Luận văn tốt nghiệp: Giải các phương trình Kohn-Sham
lượt xem 14
download
Luận văn tốt nghiệp về Giải các phương trình Kohn-Sham, tài liệu tham khảo dành cho các bạn sinh viên đang thực tập và hoàn thành tốt bài luận văn của mình, đến với tài liệu này các bạn có thể thêm nhiều kinh nghiệm hơn.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Luận văn tốt nghiệp: Giải các phương trình Kohn-Sham
- Nguyễn Thị Thùy Dung MỤC LỤC MỤC LỤC.................................................................................................................1 A-MỞ ĐẦU.............................................................................................................. 2 B-NỘI DUNG........................................................................................................... 5 CHƯƠNG 1: CÁC PHƯƠNG TRÌNH KOHN-SHAM......................................5 TÀI LIỆU THAM KHẢO....................................................................................... 31 Tiểu luận Trang 1
- Nguyễn Thị Thùy Dung A- MỞ ĐẦU 1. Lý do chọn đề tài Vật lí được xem là ngành khoa học cơ bản vì các định luật vật lí h ầu nh ư chi phối tất cả các ngành khoa học tự nhiên khác. Các nghiên cứu hiện tại của Vật lí được chia làm một số ngành riêng biệt nhằm mục đích tìm hi ểu các khía cạnh khác của thế giới vật chất. Trong các ngành nghiên cứu của Vật lí học thì vật lí ch ất rắn được coi là ngành lớn nhất quan tâm tới tính chất của vật chất như chất rắn và chất l ỏng dựa trên đặc tính và tương tác giữa các nguyên tử. Những kết quả thu được đã được ứng dụng rất nhiều trọng việc nghiên cứu và sử dụng các vật liệu rắn, đặc biệt là các vâtl liệu mới. Để xây dựng các vật liệu mới có ứng dụng rộng rãi cần phải tìm hiểu và giải thích được các hiện tượng xảy ra trong chất rắn, dựa trên việc nghiên cứu cấu trúc vùng năng lượng của nó. Điện tử tồn tại trong nguyên tử trên nh ững mức năng lượng gián đoạn nhưng trong chất rắn khi các nguyên tử k ết h ợp v ới nhau thành khối thì các mức năng lượng này chồng phủ lên nhau và trở thành các vùng năng lượng. Các electron trong vật rắn có năng lượng thay đổi liên tục trong những khoảng xác định nào đó ngăn cách bởi các miền giá trị không cho phép- miền cấm. Thường người ta xét ba vùng chính là: vùng hóa trị, vùng d ẫn, vùng cấm. Về mặt lí thuyết, cấu trúc vùng của tinh thể thu được nh ờ việc giải ph ương trình Schrodinger cho tinh thể. Vật rắn là một hệ nhiều hạt g ồm các electron và hạt nhân tương tác với nhau. Để tìm năng lượng của h ệ ta phải l ập và gi ải m ột Tiểu luận Trang 2
- Nguyễn Thị Thùy Dung hệ rất lớn các phương trình Schodinger, điều này rất khó thực hiện. Do đó ta tìm cách đơn giản hóa các phép tính toán bằng cách sử dụng các phép gần đúng. Có nhiều phương pháp tính cấu trúc vùng năng lượng như: gần đúng electron tự do, gần đúng electron liên kết mạnh, phương pháp Hartree, phương pháp Hartree- Fock, phương pháp giả thế thực nghiệm, phương pháp phiếm hàm mật độ. Mỗi phương pháp có ưu và nhược điểm riêng, tùy theo từng bài toán đ ể được áp dụng. Lý thuyết phiếm hàm mật độ (tiếng Anh: Density Functional Theory) là một lý thuyết được dùng để mô tả các tính chất của h ệ electron trong nguyên tử, phân tử, vật rắn,... trong khuôn khổ của lý thuyết lượng tử. Trong lý thuyết này, các tính chất của hệ N electron được biểu diễn qua hàm mật độ electron c ủa toàn bộ hệ (là hàm của 3 biến tọa độ không gian) thay vì hàm sóng (là hàm c ủa 3N biến tọa độ không gian). Vì vậy, lý thuyết hàm mật độ có ưu điểm lớn (và hiện nay đang được sử dụng nhiều nhất) trong việc tính toán các tính chất vật lý cho các hệ cụ thể xuất phát từ những phương trình rất cơ bản của vật lý l ượng tử. Năm 1998, nhà vật lý W. Kohn nhận giải Nobel cho công trình lý thuy ết hàm mật độ (LTHMĐ). Lý thuyết này được hình thành rất lâu, từ năm 1964 bởi W. Kohn và P. Hohenberg. Năm 1965 W. Kohn và Lu Jeu Sham nêu ra quy trình tính toán để thu được gần đúng mật độ electron ở trạng thái cơ bản trong khuôn kh ổ lý thuyết DFT. Từ đó LTHMĐ đã trở thành một công cụ phổ biến và hi ệu d ụng trong lĩnh vực hoá tính toán. Rất nhiều chương trình mô phỏng và tính toán, bài báo đã sử dụng kết quả của lý thuyết này. LTHMĐ ngày nay là một trong những công cụ mang lại kết quả chính xác khi áp dụng vào h ệ vi mô, ứng d ụng c ủa Tiểu luận Trang 3
- Nguyễn Thị Thùy Dung thuyết này cũng được đưa vào rất nhiều lĩnh vực khác nhau. Lý thuy ết này hi ện nay đang được tiếp tục hoàn thiện và phát triển. Nhận thức được tầm quam trọng của việc nghiên cứu các phương pháp g ần đúng đặc biệt là phương pháp phiếm hàm mật độ trong việc ứng dụng để giải bài toán nhiều hạt, trong đó có các phương trình Kohn-Sham. Để có th ể hiểu sâu sắc và đầy đủ hơn về vấn đề này, tôi xin chọn đề tài “Giải các ph ương trình Kohn-Sham” để nghiên cứu trong tiểu luận của mình. 2. Mục tiêu nghiên cứu Trình bày tổng quan các phương trình Kohn-Sham cũng như cách giải chúng. 3. Nhiệm vụ nghiên cứu - Trình bày tổng quan về các phương trình Kohn-Sham. - Phương pháp giải các phương trình Kohn-Sham. 4. Phạm vi nghiên cứu Bài này chỉ nghiên cứu các phương trình Kohn-Sham và cách giải chúng. 5. Phương pháp nghiên cứu - Tìm và tổng hợp tài liệu từ nhiều nguồn: sách, giáo trình, Internet… - Vận dụng các kiến thức đã học để tính toán các biểu thức. - Dịch hiểu các tài liệu nước ngoài. - Tham khảo ý kiến của giáo viên hướng dẫn. 6. Bố cục tiểu luận Ngoài mục lục và tài liệu tham khảo, Tiểu luận được chia làm ba phần: Tiểu luận Trang 4
- Nguyễn Thị Thùy Dung Phần mở đầu nêu rõ lí do chọn đề tài, mục tiêu, nhiệm vụ, phạm vi, phương pháp nghiên cứu. Phần nội dung chia làm hai chương: Chương 1: Các phương trình Kohn-Sham. Chương 2: Giải các phương trình Kohn-Sham. Phần kết luận nêu kết quả đạt được của bài tiểu luận. B-NỘI DUNG CHƯƠNG 1: CÁC PHƯƠNG TRÌNH KOHN-SHAM Vào năm 1965, W. Kohn và L. J. Sham đề nghị phương trình t ự h ợp (còn g ọi là phương trình Kohn – Sham) dựa trên cơ sở lý thuy ết đã phát bi ểu trước đó của P. Hohenberg và W. Kohn để tìm mật độ điện tử của h ệ. Ph ương trình này tương tự như phương trình Hartree – Fock, nhưng bao gồm cả hiệu ứng trao đổi và tương quan điện tử. Trong phương trình Kohn – Sham, W. Kohn và L. J. Sham đã đưa ra khái niệm trường giả định không tương tác (non-interacting field), trường này có cùng mật độ điện tử như trường của hệ điện tử thật nhưng xem như các điện tử không tương tác lẫn nhau, và cho rằng: mật độ ở trạng thái cơ bản của một hệ hạt tương tác có thể được tính toán như mật độ ở trạng thái cơ bản của hệ giả định không tương tác. Phương trình Kohn – Sham vẫn theo tinh th ần c ủa mô hình Thomas – Fermi, mô hình về khí quyển điện tử đồng nhất. Trên thực tế, hệ các nguyên tử, phân tử… mật độ điện tử không thể đồng nhất. Do vậy phương trình Kohn – Sham bị hạn chế rất lớn. Những phương pháp mới đã xem xét lại tính không đồng nhất Tiểu luận Trang 5
