑎2 + 𝑏2 � 𝑠𝑖𝑛𝑥+𝑐𝑜𝑠𝑥−1 b)Xét hàm số 𝑦 = . Viết đẳng thức đó thành 𝑠𝑖𝑛𝑥−𝑐𝑜𝑠𝑥+3 (𝑦 − 1)𝑠𝑖𝑛𝑥 − (𝑦 + 1)𝑐𝑜𝑠𝑥 = −3𝑦 − 1, để suy ra rằng khi x thay đổi, hàm số trên lấy mọi giá trị y tùy ý thỏa mãn điều kiện (𝑦 − 1)2 + (𝑦 + 1)2 ≥ (3𝑦 + 1)2 Từ đó hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho. 𝑐𝑜𝑠𝑥+2𝑠𝑖𝑛𝑥+3 c)Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số 𝑦 = 2𝑐𝑜𝑠𝑥−𝑠𝑖𝑛𝑥+4 Hướng dẫn: a) Ta có 𝑎𝑠𝑖𝑛𝑥 + 𝑏𝑐𝑜𝑠𝑥 = √𝑎2 + 𝑏2 𝑠𝑖𝑛(𝑥 + 𝑎) nên dễ thấy hàm số y nhận mọi giá trị tùy ý thuộc đoạn �−√𝑎2 + 𝑏2 ; √𝑎2 + 𝑏2 �. b) Do |𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥| ≤ √2 nên sinx – cosx + 3 ≠ 0 với mọi x. 𝑠𝑖𝑛𝑥+𝑐𝑜𝑠𝑥−1 Vậy cặp số (x, y) thỏa mãn 𝑦 = khi và chỉ khi: 𝑠𝑖𝑛𝑥−𝑐𝑜𝑠𝑥+3 (y – 1)sinx – (y + 1)cosx = – (3y +1). Với mọi giá trị y cho trước, biểu thức ở vế trái của đẳng thức này lấy mọi giá trị tùy ý thuộc đoạn �−�(𝑦 − 1)2 + (𝑦 + 1)2 ; �(𝑦 − 1)2 + (𝑦 + 1)2 �. Đẳng thức trên cho thấy –(3y+1) phải thuộc đoạn đó, tức là: (3𝑦 + 1)2 ≤ (𝑦 − 1)2 + (𝑦 + 1)2 . Vậy với mọi y thỏa mãn điều kiện này, tồn tại x để (𝑦 – 1)𝑠𝑖𝑛𝑥 – (𝑦 + 1)𝑐𝑜𝑠𝑥 = – (3𝑦 + 1). 15
  18. Để ý rằng bất đẳng thức trên tương đương với 1 7𝑦 2 + 6𝑦 − 1 ≤ 0 tức là −1 ≤ 𝑦 ≤ . 7 Từ đó ta suy ra giá trị lớn nhất và giá trị nhỏ nhất của y theo thứ tự 1 là và –1. 7 𝑐𝑜𝑠𝑥+2𝑠𝑖𝑛𝑥+3 c) 𝑦 = 2𝑐𝑜𝑠𝑥−𝑠𝑖𝑛𝑥+4 Để ý rằng |2𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛𝑥 | ≤ √5, nên 2𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛𝑥 + 4 ≠ 0 với mọi x. Vậy (x, y) thỏa mãn đẳng thức trên khi và khi (𝑦 + 2)𝑠𝑖𝑛𝑥 + (1 − 2𝑦)𝑐𝑜𝑠𝑥 = 4𝑦 − 3. Lập luận tương tự như câu b), hàm số y lấy mọi giá trị sao cho (4𝑦 − 3)2 ≤ (𝑦 + 2)2 + (1 − 2𝑦)2 2 Bất đẳng thức tương đương với 11𝑦 2 − 24𝑦 + 4 ≤ 0 tức là ≤𝑦≤2 11 2 Vậy giá trị lớn nhất và giá trị nhỏ nhất của y theo thứ tự là 2 và ” 11 Kỹ thuật τlg2: “Tập giá trị” 𝑎𝑐𝑜𝑠𝑥+𝑏𝑠𝑖𝑛𝑥+𝑐 - Biến đổi hàm số 𝑦 = thành phương trình 𝑎′𝑐𝑜𝑠𝑥+𝑏′𝑠𝑖𝑛𝑥+𝑐′ (𝑦𝑏′ − 𝑏)𝑠𝑖𝑛𝑥 + (𝑦𝑎′ − 𝑎)𝑐𝑜𝑠𝑥 = 𝑐 − 𝑦𝑐′ - Suy ra điều kiện của phương trình là: (c − yc′)2 ≤ (yb′ − b)2 + (ya′ − a)2 . (*) - Giải bất phương trình theo ẩn y, rồi kết luận giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Công nghệ θlg2: Nhận xét “khi x thay đổi, hàm số y = sinx nhận mọi giá trị tùy ý thuộc đoạn [-1;1]”. Thông qua bài tập này, sách giáo khoa đã hình thành nên một kỹ thuật, kỹ thuật này dựa trên việc biến đổi một hàm số lượng giác thành phương trình lượng giác dạng bậc nhất