- Nguyễn Thị Thùy Dung của điện tử bằng cách dùng phương pháp trường hiệu chỉnh (Generalized Gradient Approximation, GGA). Trong phương pháp này, năng lượng - trao đổi không chỉ phụ thuộc vào mật độ điện tử mà còn phụ thuộc vào đạo hàm c ủa mật độ. Phương pháp thông dụng để hiệu chỉnh năng lượng trao đổi là B88 và PW86, để hiệu chỉnh năng lượng tương quan là P86 và LYP. Về mặt tính toán số tích phân đòi hỏi cho năng lượng tương quan và trao đ ổi có th ể đ ơn gi ản xuống ở mức cho phép thời gian tính toán tỷ lệ tuyến tính với kích th ước c ủa hệ, kỹ thuật này rất thuận lợi khi gặp hệ nhiều nguyên t ử vì th ời gian tính toán không quá lớn. Khi W. Kohn quay về Mỹ từ Paris, ông tiếp tục nghiên cứu vấn đề tìm kiếm một sự xấp xỉ với phiếm hàm năng lượng chưa biết cùng với L. J. Sham. Những việc cần làm ở đây là tìm kiếm sự xấp xỉ tốt cho các phi ếm hàm ch ưa bi ết V . Để có thể tìm được biểu thức cho động năng tốt hơn, họ gi ới thiệu các orbital không tương tác thay vì chỉ là mật độ trạng thái . Vi ệc s ử d ụng hệ thống xem như không tương tác, trong đó mật độ ở trạng thái cơ bản chính xác bằng với mật độ trạng thái cơ bản của hệ thống tương tác đầy đủ, h ọ đã thành công trong việc chỉ ra rằng, bất kì mật độ -biểu diễn nào cũng có th ể được phân tích duy nhất thành các orbital. Những orbital này được gọi là Kohn- Sham orbital (hay hàm sóng Kohn-Sham). Và giá trị mong đợi của toán tử đ ộng năng sử dụng những orbital của Kohn-Sham là động năng không tương tác, . Biểu thức của động năng và biểu thức của mật độ cho trạng thái c ơ b ản của từng hạt riêng lẽ (1.1) Tiểu luận Trang 6
- Nguyễn Thị Thùy Dung (1.2) Trong đó, là các orbital (tính đến spin), và + Các biểu thức này vẫn đúng đắn cho hàm sóng xác định mô t ả h ệ electron N không tương tác.Một cách tương tự với định nghĩa trước đây của Hohenberg- Kohn về hàm , Kohn-Sham đã đưa ra ra một hệ xem như không tương tác tương ứng, cùng với Hamiltonian của hệ là . (1.3) Trong đó không có số hạng tương tác đẩy nhau giữa electron-electron, và đối với Hamiltonian này, mật độ ở trạng thái cơ bản đúng bằng n. Đối với h ệ này, sẽ có một hàm sóng định thức chính xác ở trạng thái cơ bản (1.4) ở đây, là hàm riêng nhỏ nhất của Hamiltonian một electron . Vì vậy, các phương trình Schrödinger cho hệ có thể được chia ra thành N phương trình viết cho một điện tử có dạng (1.5) Các phương trình trên là các phương trình Kohn-Sham viết cho từng hạt riêng lẻ.Trong đó, là các giá trị riêng và là Hamiltonian hiệu dụng (trong đơn vị nguyên tử Hartree) (1.6) Tiểu luận Trang 7
- Nguyễn Thị Thùy Dung Và (1.7) Năng lượng Hartree được xác định (1.8) Phép tính gần đúng Kohn-Sham cho bài toán các hạt tương tác với nhau là để viết lại biểu thức Hohenberg-Kohn cho phiếm hàm năng lượng ở trạng thái cơ bản có dạng + (1.9) Ở đây, là thế ngoài của hạt nhân và các trường ngoài khác, là năng lượng tương tác giữa các hạt nhân.Động năng của từng hạt riêng lẽ được đưa ra là một phiếm hàm tường minh theo các orbital,tuy nhiên theo l ập luận của Hohenberg-Kohn cho Hamiltonian của hạt riêng lẻ thì cho mỗi spin phải là một phiếm hàm duy nhất theo mật độ . Định nghĩa của đề cập ở trên đã trút bỏ một sự hạn chế không mong đợi đối với mật độ - phải cần là -biểu diễn không tương tác; đó là phải tồn tại một trạng thái cơ bản không tương tác, cùng với mật độ cho trước n(r). S ự h ạn Tiểu luận Trang 8
- Nguyễn Thị Thùy Dung chế này trong phạm vi định nghĩa có thể được chấm dứt, và ở công thức (1.1) có thể được định nghĩa cho bất kì mật độ nào xuất phát một hàm sóng ph ản xứng .Đại lượng , mặc dù được định nghĩa duy nhất cho mật độ bất kì, nó vẫn không phải là phiếm hàm động năng chính xác như đã chỉ ở phần trước. Ý tưởng rất thông minh của Kohn-Sham là xây dựng một vấn đề nghiên cứu theo cách cho rằng chính xác là một thành phần của động năng. Chúng ta vi ết l ại biểu thức của như sau: (1.10) Ở đây (1.11) được gọi là năng lượng trao đổi tương quan, nó chứa sự khác nhau giữa và (một lượng đoán chừng khá nhỏ), và phần phi cổ điển. trong đó, năng lượng đặc trưng cho tương tác electron-electron . Chúng ta có thể viết: và là năng lượng liên quan đến lực đẩy cổ điển có dạng: , Số hạng phi cổ điển là một đại lượng rất khó nắm bắt và rất quan trọng; nó là phần chính của năng lượng trao đổi-tương tác. Phương trình Euler bây giờ trở thành: (1.12) Tiểu luận Trang 9
- Nguyễn Thị Thùy Dung ở đây, thế hiệu dụng Kohn-Sham được định nghĩa bởi: + = (1.13) Phương trình (1.12) hoàn toàn giống với phương trình đã thu được từ lý thuyết phiếm hàm mật độ thông thường, khi ta áp dụng nó vào một hệ thống các electron không tương tác chuyển động trong một thế ngoài Như vậy, với một giá trị thế hiệu dụng cho trước, ta có th ể thu đ ược n(r) th ỏa mãn (1.12) một cách đơn giản bằng việc giải N phương trình đơn electron: (1.14) Ở đây, phụ thuộc vào n(r) thông qua (1.13); và vì vậy việc giải (1.2), (1.13), (1.14) phải bằng cách tự hợp. Bắt đầu cùng với một giá trị dự đoán của n , ta đi xác định và sau đó tìm lại giá trị n mới; so sánh giá tr ị m ới v ới giá tr ị dự đoán, nếu sai lệch trong một giới hạn cho phép thì ta đi tìm năng l ượng t ổng cộng, còn không ta phải lặp lại quá trình này cho đến khi tự hợp. Chúng ta dễ dàng nhận thấy rằng, nếu dạng chính xác c ủa và được biết thì ta có thể giải ra một kết quả chính xác cho năng l ượng t ổng c ộng. Trên thực tế có nhiều phương pháp giải gần đúng khác nhau, các ph ương pháp đó đều xoay quanh vấn đề tìm kiếm sự chính xác cho . Tiểu luận Trang 10
- Nguyễn Thị Thùy Dung CHƯƠNG 2: GIẢI CÁC PHƯƠNG TRÌNH KOHN-SHAM Giải các phương trình Kohn-Sham cung cấp khuôn khổ để tìm mật độ và năng lượng ở trạng thái cơ bản của bài toán nhiều electron bằng việc sử dụng phương pháp chuẩn hạt riêng lẻ. Các phương trình này là cơ sở cho sự phát triển cấu trúc điện tử. Chương này đưa ra cách giải chung trong giới h ạn của các phương trình tự hợp cặp tương tự phương trình Schrodinger cho từng hạt riêng lẻ. 2.1 Các phương trình Kohn-Sham tự hợp cặp Các phương trình Kohn-Sham được tóm tắt trong sơ đồ 2.1. Đó là h ệ các phương trình cho hạt riêng lẻ tương tự phương trình Schrodinger, được giải với điều kiện là thế hiệu dụng và mật độ xác định. Một cách tính thực tế là dùng phương pháp số nhằm thay đổi liên tiếp và n để giải xấp xỉ tính tự hợp. Bước tính cơ bản trong Sơ đồ 2.1 là “giải pương trình Kohn-Sham” v ới thế được cho . Ở đây, bước này được xem như một “hộp đen”, giải các phương trình với thế vào để xác định mật độ ra , . Ngược lại, với một dạng được cho của phiếm hàm tương tác-trao đổi, m ật đ ộ n bất kỳ thì xác định một thế như được chỉ ra trong ô thứ hai của sơ đồ 2.1. Vấn đề ở đây là, các thế và mật độ vào và ra không phù hợp, ngoại trừ phép giải chính xác. Điều này đưa đến cách giải đó là người ta xác định toán tử thế mớ i , và sau đó có thể bắt đầu một chu kì mới v ới như một thế mới đặt vào. Rõ ràng, phương pháp được chỉ trong sơ đồ 2.1 có th ể được thực hiện trong tiến trình lặp đi lặp lại Tiểu luận Trang 11