đối với sinx và cosx, sau đó áp dụng khái niệm tập giá trị và các quy tắc về bất đẳng thức để tìm lời giải đáp. Chính vì vậy, chúng tôi gọi kỹ thuật giải này là kỹ thuật tập giá trị. Một điều cần lưu ý đối với bài toán này. Sau khi tìm được hai giá trị m và M sao cho 𝑚 ≤ 𝑦 ≤ 𝑀, chúng tôi không tìm thấy có sự giải thích nào trong việc chỉ ra sự tồn tại điểm x ∈ D sao cho y(x) = m (hoặc y(x) = M). Nhưng ta có thể hiểu rằng: Để tìm điểm x ∈ D sao cho y(x) = m, ta giải phương trình (𝑚𝑏′ − 𝑏)𝑠𝑖𝑛𝑥 + (𝑚𝑎′ − 𝑎)𝑐𝑜𝑠𝑥 = 𝑐 − 𝑚𝑐′ (1) 16
  19. hoặc Để tìm điểm x ∈ D sao cho y(x) = M, ta giải phương trình (𝑀𝑏′ − 𝑏)𝑠𝑖𝑛𝑥 + (𝑀𝑎′ − 𝑎)𝑐𝑜𝑠𝑥 = 𝑐 − 𝑀𝑐′ (2) Do các phương trình (1) và (2) đều có nghiệm (do thỏa mãn điều kiện (*)) nên ta có đủ điều kiện để kết luận giá trị lớn nhất của hàm số là M và giá trị nhỏ nhất của hàm số là m. Từ đó, cho phép chúng tôi phát biểu qui tắc hợp đồng: Khi sử dụng kỹ thuật tập giá trị để tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số, sau khi tìm được hai giá trị m và M sao cho 𝑚 ≤ 𝑦 ≤ 𝑀, học sinh không quan tâm đến việc chỉ ra sự tồn tại của x ∈ D sao cho y(x) = M (hoặc y(x) = m) mà kết luận rằng giá trị lớn nhất và giá trị nhỏ nhất của hàm số tương ứng là M và m. 2 Cụ thể, đối với bài tập 1.31c) sau khi tìm được giá trị y thỏa ≤ 𝑦 ≤ 2, khi đó chúng 11 2 ta cần phải tìm giá trị x sao cho y = 2 và 𝑦 = tức là giải các phương trình: 11 4𝑠𝑖𝑛𝑥 − 3𝑐𝑜𝑠𝑥 = 5 24𝑠𝑖𝑛𝑥 + 7𝑐𝑜𝑠𝑥 = −25 Do các phương trình đều có nghiệm, tức là tồn tại giá trị x nên ta có đủ điều kiện để 2 kết luận giá trị lớn nhất của hàm số cần tìm là 2 và giá trị nhỏ nhất của hàm số là 11 Theo tác giả Nguyễn Hồng Tú “…Các bài toán được giải quyết bởi kỹ thuật tập giá trị chỉ nằm trong sách bài tập và chiếm số lượng ít ỏi so với các bài toán được giải quyết bởi các kỹ thuật bất đẳng thức (2 so với 18). Từ đó, chúng tôi cho rằng học sinh có thể không biết đến các kỹ thuật tập giá trị nếu họ chỉ học trong sách giáo khoa”. Chúng tôi đồng ý với nhận xét này, đồng thời chúng tôi cũng nhận định rằng, ngoài việc sử dụng kỹ thuật tập giá trị để giải bài toán trên, ta còn kỹ thuật nào giải quyết không ? Chẳng hạn, sử dụng kỹ thuật “đạo hàm” (chúng tôi sẽ phân tích ở phần sau), khi đó kỹ thuật nào sẽ “thuận lợi” hơn trong việc tìm lời giải và học sinh sẽ ưu tiên lựa chọn kỹ thuật nào nhiều hơn? Vì sao? Nhận xét Qua phân tích sơ lược chương trình và sách giáo khoa khối 11 nâng cao, liên quan đến giá trị lớn nhất và giá trị nhỏ nhất, chúng tôi nhận thấy chủ yếu là tìm giá trị lớn nhất và giá trị nhỏ nhất của một hàm số lượng giác, đặc biệt chúng tôi có lưu ý đến hai tổ chức toán học liên quan đến giá trị lớn nhất và giá trị nhỏ nhất của hàm số, cụ thể là có các kiểu nhiệm vụ sau: 17