- Nguyễn Thị Thùy Dung (2.1) Trong đó chỉ số i chỉ sự lặp lại. Quá trình này hội tụ với sự lựa chọn khôn ngoan của thế mới trong giới hạn của thế và mật độ được tìm ở một bước (hoặc các bước ) trước đó. Các phương trình tự hợp Kohn-Sham Dự đoán ban đầu Tính thế hiệu dụng Giải phương trình Kohn-Sham Tính mật độ electron không Tự hợp? có Các đại lượng ra Năng lượng, lực, ứng suất, các trị riêng, … Tiểu luận Trang 12
- Nguyễn Thị Thùy Dung Sơ đồ 2.1 Sơ đồ đại diện của các vòng tự lặp của các phương trình Kohn – Sham. Các phương pháp dẫn tới sự tự hợp được trình bày trong mục 2.3. Đó là điều tốt nhất đầu tiên để dò sự thay đổi các phiếm hàm năng lượng toàn phần thực tế có thể có. Các biểu thức này cần cho s ự tính toán năng l ượng cu ối cùng và thêm vào đó tính chất bất kỳ của các phiếm hàm gần với cách gi ải đúng cung cấp cơ sở cho các phân tích về tính chất hội tụ bằng việc sử dụng phiếm hàm đó. 2.2 Các phiếm hàm năng lượng toàn phần Đối tượng của mục này là tính chất của các phi ếm hàm thay đ ổi, t ất c ả chúng đều giống nhau ở năng lượng cực tiểu của phép giải các ph ương trình Kohn-Sham, nhưng khác nhau cách đi đến giá trị cực tiểu. Đặc biệt, ta không cần thiết quan tâm tới mật độ như là biến độc lập trong các phương trình ; các phiếm hàm khác nhau có thể được tìm bởi phép biến đổi Legengre nh ằm thay đổi các biến độc lập và các biến phụ thuộc nhau, điều này tương tự như trong nhiệt động lực học. Trong giới hạn của các phương trình Kohn-Sham, đi ều này muốn nói tính chất như một phiếm hàm của hiệu các đại lượng vào và ra và .Trong đó, là kết quả mật độ từ giải phương trình tương tự phương trình Schrodinger với thế vào . Đó là điều cốt yếu cho các biểu thức thay đổi chính xác để có các tính ch ất bi ến thiên nh ư mong muốn. Biểu thức thứ nhất của phiếm hàm năng lượng Kohn-Sham được đưa ra bởi (1.9) là Tiểu luận Trang 13
- Nguyễn Thị Thùy Dung + Với tất cả các số hạng thế được định nghĩa là , biểu thức trên có thể viết lại như sau (2.2) (2.3) Ba số hạng đầu tiên ở bên tay phải của phương trình (2.3) bằng tương tác Coulomb cổ điển . Từ đó các giá trị riêng của các phương trình Kohn-Sham được đưa ra bởi (2.4) Động năng có thể được biểu diễn như (r, (2.5) Trong đó (2.6) Ưu diểm của cách trình bày này là các giá trị riêng là biến trong phép tính chính xác và hơn nữa bản thân trong (2.6) là một phiếm hàm. Nó là năng lượng ở trạng thái cơ bản của một hệ electron không tương tác, điều này th ể hiện trong định lý Honhenberg-Kohn, định lý về lực, v..v. Phiếm hàm Kohn-Sham của thế, Cho dù năng lượng Kohn-Sham (2.2) theo nguyên lý là một phiếm hàm của mật độ, nhưng toán tử của nó là một phiếm hàm của thế vào , như được chỉ ra trong sơ đồ dòng chảy 2.1 (ở đây V kí hiệu th ế cho mỗi spin, (r)). Tiểu luận Trang 14
- Nguyễn Thị Thùy Dung Tại bất kỳ bước nào của phép tính Kohn-Sham khi năng lượng không ở giá trị cực tiểu thì xác định tất cả các đại lượng trong năng lượng. Điều này thể hiện rõ ràng hơn nếu chúng ta viết từ (2.2) như sau (r, (2.7) Trong đó hai số hạng đầu tiên phía bên tay phải là động năng của từng hạt riêng lẻ (2.5) và là tổng các thế được đưa ra trong (2.3) với ước lượng Vì là tổng của các giá trị riêng (2.6) và là mật độ ra, mỗi mật độ ra xác định trực tiếp bởi thế , nên rõ ràng năng lượng là một phiếm hàm của . Tất nhiên cũng có thể được xem là một phiếm hàm của ở đây có sự tương quan một-một giữa mật độ ra và thế vào (ngoại trừ không đổi).Tuy nhiên, các phương trình Kohn-Sham không cung cấp cách để chọn ngoại trừ một đầu ra được xác định bởi một thế. Giải quyết các phương trình Kohn-Sham là cho thế để tìm giá trị cực tiểu của năng lượng, (2.7). Lúc đó , mật độ ra là mật độ trạng thái cơ bản , thế và mật độ phù hợp với sự liên hệ Phiếm hàm biến thiên và tất cả các thế khác dẫn tới các năng lượng cao hơn do bởi lượng bình phương sai số . Gần với cách giải năng lượng cực tiểu, sai số trong năng lượng cũng là bình phương sai số trong mật độ , vì vậy (2.8) Tiểu luận Trang 15
- Nguyễn Thị Thùy Dung Trong đó số hạng thứ hai luôn luôn dương. Các phiếm hàm tường minh của mật độ Như đã chỉ ra bởi Harris, Weinert, Foulkes và Haydock, thì có th ể ch ọn bi ểu thức khác cho phiếm hàm năng lượng toàn phần mà được làm rõ trong gi ới h ạn của mật độ. Phiếm hàm này là sự đúc kết trong giới h ạn của m ật độ , xác định thế vào , lần lượt dẫn trực tiếp tới tổng của các giá trị riêng (chính là số hạng đầu tiên ở bên tay phải của (2.7)). Sau đó năng l ượng đ ược xác định bởi việc ước lượng phiếm hàm trong (2.3) trong giới hạn lựa chọn mật độ vào (thay vì mật độ ra như trong phiếm hàm Kohn-Sham) (2.9) Ta dễ dàng hiểu được các tính chất dừng của phiếm hàm này theo l ập lu ận của Foulkes. Với một mật độ vào và thế được cho, sự khác nhau trong hai biểu thức năng lượng trên chỉ chứa các số hạng thế ) (2.10) Gần với cách giải đúng thì là nhỏ, biểu thức (2.10) có thể được khai triển dưới dạng khác theo , với Tiểu luận Trang 16
- Nguyễn Thị Thùy Dung Trong đó Từ đó Trong đó hệ số K được định nghĩa (n= ) (2.12) Chỉ có và mới đóng góp vào (2.12) còn các số hạng khác trong không đóng góp vì chúng không đổi hoặc tuyến tính theo n.Vì sự khác nhau giữa hai năng lượng là các bình phương sai số trong mật độ nên nó dẫn tới phép giải chính xác khi , phiếm hàm bằng với năng lượng Kohn-Sham và nó là năng lượng dừng. Hệ số K hướng đến dương nên nhỏ hơn . Như vậy cho dù luôn luôn có giá trị trên năng lượng Kohn-Sham thì thấp hơn bởi bậc hai trong sai số . Thuận lợi đầu tiên của phiếm hàm tường minh của mật độ (2.9) đó là khi cho các mật độ gần với cách giải chính xác, thì nó x ấp x ỉ chính xác năng l ượng thực Kohn-Sham. Đặc biệt, đó là cách tính gần đúng rất tốt để dừng sự tính toán Tiểu luận Trang 17