  20. Kiểu nhiệm vụ Tlg1: “Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số chứa sinu (hoặc cosu) với u là hàm số theo biến x” Kiểu nhiệm vụ Tlg2: “Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số acosx+bsinx+c y= có tập xác định là R” a′cosx+b′sinx+c′ Trong hai kiểu nhiệm vụ liên quan đến bài toán tìm giá trị lớn nhất và giá trị nhỏ nhất, chúng tôi quan tâm đến kiểu nhiệm vụ Tlg2 bởi vì để giải chúng sách giáo khoa 11 sử dụng kỹ thuật “tập giá trị” là chủ yếu, nhưng do sự xuất hiện rất ít kiểu nhiệm vụ này nên chúng tôi dự đoán sau này học sinh ít sử dụng kỹ thuật này nữa, nhất là đối với học sinh ở khối lớp 12, chủ yếu sẽ sử dụng kỹ thuật “đạo hàm” để giải quyết kiểu nhiệm vụ này. Theo dự đoán của chúng tôi, đối với bài tập 1.31c) hầu hết học sinh ở khối lớp 12 sẽ giải như sau: cosx + 2sinx + 3 y= 2cosx − sinx + 4 Tập xác định: D = R (vì 2𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛𝑥 + 4 ≠ 0 với mọi x) 2sinx + 11cosx + 5 y′ = (2cosx − sinx + 4)2 Giải phương trình: 2sinx + 11cosx + 5 = 0 Đến đây, học sinh sẽ gặp khó trong việc giải phương trình để tìm nghiệm, lập bảng biến thiên và kết luận. Từ đó, cho thấy rằng tùy thuộc vào mỗi loại bài toán mà chúng ta có những kỹ thuật khác nhau, thích hợp cho từng loại đó. Và để tìm hiểu thêm về kỹ thuật đạo hàm cũng như tiến trình xuất hiện bài toán về giá trị lớn nhất và giá trị nhỏ nhất, chúng tôi tiếp tục phân tích chương trình và sách giáo khoa giải tích 12 nâng cao. 1.2. Giá trị lớn nhất và giá trị nhỏ nhất ở lớp 12 1.2.1. Giá trị lớn nhất và giá trị nhỏ nhất trong chương trình toán lớp 12 Chương trình sách giáo khoa Giải tích 12 nâng cao bao gồm 4 chương: Chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Chương II. Hàm số lũy thừa, hàm số mũ và hàm số lôgarit Chương III. Nguyên hàm, tích phân và ứng dụng Chương IV. Số phức Bài toán liên quan đến giá trị lớn nhất và giá trị nhỏ nhất chủ yếu nằm trong chương I của chương trình với mục tiêu của chương là: 18
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2