- Nguyễn Thị Thùy Dung sau khi tính các giá trị riêng với sự không tự hợp: trường h ợp này không c ần tính đến mật độ ra. Thành công của phép tính gần đúng này là rất lớn nếu n(r) xấp xỉ với tổng mật độ của nguyên tử. Ta xét ví dụ thứ nh ất là tính t ần s ố phonon. Foulkes đã sử dụng phép tính gần đúng như là một khái ni ệm c ơ b ản cho s ự thành công của mô hình thực nghiệm liên kết mạnh, trong đó năng lượng được đưa ra bằng tổng các giá trị riêng cộng thêm các s ố h ạng có th ể tính đ ược trong phép tính gần đúng này. Thêm vào đó, nó đặc biệt đơn giản để tính năng l ượng liên quan đến các nguyên tử trung hòa trong giới hạn khác nhau về mật độ của tổng các nguyên tử trung hòa. Trong phép tính tự hợp đầy đủ phiếm hàm (2.9) hữu ích cho mỗi bước của phép lặp trong sơ đồ 2.1. Bây giờ phép tính tự hợp là tiêu chuẩn để tính năng lượng (2.7) và (2.9) ở mỗi bước của phép lặp. Phiếm hàm Kohn-Sham c ủa th ế thay đổi, nhưng phiếm hàm không đổi của mật độ lại có năng lượng gần hơn với năng lượng thực. Nó cũng rất hữu ích để tính hai năng lượng và kh ảo sát s ự khác nhau (như là một số đo) do thiếu tự hợp trong suốt quá trình tính toán. Một điều đáng chú ý ở đây là phiếm hàm tường minh theo m ật đ ộ có giá tr ị cực đại như một hàm của mật độ. Tuy nhiên đây không phải là trường hợp tổng quát bởi vì phiếm hàm dẫn xuất thứ hai trong (2.12) không hoàn toàn được đảm bảo xác định dương. Từ định nghĩa của K trong (2.12), số h ạng đầu tiên là xác định dương vì nó do số hạng đẩy Hartree. Người ta cho rằng s ố hạng hút thứ hai sẽ không bao giờ vượt qua được số hạng đẩy Các phiếm hàm suy rộng của V và n, Các phiếm hàm cũng có thể định nghĩa theo biến m ật đ ộ và th ế độc l ập nhau, điều này đã được chỉ bởi một số tác giả. Ta kí hiệu V và n bằng và Tiểu luận Trang 18
- Nguyễn Thị Thùy Dung để nhấn mạnh cả hai đều độc lập trong các hàm. Biểu thức giống như (2.9), ngoại trừ được coi như là một hàm độc lập. Biểu thức có thể được viết (2.13) Số hạng đầu tiên là một phiếm hàm duy nh ất của , số hạng cuối là một phiếm hàm của và chỉ số hạng thứ hai là theo cặp song tuy ến tính đ ơn gi ản và . Tính chất của phiếm hàm có thể được thấy rõ ràng qua sự mô tả của bởi Methfessel. Xem xét các biến bất kỳ và , để tự tuyến tính (2.14) Trong đó là thế được xác định bằng mật độ vào (như trong (2.9)) và là mật độ ra xác định bởi thế (như trong (2.7)). Vì các số hạng trong ngoặc triệt tiêu do tự hợp nên phiếm hàm là dừng, và có giá trị bằng năng lượng Kohn-Sham . Cũng đơn giản để chỉ ra rằng với bất kỳ mật độ cố định nào, điểm dừng của (như một hàm của ) là cực đại toàn phần (global maximum), tại điểm mà giá trị bằng phiếm hàm động năng Kohn-Sham . Tính chất cực đại dẫn từ sự bất bình đẳng tương tự các lập luận Hohenberg-Kohn và nó có thể được hiểu từ (2.14), trong đó cho thấy Tiểu luận Trang 19
- Nguyễn Thị Thùy Dung (2.15) Các giá trị riêng của phiếm hàm này luôn luôn âm do mật độ giảm trong đó thế tăng. Độ cong của E như là một phiếm hàm của được cho bởi (2.12), chỉ liên quan đến các số hạng thế vì các số hạng khác không đổi hoặc tuyến tính. Theo (2.12), E có xu hướng cực tiểu như một phiếm hàm của ; tuy nhiên điều này không được đảm bảo và sự ràng buộc v ề bi ến m ật đ ộ ch ỉ là giải pháp tối thiểu. Điều quan trọng của tính dừng là người ta có thể tính xấp xỉ cho cả và . Ví dụ, người ta có thể chọn các dạng quy ước của các thế như là các thế cầu muffintin thường được dùng trong các phương pháp tăng cường. Nếu ta thực hiện tính toán Kohn-Sham một cách chính xác đối với th ế này, t ất nhiên đây ch ỉ trình bày lại tính chất biến phân của . Hàm suy rộng này cho thấy các sai số trong năng lượng vẫn chỉ là bình phương nếu mật độ cũng được tính x ấp x ỉ khi dùng các dạng phiếm hàm quy ước. Các phiếm hàm nhiệt động Biểu thức năng lượng được cho bởi các phiếm hàm bất kỳ trước đó với tổng năng lượng của các hạt riêng lẻ được tổng quát hóa (T hữu hạn). Entropy được cho bởi phiếm hàm nhiệt độ hữu hạn Mermin (2.16) Trong đó biểu thị số cư trú . Trong phương pháp lặp đi lặp lại, người ta đang tìm ki ếm gi ải pháp cho c ả hai thế và các hàm sóng tại cùng một thời điểm, các hàm sóng không phù h ợp với các thế. Người ta có thể khái quát hóa hàm Fermi thành một ma trận , Tiểu luận Trang 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Luận văn tốt nghiệp cao học: Giải pháp phát triển văn hóa doanh nghiệp tại thành phố Đà Lạt đến năm 2020
91 p | 398 | 153
-
Luận văn tốt nghiệp: Giải pháp nâng cao hiệu quả sử dụng vốn kinh doanh ở Xí Nghiệp Vận Tải Biển Vinafco
65 p | 536 | 98
-
Luận văn tốt nghiệp: Một số giải pháp xây dựng văn hóa doanh nghiệp tại các Ngân hàng thương mại Việt Nam trong thời kỳ hội nhập - Trần Hải Linh
100 p | 329 | 79
-
Luận văn Tốt nghiệp: Giải pháp tài chính nhằm nâng cao năng lực cạnh tranh của CTCP Gạch ngói Thạch Bàn
58 p | 302 | 66
-
Luận văn tốt nghiệp: Giải pháp đẩy mạnh hoạt động phát hành và thanh toán thẻ tại Ngân hàng TMCP Đông Nam Á chi nhánh Đà Nẵng
66 p | 198 | 49
-
Luận văn tốt nghiệp: Giải pháp tài chính nhằm đẩy mạnh tiêu thụ sản phẩm của Công ty TNHH Thành Tuyên
53 p | 235 | 47
-
Luận văn tốt nghiệp: Giải pháp đẩy mạnh xuất khẩu bột cá sang thị trường nhật bản của công ty Kiên Hùng
60 p | 174 | 32
-
Luận văn tốt nghiệp: Nghiệp vụ bảo lãnh xuất nhập khẩu của các Ngân hàng thương mại Việt Nam - Thực trạng và giải pháp phát triển
103 p | 195 | 32
-
Luận văn Tốt nghiệp: Giải pháp hoàn thiện hệ thống chế độ kế toán doanh nghiệp
90 p | 225 | 30
-
Luận văn tốt nghiệp: Giải pháp nâng cao hiệu quả sử dụng đất sản xuất nông nghiệp tại xã Hồng Lộc - huyện Lộc Hà - tỉnh Hà Tĩnh
55 p | 207 | 23
-
Luận văn tốt nghiệp Tài chính - Ngân hàng: Giải pháp phát triển dịch vụ thẻ tín dụng tại Ngân hàng Xây dựng Việt Nam chi nhánh Cần Thơ - Phòng giao dịch Ninh Kiều giai đoạn 2020-2022
103 p | 34 | 20
-
Luận văn tốt nghiệp: Giải pháp nhằm nâng cao chất lượng tín dụng trung dài hạn tại Ngân hàng Ngoại thương Việt Nam
84 p | 145 | 20
-
Luận văn tốt nghiệp Quản trị kinh doanh: Phân tích hoạt động tín dụng tại Ngân hàng PVcomBank chi nhánh An Giang giai đoạn 2016-2018
80 p | 52 | 18
-
Luận văn tốt nghiệp Tài chính - Ngân hàng: Phân tích hoạt động huy động vốn tại Ngân hàng Thương mại cổ phần Sài Gòn Công Thương - Chi nhánh Sóc Trăng giai đoạn 2017-2019
85 p | 32 | 17
-
Luận văn tốt nghiệp Tài chính - Ngân hàng: Phân tích hoạt động tín dụng tại Ngân hàng Thương mại Cổ phần Kiên Long chi nhánh Kiên Giang - Phòng giao dịch An Minh giai đoạn 2018-2020
77 p | 20 | 17
-
Luận văn tốt nghiệp Quản trị kinh doanh: Thực trạng và biện pháp đẩy mạnh bán tour trực tuyến tại Công ty trách nhiệm hữu hạn Thương mại dịch vụ Du lịch TX giai đoạn 2017-2019
83 p | 29 | 16
-
Luận văn tốt nghiệp Tài chính - Ngân hàng: Giải pháp nâng cao hoạt động tín dụng cho vay ngắn hạn tại Ngân hàng Thương mại Cổ phần Công Thương Việt Nam, Chi nhánh Kiên Giang – Phòng giao dịch An Biên giai đoạn 2018-2020
88 p | 18 | 15
-
Luận văn tốt nghiệp Kế toán: Hoàn thiện công tác kiểm soát Chi thường xuyên Ngân sách nhà nước tại Phòng Tài chính - Kế hoạch của Ủy ban nhân dân huyện Long Mỹ, tỉnh Hậu Giang giai đoạn 2019-2021
77 p | 29 | 14
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn