intTypePromotion=1

Nhiên liệu dầu khí - Chương 5

Chia sẻ: Nguyen Nhi | Ngày: | Loại File: PDF | Số trang:29

0
106
lượt xem
23
download

Nhiên liệu dầu khí - Chương 5

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Nhu cầu về năng lượng của thế giới hiện nay được thoả mãn bởi 85% năng lượng hóa học được dự trữ trong các nhiên liệu tự nhiên (chủ yếu là nhiên liệu hóa thạch: than và dầu mỏ), 10% là thuỷ năng (các nhà máy thuỷ điện) và 5% là năng lượng hạt nhân. Các nguồn năng lượng khác như ánh sáng mặt trời, gió, địa nhiệt, ... hiện chỉ đóng góp một phần năng lượng không đáng kể.

Chủ đề:
Lưu

Nội dung Text: Nhiên liệu dầu khí - Chương 5

  1. 71 Chương 5 Cơ sở vật lí và hóa học của sự cháy 5.1 Vài nét khái quát về sự cháy Nhu cầu về năng lượng của thế giới hiện nay được thoả mãn bởi 85% năng lượng hóa học được dự trữ trong các nhiên liệu tự nhiên (chủ yếu là nhiên liệu hóa thạch: than và dầu mỏ), 10% là thuỷ năng (các nhà máy thuỷ điện) và 5% là năng lượng hạt nhân. Các nguồn năng lượng khác như ánh sáng mặt trời, gió, địa nhiệt, ... hiện chỉ đóng góp một phần năng lượng không đáng kể. Sự chuyển hoá năng lượng hóa học thành các dạng năng lượng khác như điện năng, cơ năng, ánh sáng... là do sự cháy nhanh của than hay các phân đoạn khác nhau tách ra từ dầu mỏ. Nếu việc sản xuất năng lượng bằng cách đốt cháy nhiên liệu được thực hiện rất rộng rãi và từ rất lâu thì sự hiểu biết của con người trong lĩnh vực này còn chưa được đầy đủ. Trong lĩnh vực cháy cũng như lĩnh vực khác, việc áp dụng thực tế đã phát triển mạnh mẽ và vượt qua việc nghiên cứu cơ bản. Song việc hiểu biết về sự cháy là cần thiết để có thể tìm được các điều kiện tối ưu cho các ứng dụng công nghiệp. Sự tối ưu này là cần thiết không những chỉ vì nguyên nhân kinh tế, tài nguyên vì khai thác các nguồn nhiên liệu như than và dầu mỏ không thể vô tận, mà còn một vấn đề quan trọng hơn nữa là sự ô nhiễm môi trường không khí do các sản phẩm cháy được thải ra do quá trình đốt cháy nhiên liệu trong động cơ. Hiện tượng cháy là phức tạp và nó tuân theo những quy tắc chung của nhiều ngành khoa học khác nhau, trong đó các ngành chính là hóa học, nhiệt động học và khí - động lực của các chất tham gia vào sự cháy. Từ đó tồn tại một ngành trung gian cần thiết cho việc nghiên cứu cơ bản của sự cháy đó là ngành khí - nhiệt - hóa học và khí - nhiệt - động lực học. Để làm quen với một số khái niệm trong hiện tượng cháy dưới đây giới thiệu tóm tắt những khái niệm này. Chúng ta biết rằng nếu có một hỗn hợp metan và oxi đúng với tỉ lệ hợp thức được nhốt trong một bình kín thì ở nhiệt độ thường sẽ không có hiện tượng gì xảy ra. Nhưng nếu ta nâng nhiệt độ của bình lên khoảng 200°C, metan bắt đầu bị oxi hoá và tạo thành CH3OH, HCOOH, HCHO, CO và CO2. Quá trình này đòi hỏi vài ba phút và ta có thể theo dõi được tốc độ tổng cộng của phản ứng. Ví dụ theo dõi sự giảm số mol metan theo thời gian. Người ta thấy rằng sau khi tốc độ phản ứng tăng lên đến cực đại thì bắt đầu giảm xuống do nồng độ metan bị giảm đi. Kết quả như thế có đặc trưng của sự oxi hoá chậm hay cháy chậm. Khi hỗn hợp này được đưa lên đến 560°C, sau một thời gian rất ngắn trong đó các phản ứng kiểu oxi hoá chậm xảy ra, tốc độ phản ứng tăng lên đột ngột để đạt tới một giá trị vô cùng nếu không tiêu tốn hết các chất tham gia phản ứng. Sự tăng vọt của tốc độ phản ứng là đặc trưng riêng của sự cháy nhanh và nó được biểu thị bằng các dạng thức khác nhau. Vì thế phản ứng tiến triển theo hướng không cân bằng nhiệt động học và được biểu thị bằng nồng độ của các chất trung gian (các nguyên tử, gốc ở trạng thái cơ bản hay bị Sưu t m b i: www.daihoc.com.vn
  2. 72 kích thích) mà người ta có thể tính toán được các nồng độ này khi cho rằng trạng thái cân bằng động học đã đạt được. Hình 10. Sơ đồ biến đổi tốc độ tổng cộng của phản ứng oxi hoá chậm và cháy nhanh của metan trong oxi Sự phát tia sáng nói chung gắn với sự có mặt của một ngọn lửa là một biểu hiện của sự sinh ra các phần tử trung gian, chính xác hơn đó là các gốc có mặt ở trạng thái bị kích thích: đó là hiện tượng phát quang hóa học. Sự cháy nhanh, nói chung sẽ kèm theo hiện tượng ion hóa hóa học. Sự ion hóa hóa học là ví dụ minh họa rất rõ ràng sự mất cân bằng nhiệt động học của sự cháy. Tùy theo các điều kiện vật lí và khí - động lực, hiện tượng cháy có thể chứa đựng những dạng thức và dáng vẻ rất khác nhau. Thông thường, nó bắt đầu bằng một phản ứng oxi hoá chậm. Khi các điều kiện như nhiệt độ, áp suất, thành phần hỗn hợp được thoả mãn trong hệ thống, nó xảy ra sự oxi hoá nhanh hay cháy nhanh hay một cách đơn giản là sự nổ hay sự tự bốc cháy. Khi sự tự bốc cháy xảy ra trong một phần nhỏ của không gian thể tích tổng cộng của hỗn hợp thì người ta gọi là sự châm lửa. Điều này có thể thực hiện được bằng cách đưa vào trong hỗn hợp một vật thể bị đốt nóng hay các khí bị đốt nóng hay tạo nên ở đó những tia lửa điện. Từ điểm châm lửa, vùng phản ứng có thể được truyền dần trong hỗn hợp cháy ban đầu. Vùng phản ứng đang truyền đó được gọi là tuyến lửa. Mặt khác, tuyến lửa bản thân nó được truyền đi rất khác nhau. Nếu chất cháy và chất duy trì sự cháy được trộn trước hoàn toàn đồng đều thì người ta gọi đó là ngọn lửa trong hỗn hợp sơ bộ và ngược lại, hiện tượng truyền bị khống chế bởi tốc độ khuếch tán hỗn hợp chất tham gia phản ứng thì người ta gọi là ngọn lửa khuếch tán. Cuối cùng, tuỳ thuộc vào bản chất của hỗn hợp và các điều kiện giam hãm của hỗn hợp cháy thì ngọn lửa trong hỗn hợp sơ bộ có thể được truyền đi hoặc là với tốc độ nhỏ hơn tốc độ âm thanh - đó là sự phát lửa, hoặc là với tốc độ cao hơn tốc độ âm thanh (siêu âm), đó là sự nổ (detonation). Đây là hai cách truyền ngọn lửa theo quan điểm khí - động lực học. Tuỳ theo ngọn lửa được truyền trong một hỗn hợp có khả năng bốc cháy khi để yên hay đang chảy phẳng hoặc là trong một hỗn hợp chảy rối, thì sự bùng nổ được truyền với các tốc độ khác nhau. Ta sẽ tìm thấy ở đây một trường hợp: kiểu hướng tới các điều kiện khí - động lực về sự cháy. Sự hiểu biết về bản chất tương tác giữa ngọn lửa và sự xoáy lốc có một tầm quan trọng lớn cho thực tiễn. Thật vậy, trong hầu hết các ứng dụng công Sưu t m b i: www.daihoc.com.vn
  3. 73 nghiệp, ngọn lửa được truyền trong các điều kiện xoáy lốc mạnh yếu khác nhau và việc khống chế các điều kiện này là một yếu tố quan trọng trong tối ưu hoá sự cháy. Bảng 29. Những dạng thức khác nhau về sự cháy Vùng không gian tồn tại các điều kiện áp suất, nhiệt Hiện tượng truyền nhiệt độ, thành phần và truyền khối Siêu hạn Dưới giới hạn Kiểu phẳng Kiểu rối Sự truyền cháy bị khống chế Tự bốc cháy (hay nổ bởi: Các chất phản theo nghĩa nghiêm - Khuếch tán các chất tham gia ứng trong hỗn ngặt). Sự bùng nổ Sự bùng nổ phản ứng và độ dẫn nhiệt. hợp trộn đều lí Sự châm lửa = sự t ự phẳng rối - Các hiện tượng khác mà bốc cháy tiếp theo sự tưởng chúng quyết định các điều kiện truyền cháy tới hạn như sóng va chạm. Các chất phản Sự truyền bị khống chế bởi sự Ngọn lửa Ngọn lửa ứng không hoá hơi, khuếch tán nội của khuếch tán khuếch tán được trộn trước các chất tham gia phản ứng phẳng rối Các hiện tượng mà chúng ta vừa nêu ra ở trên (sự tự bốc cháy, sự bùng nổ trong hỗn hợp sơ bộ, ngọn lửa khuếch tán, ngọn lửa phẳng, ngọn lửa rối, sự nổ, ...) được trình bày tóm tắt ở bảng 29 và chúng xảy ra trong các điều kiện hoàn toàn đoạn nhiệt. Trong những trường hợp thực tế, sự giam hãm các chất tham gia phản ứng dẫn tới mất nhiệt và các gốc tự do khi đó người ta gọi là ngọn lửa bị giam hãm hay không đoạn nhiệt. ảnh hưởng của sự giam hãm có thể đóng một vai trò quan trọng lên trạng thái cuối cùng của sự cháy và lên tốc độ truyền của ngọn lửa và trong các trường hợp giới hạn nó có thể làm cho sự cháy không xảy ra. Bởi vậy, sự giam hãm từ phía bên ngoài, đặt ra các giới hạn cho sự tồn tại của ngọn lửa và người ta gọi các giới hạn này là các giới hạn ngoại lai. Trong đại đa số các áp dụng công nghiệp (động cơ, lò đốt, tuabin), ảnh hưởng của thành thiết bị đóng một vai trò không thuận lợi và người ta cố gắng làm giảm tối thiểu nó. Ví dụ đối với các động cơ đốt trong mà ở đó sự tắt ngọn lửa ở ngay đầu xilanh có thể là nguồn gốc của các hiđrocacbon không cháy hết bị thải ra ngoài, ngay trong các điều kiện làm việc lí tưởng. Nhưng ngược lại, trong các trường hợp khác người ta lại lợi dụng các ảnh hưởng của thành thiết bị. Như trong lĩnh vực an toàn, để cản trở sự truyền lửa, người ta sử dụng những thiết bị dựa trên cơ sở cản trở ngọn lửa bằng cách cho qua giữa các thành đủ gần nhau: đó là sự ngừng cháy. Bên cạnh các giới hạn ngoại lai do sự nhốt các thành phần hỗn hợp cháy còn có các giới hạn về khả năng truyền lửa nội bắt nguồn từ bản chất của hỗn hợp “nhiên liệu - chất duy trì tự cháy”. Đó là các giới hạn có thể cháy, giới hạn có thể nổ. Các giới hạn này phụ thuộc vào thành phần của hỗn hợp và vào mức độ pha loãng bởi khí trơ. Trong đại đa số các trường hợp, các phản ứng cháy được thực hiện ở pha khí. Ngay sự cháy của một số nhiên liệu như gỗ, sáp, than béo, thì trước tiên đó là ngọn lửa khuếch tán trong pha khí. Thật vậy, do nhiệt phân hủy hay chưng cất, các hơi của nhiên liệu thoát ra Sưu t m b i: www.daihoc.com.vn
  4. 74 khỏi các vật thể này và cháy sau khi trộn với oxi của không khí. Song sự cháy cũng có thể định xứ ở pha lỏng hay rắn. Ví dụ đó là sự nổ của các thuốc nổ rắn hay lỏng như nitro glyxerin. 5.2 Nhiệt động học và động học của sự cháy Cháy nhanh là một dãy các phản ứng hóa học cơ bản có kiểu rất đặc biệt. Vì thế cần nhắc lại những cơ sở nhiệt động học và động học của nó. Trong đại đa số các trường hợp, những ứng dụng của sự cháy hướng vào chuyển hoá năng lượng hóa học của nhiên liệu thành nhiệt. Có thể nhiệt này sẽ trải qua một sự biến đổi tiếp theo thành những dạng năng lượng khác. Lượng năng lượng hóa học bị chuyển hoá thành bức xạ ánh sáng nhìn thấy là tương đối thấp. Lượng nhiệt năng được giải phóng bởi sự đốt nóng có thể tính toán được từ các dữ kiện nhiệt động học. Song điều quan trọng là phải biết tốc độ và cơ chế phản ứng cho phép người ta hiểu được và có thể điều khiển được quá trình cháy. Điều này rất quan trọng để tính toán lò phản ứng hóa học. 5.2.1 Cơ sở nhiệt động học của sự cháy Cháy là phản ứng oxi hoá của chất khử (được gọi là nhiên liệu) với một chất oxi hoá được gọi là chất duy trì sự cháy (hay chất gây cháy, chất oxi hoá nhiên liệu). Trong đại đa số các trường hợp, chất duy trì sự cháy là oxi từ không khí, các hợp chất hóa học khác nhau, các oxit cao của nitơ, clo hay flo đóng vai trò chất oxi hoá trong các phản ứng dạng đặc biệt. Các nhiên liệu phổ biến nhất là hợp chất hữu cơ trong đó các hiđrocacbon chiếm vị trí lớn nhất. Các sản phẩm của phản ứng này cơ bản là khí CO2 và hơi nước. Ví dụ: propan cháy với một lượng hợp thức không khí thì phản ứng tổng cộng có thể viết theo cách sau: C3H8 + 5O2 + 18,8N2 → 3CO2 + 4H2O + 18,8N2 + Q (1a) Hay một cách chung nhất đối với một hiđrocacbon CnHm bất kì: ⎛ m⎞ ⎛ m⎞ m CnHm + ⎜ n + ⎟ (O2 + 3,76 N2) → nCO2 + H2O + 3,76 ⎜ n + ⎟ N2 + Q (1b) 4⎠ 2 4⎠ ⎝ ⎝ Trong các phương trình này, Q là lượng nhiệt được giải phóng bởi một mol nhiên liệu bị cháy và được gọi là nhiệt đốt cháy. Nó bằng hiệu số giữa tổng các nhiệt hình thành các chất phản ứng và nhiệt hình thành các sản phẩm. Giá trị Q phụ thuộc vào bản chất của nhiên liệu và chất duy trì sự cháy. Bảng 30 cho nhiệt đốt cháy của một số nhiên liệu với oxi. Bảng 30. Nhiệt đốt cháy của một số nhiên liệu (ở 25°C, các sản phẩm cháy là CO2, H2O (hơi), tất cả các nhiên liệu nằm ở trạng thái hơi hay khí) Sưu t m b i: www.daihoc.com.vn
  5. 75 Nhiệt đốt cháy Nhiên liệu (cal/mol nhiêu liệu) Cacbon (rắn) 94.052 Hiđro 57.797 Metan 191.766 Etan 341.260 Propan 488.530 n-Butan 635.050 iso-Butan 635.050 n-heptan 1075.850 Etilen 316.200 Propilen 400.430 Axetilen 300.000 Benzen 757.520 Toluen (metylbenzen) 749.420 Etylbenzen 1048.530 Stiren 1018.830 Oxit cacbon 67.637 Trong cháy đoạn nhiệt, toàn bộ năng lượng được giải phóng được tích luỹ trong sản phẩm cháy: Tf ∫ C dT Q= (2) P Ti trong đó Ti, Tf là nhiệt độ ban đầu của nhiên liệu và nhiệt độ cháy. CP nhiệt dung riêng của sản phẩm cháy theo mol. Biểu thức này chỉ ra rằng nhiệt đốt cháy đoạn nhiệt được tính từ nhiệt độ ban đầu Ti đến nhiệt độ Tf nằm giữa 2000 và 3000K. ở những nhiệt độ tương đối cao này, khí CO2 và hơi nước bị phân ly một phần theo các cân bằng sau đây: Sưu t m b i: www.daihoc.com.vn
  6. 76 Các cân bằng từ I đến VI có thể được đặc trưng bằng các hằng số cân bằng của các quá trình hóa học, như vậy hằng số phân ly của cân bằng I được viết: [CO][O 2 ]1/ 2 KI = [CO 2 ] Và hằng số cân bằng II là: [C][O 2 ]1/ 2 KII = v.v... [CO] Các hằng số này phụ thuộc vào nhiệt độ và áp suất. Sự biến đổi theo nhiệt độ của chúng cần phải biết để tính toán nhiệt độ cân bằng (Tf) và các nồng độ ở cân bằng của các khí CO2, CO, hơi nước và các sản phẩm phân ly của chúng. Việc biết chính xác nhiệt độ cân bằng của các sản phẩm cháy có một tầm quan trọng lớn đối với các ứng dụng công nghiệp. Nhiệt độ cân bằng quyết định không những chỉ hiệu năng của động cơ mà còn cố định được ứng suất nhiệt của nhiên liệu. Ví dụ, trong trường hợp của các cánh tuabin khí nhiệt độ cân bằng đóng vai trò quan trọng hàng đầu. Một trong những phương pháp thông dụng nhất được dùng để đo nhiệt độ ngọn lửa là phương pháp nghịch đảo vạch. Hình 11 trình bày sơ đồ nguyên lí đo nhiệt độ ngọn lửa theo phương pháp này. Hình 11. Sơ đồ đo nhiệt độ cháy (Tf) theo phương pháp đảo ngược vạch của natri Sưu t m b i: www.daihoc.com.vn
  7. 77 Giả sử rằng ta phải xác định nhiệt độ cháy của một ngọn lửa được tạo ra khi cháy mà nhiên liệu và chất duy trì sự cháy đã được trộn kĩ trước. Ngọn lửa đã được ổn định ở đầu của một thiết bị đốt hình trụ (a). Bằng một phương pháp thích hợp, người ta đưa những lượng vết rất nhỏ hợp chất của natri (ví dụ NaOH) vào trong dòng khí cung cấp cho thiết bị đốt. Cùng với các sản phẩm cháy, natri được đốt nóng lên đến nhiệt độ của các sản phẩm cháy và nó phát ra hai vạch cộng hưởng với độ dài sóng là 5890 và 5896Å. Với sự trợ giúp của máy quang phổ b, người ta quan sát phổ của sản phẩm cháy phát ra từ ngọn đèn (S) chồng với phổ liên tục phát ra từ vật đen S’. Như vậy người ta quan sát thấy phổ liên tục của vật đen mà trên đó vạch đúp của natri hoặc là được phát ra hoặc là bị hấp thụ. Khi các vạch của natri được quan sát thấy trên phổ liên tục, thì nhiệt độ của ngọn lửa là cao hơn nhiệt độ của vật đen; còn khi các vạch này bị hấp thụ thì nhiệt độ của ngọn lửa thấp hơn nhiệt độ của vật đen. Khi nhiệt độ của vật đen và ngọn lửa bằng nhau thì hai vạch trên không xuất hiện trong phổ hấp thụ cũng như phát xạ. Sự bằng nhau về nhiệt độ này được điều chỉnh bằng dòng đốt dây vonfram ở nguồn S’. Dòng đốt này đã được chuẩn hoá trước, từ đó người ta có thể đọc được nhiệt độ tương ứng với mỗi một cường độ dòng đốt. Nói chung, các giá trị nhiệt độ tính toán được là cao hơn các giá trị thực nghiệm (xem bảng 31). Bảng 31. Giá trị nhiệt độ ngọn lửa của hỗn hợp hợp thức CH4/O2 được pha loãng bằng N2 (nhiệt độ ban đầu của hỗn hợp 295K, áp suất khí quyển) Nitơ trong hỗn hợp Nhiệt độ ngọn lửa, Tf (K) (%) Đo được Tính toán được 52,5 2570 2677 60 2450 2552 70 2145 2285 Sự khác nhau về Tf có thể được giải thích bởi thực tế là sự cháy không bao giờ xảy ra hoàn toàn đoạn nhiệt nghĩa là luôn luôn có sự mất nhiệt do sự dẫn nhiệt và bức xạ nhiệt mà khi tính toán không kể tới. Ngoài ra, cần phải chú ý rằng ngay ở vùng cháy, nhiệt độ của các sản phẩm cháy vẫn không nằm trong cân bằng nhiệt động học lí tưởng. Ở nhiệt độ và áp suất ban đầu đã cho, giá trị của nhiệt độ ngọn lửa phụ thuộc vào thành phần của hỗn hợp; tuỳ thuộc vào thành phần của hỗn hợp, nhiệt độ đạt đến một cực đại ở gần những giá trị hợp thức (hình 12). Sự pha loãng hỗn hợp có thể bốc cháy đã làm giảm nhiệt độ ngọn lửa bởi vì khí trơ hấp thụ một phần nhiệt đốt cháy (ở đây khí trơ là N2 và tỉ lệ nitơ tăng dần từ hỗn hợp 1 đến 8). Khi người ta tăng nhiệt độ ban đầu hay áp suất ban đầu của hỗn hợp có thể cháy thì nhiệt độ cháy cuối cùng cũng tăng lên. Hiệu ứng của áp suất và nhiệt độ ban đầu này được minh hoạ trên hình 13 và được giải thích bởi thực tế 2 thông số này có khuynh hướng làm giảm mức độ phân ly của sản phẩm cháy. Sưu t m b i: www.daihoc.com.vn
  8. 78 5.2.2 Cơ sở động học của sự cháy Phản ứng tổng cộng về sự cháy (1a) hay (1b) đã được trình bày ở trên, thực tế chỉ cho ta một cân bằng vật chất và năng lượng mà không phản ánh cơ chế thực của sự cháy. Ví dụ, sự cháy của propan bằng oxi không thể thực hiện được chỉ qua một va chạm duy nhất như đã được đưa ra trong phương trình (1) bởi vì như vậy sự cháy bao gồm va chạm tức thời của 6 phân tử, 1 phân tử propan và 5 phân tử oxi, mà xác xuất này vô cùng bé. Sưu t m b i: www.daihoc.com.vn
  9. 79 Trong thực tế, phản ứng tổng cộng được thực hiện bởi một dãy liên tục các phản ứng đơn giản hơn, được gọi là phản ứng cơ bản. Chúng chỉ tham gia vào phản ứng từ 2 đến 3 phần tử. Trong trường hợp của sự cháy, những phần tử này có thể là những phần tử hay gốc tự do đóng vai trò chủ yếu. Gốc tự do là một nguyên tử hay một nhóm các nguyên tử có một hay nhiều electron hoá trị không cặp đôi như nhóm CH3. Để sơ đồ hoá các bước cơ bản của sự cháy, ta sử dụng các kí hiệu rất chung: nhiên liệu được kí hiệu là A, chất gây cháy là B, các gốc tự do là X, Y, ... Nếu gọi sản phẩm cháy là C, D thì phản ứng tổng cộng của sự cháy là: → A+ B C + D (1c) Trong thực tế, phản ứng này xảy ra một cách liên tục trong đó ít nhất gồm hai bước cơ bản tạo nên các gốc tự do và các bước này được gọi là các bước phát triển mạch phản ứng: → A+ X C + Y (3) → B+ Y D + X (4) Lúc kết thúc hai bước này, một phân tử nhiên liệu đã bị chuyển hoá thành các sản phẩm cháy, đồng thời gốc ban đầu X được tái sinh, sao cho các bước trung gian (3) và (4) có thể xảy ra liên tục đến vô cùng, hình thành một mạch phản ứng mà hai bước (3) và (4) tạo nên mắt xích. Người ta còn nói rằng hai phản ứng này là những giai đoạn phát triển phản ứng dây chuyền. Chỉ một gốc (X hay Y) lúc ban đầu có trong hỗn hợp các chất phản ứng có thể chuyển hoá tất cả các phân tử của nhiên liệu thành các sản phẩm cháy. Trong thực tế, người ta cũng phải kể đến một phần các gốc tự do bị biến mất (do đứt mạch dây chuyền) và mặt khác chúng cũng được sinh ra (sự phân nhánh mạch dây chuyền). Sự đứt mạch dây chuyền xảy ra khi hai gốc va chạm nhau và hai electron tự do ghép với nhau hình thành liên kết cộng hoá trị. Như vậy đặc trưng gốc bị biến mất với việc sinh ra các loại hợp chất hoá học bền vững. Năng lượng giải phóng ra trong quá trình liên kết này bị hấp thụ bởi 1 phần tử thứ ba nào đó M mà sự có mặt của nó là cần thiết khi các gốc tự do không có thành phần nguyên tử đủ phức tạp: → X + Y (+M) chất bền vững (+M) (5) Sự đứt mạch cũng có thể xảy ra khi một gốc chạm vào thành bình. Thật vậy, đại đa số các thành bình là các bề mặt kim loại có các electron hóa trị không cặp đôi, bởi vậy chúng tác động như những bẫy các gốc hay các gốc này bị giữ lại trên bề mặt thành kim loại trong một thời gian đủ dài để các gốc khác đến kết hợp với chúng: Thành bình X Chất bền vững (6) Sự biến mất các gốc tự do do đứt mạch dây chuyền trong pha khí hay trên thành bình được đền bù bởi các phản ứng sinh ra những gốc tự do mới (phản ứng phân nhánh), ta có thể sơ đồ hoá như sau: → A+ Y 3X (7) Mỗi gốc được tạo nên sự khơi mào một mạch mới theo các bước (3) và (4): người ta nói rằng mạch bị phân nhánh. Khi kết quả sự phân nhánh đó đủ cao, thì sự phân nhánh có Sưu t m b i: www.daihoc.com.vn
  10. 80 dạng của một “núi lở” thật sự. Số các mạch tăng ngày càng nhanh và sự tăng liên tục tốc độ dẫn tới sự tăng vô cùng các phản ứng (hình 14). Để hiểu rõ hơn hiện tượng phân nhánh của phản ứng ta nghiên cứu sự phụ thuộc của tốc độ phản ứng của các bước cơ bản theo nhiệt độ và nồng độ các gốc tự do. D C C C §øt m¹ch X+A X+A Y+B X+A X+A C D+ ChÊt bÒn v÷ng X Y+B X+A C X... X... X+A Y+A X... C C D X... X+A X+A Y+B X+A C D X... Y+B X+A Hình 14. Sơ đồ phát triển của một phản ứng cháy theo cơ chế dây chuyền phân nhánh (A: nhiên liệu, B chất gây cháy, C và D sản phẩm cháy, X và Y các gốc tự do) Ta gọi nồng độ của một chất hoá học i đã cho là Xi (phần mol). Như vậy tốc độ phản ứng được định nghĩa là sự thay đổi phần mol của một chất hoá học theo thời gian. Tốc độ của phản ứng phát triển mạch (3) có thể viết như sau: dX C dX A VP = − = (8) dt dt Tốc độ này tỉ lệ với tần số va chạm lưỡng phân tử tính cho 1 phân tử Z2 (Z2 là tỉ số của tốc độ tịnh tiến trung bình (C) của một phân tử và đường đi tự do trung bình của nó, λ). (8R)1/ 2 To P C Z2 = = (πTM)1/ 2 Po λ o λ trong đó: - R là hằng số khí, - M là khối lượng phân tử trung bình của phân tử ở nhiệt độ To và áp suất Po nhân với tích của các xác suất sau đây: a) Xác xuất va chạm giữa 2 phần tử thích hợp nghĩa là giữa một phân tử A và một gốc X và xác suất này là XA.XX. b) Xác suất định hướng va chạm thích hợp để xảy ra phản ứng. Xác suất này được biểu thị bằng thừa số định hướng f ≤ 1 (trong các phần sau ta luôn luôn cho rằng yếu tố lập thể này bằng 1). c) Xác suất va chạm của 2 phân tử đủ năng lượng để sinh ra phản ứng cơ bản (3) (nếu không, va chạm giữa 2 phân tử chỉ là va chạm đàn hồi). Năng lượng tối thiếu được gọi là năng lượng hoạt hoá và giá trị của nó phụ thuộc vào kiểu phản ứng đang nghiên cứu. Đối với những phản ứng mà các gốc tự do tham gia vào như là phân tử thứ hai trong va chạm thì năng lượng hoạt hoá đòi hỏi không cao lắm. Điều này giải thích tốc độ lớn của phản ứng. Theo lí thuyết của Bolzmann, xác Sưu t m b i: www.daihoc.com.vn
  11. 81 suất va chạm giữa 2 tiểu phân có năng lượng tối thiểu này hay năng lượng hoạt hoá (E) được biểu diễn bằng biểu thức e−E/RT. Như vậy, ta có thể biểu diễn tốc độ phản ứng (3) như sau: VP = f3 . Z2 . XA . XX . e−E p/ RT (9) Cũng tương tự, đối với các phản ứng cơ bản khác, tốc độ của chúng cũng được biểu thị theo phương trình sau: - Giai đoạn phát triển mạch (4): VP’ = f4 . Z2 . XB . XY . e−E p’/RT (10) - Giai đoạn đứt mạch trong pha đồng thể: Vt = f5 . Z3 . XX . XY . e−E t /RT (11) Đối với tất cả các bước cơ bản kiểu (5), năng lượng hoạt hóa Et nói chung là bằng 0, mặt khác Z3 là tần số va chạm bậc 3 và giá trị của nó nhỏ hơn khoảng 1000 lần giá trị Z2, tần số va chạm bậc 2: Z3 ≈ 10−3 Z2 - Giai đoạn đứt mạch do va chạm vào thành bình: Vt’ = f6 . ZS . XX (hay Y) . e−E t‘/RT (12) (ZS là tần số va chạm vào thành bình) - Bước 7 phân nhánh phản ứng: Vr = f7 . Z2 . XA . XY . e−E r /RT (13) Theo cách viết chung nhất thì tốc độ phản ứng ở bước (3) có thể viết như sau: VP = k3 [A] [X] = k30 [A] [ X] . e−E p/ RT (9’) Việc lựa chọn các đơn vị nồng đồ [A] và [X] sẽ phụ thuộc vào đơn vị của hằng số tốc độ phản ứng k3. So sánh phương trình (9) và (9’) ta thấy: k3 = f3 . Z2 . e−E p/ RT k30 = f3 . Z2 Trong các hệ thức trên, tốc độ phản ứng có thứ nguyên là nghịch đảo của thời gian vì rằng ta biểu thị nồng độ các chất tham gia phản ứng là phần mol. Khi tốc độ của hai bước truyền phản ứng VP và VP’ bằng nhau ta có hệ tĩnh. Vì chính các bước này là các bước quyết định sự chuyển hoá các chất tham gia phản ứng ban đầu thành sản phẩm cháy, nên tốc độ phản ứng tổng cộng (1) sẽ bằng các tốc độ truyền: Vcháy = VP = VP’. Điều này chứng minh rõ ràng rằng tốc độ tổng cộng của sự cháy (sự oxi hoá) phải chịu một sự tăng tốc khi nhiệt độ tăng lên hay khi nồng độ của các gốc tự do tăng lên. Mặt khác, sự oxi hoá là một phản ứng phát nhiệt và nếu như không có sự trao đổi với bên ngoài thì nhiệt độ tăng lên một cách tự động trong quá trình cháy. Hơn nữa, như ta thấy từ phương trình (13), tốc độ phân nhánh tăng lên bởi sự tăng nhiệt độ. Ngược lại, các phản ứng đứt mạch thực tế không bị ảnh hưởng (phương trình 11) (do giả thuyết rằng năng lượng hoạt hoá đứt mạch bằng 0). Vì thế, nồng độ gốc tự do tăng lên với sự tăng nhiệt độ. Sưu t m b i: www.daihoc.com.vn
  12. 82 Như vậy, cơ chế chung của sự cháy mà chúng ta vừa mô tả ở trên là rất đơn giản và được sơ đồ hoá rõ ràng. Song trong thực tế, cơ chế thực của sự cháy là phức tạp hơn nhiều. Một vấn đề phức tạp tương đối thường xuyên gặp phải là sự phân nhánh suy thoái của mạch. Cho đến nay chúng ta đã chấp nhận sự phân nhánh xảy ra khi một va chạm có đủ năng lượng giữa một trong các chất tham gia phản ứng và một gốc tự do. Trong thực tế đó là một sản phẩm trung gian của sự cháy (ví dụ, một anđehit - một phần tử của nhiên liệu đã bị oxi hoá không hoàn toàn) phản ứng với một phân tử hay một gốc tự do khác gây nên sự phân nhánh của mạch dây chuyền làm xuất hiện hai hay ba gốc tự do. Về mặt động học, điều này tạo nên một sự thay đổi quan trọng: tốc độ phân nhánh sẽ phụ thuộc vào nồng độ của sản phẩm trung gian này. Vì sản phẩm trung gian được sinh ra từ bước truyền phản ứng, nên tốc độ phân nhánh cũng phụ thuộc vào tốc độ truyền. Một cơ chế phân nhánh gián tiếp như thế hay gặp trong đại đa số các phản ứng cháy của các hiđrocacbon. Ví dụ, chúng ta nghiên cứu phản ứng cháy của metan. Phản ứng tổng cộng hợp thức được viết là: → CH4 + 2O2 CO2 + 2H2O + 191.760 cal Cơ chế mạch gồm hai bước cơ bản như sau: - Sự truyền mạch phản ứng: • • → CH3 + O2 OH + CH2O • • → CH4 + OH CH3 + H2O Fomanđehit (CH2O) sẽ bị chuyển hoá tiếp tục thành CO2 và H2O qua các bước cơ bản dẫn đến tạo thành CO2 và nước. - Sự phân nhánh gián tiếp: • • → CH2O + O2 CHO + O-OH Các bước tiếp theo sẽ chuyển các gốc •CHO và •O-OH thành gốc •OH và gốc •OH này lại tham gia vào sự truyền mạch đầu tiên của oxi hoá metan. Việc nghiên cứu động học của các cơ chế cháy rất khó. Trong các phản ứng cháy nhanh, các phương pháp cổ điển thường không áp dụng được do tốc độ của chúng và sự phát nhiệt của chúng rất cao. Việc nghiên cứu trực tiếp phản ứng cháy chỉ có thể trong rất ít trường hợp nhờ các kĩ thuật phân tích rất hiện đại và rất nhạy. Ví dụ, khi tồn tại những gradient nồng độ trong không gian phản ứng trong các ngọn lửa thì người ta có thể theo dõi sự tiến triển của 1 loại chất hoá học theo thời gian bằng cách lấy mẫu theo khoảng cách. Nhưng trong trường hợp tự bốc cháy, trong tất cả thể tích mà ở đó không tồn tại các gradient nồng độ, như vậy phản ứng xảy ra một cách đồng nhất trong toàn bộ thể tích và hoàn thành chỉ trong một phần của giây thì chỉ có thể dùng một phương pháp phân tích cho phép lấy mẫu với tần số rất cao để nghiên cứu trực tiếp tốc độ phản ứng. Trong đại đa số các trường hợp, động học của sự cháy được nghiên cứu bằng các phương pháp gián tiếp để xác định các thông số động học của các phản ứng cháy. Trong việc nghiên cứu này, việc biết các năng lượng hoạt hoá của các bước trung gian có một tầm quan trọng lớn. Bảng 32 trình bày một số giá trị năng lượng hoạt hóa đại diện cho các bước trung gian thường gặp phải trong các phản ứng cháy. Sưu t m b i: www.daihoc.com.vn
  13. 83 Bảng 32. Năng lượng hoạt hoá của một số bước trung gian truyền phản ứng và phân nhánh Bước trung gian Năng lượng hoạt hoá (kcal/mol) Các phản ứng truyền mạch • OH + H2 → H2O + •H Từ 6 ÷ 10 • OH + CO → CO2 + •H Từ 4 ÷ 7,7 • O-OH + H2 → H2O2 + •H 24 • CH3 + O2 → CH2O + •OH 20 CH4 + •OH → •CH3 + H2O 9 Các phản ứng phân nhánh • H + O2 → •OH + •O Từ 15 ÷ 18 • H2O2 → 2 OH 45 CH2O + O2 → •COH + •O-OH 35 Đây là năng lượng hoạt hoá quyết định sự thay đổi tốc độ của các bước cơ bản tùy thuộc vào nhiệt độ và nó cho phép xác định cơ chế tổng quát của sự cháy. Trên bảng 32, ta thấy rằng năng lượng hoạt hoá của các bước phân nhánh, nói chung là cao hơn năng lượng của các bước truyền mạch. Bởi vậy, khi nhiệt độ tăng lên, thì tần số phân nhánh tăng lên nhanh hơn tần số truyền mạch. Tương tự như vậy, một phản ứng phân nhánh được đặc trưng bằng năng lượng hoạt hoá lớn sẽ có tần số thấp ở nhiệt độ thấp. Nhưng khi nhiệt độ tăng lên thì dẫn tới sự phân nhánh với năng lượng hoạt hoá thấp hơn. Điều này giải thích rằng cơ chế sự cháy có thể bị thay đổi hoàn toàn khi ta chuyển từ vùng nhiệt độ này sang vùng nhiệt độ khác. 5.3 Sự tự bốc cháy. Sự nổ ở nhiệt độ thường, khi người ta trộn một nhiên liệu với một chất duy trì sự cháy có thể không có phản ứng cháy xảy ra. Ví dụ hỗn hợp hợp thức của hiđro và oxi hay metan và không khí được giữ ở nhiệt độ thường, chúng không phản ứng với nhau hay nói một cách khác ở nhiệt độ này tốc độ phản ứng rất bé và thực tế nó bằng không. Người ta nói rằng hỗn hợp ở trạng thái giả bền. Khi nâng cao nhiệt độ của hỗn hợp một cách đồng đều trong toàn bộ thể tích sẽ đến lúc các phản ứng oxi hoá chậm xảy ra. Những phản ứng này phát nhiệt làm cho nhiệt độ của phản ứng tăng lên. Tuy nhiên, nhiệt độ không thể tăng một cách vô cùng bởi vì nhiên liệu hết dần và như thế kéo theo sự giảm liên tục tốc độ phản ứng. Các phản ứng chậm bị dừng lại thường ở các sản phẩm bị oxi hoá không hoàn toàn như ancol, anđehit, axit. Sưu t m b i: www.daihoc.com.vn
  14. 84 Hình 15. Sơ đồ các vùng nổ và oxi hoá chậm đối với một hỗn hợp hiđrocacbon/không khí Nếu người ta đưa hỗn hợp ban đầu đến những nhiệt độ ngày càng cao hơn thì ta sẽ đạt tới một nhiệt độ mà ở đó phản ứng oxi hoá bùng lên và chuyển hoá thành sự cháy nhanh và đó là sự tự bốc cháy. Nhiệt độ tối thiểu mà ở đó sự tự bốc cháy xảy ra được gọi là nhiệt độ tự bốc cháy. Như vậy, một phản ứng chậm xảy ra ở nhiệt độ thấp hơn một chút so với nhiệt độ tự bốc cháy thì cuối cùng có thể đưa hỗn hợp tới sự tự bốc cháy nếu như nhiệt độ của phản ứng cho phép đạt tới nhiệt độ giới hạn tự bốc cháy trước khi các chất tham gia phản ứng bị hết sạch. Rõ ràng rằng, nhiệt độ tự bốc cháy phụ thuộc vào bản chất và thành phần của hỗn hợp nổ. Đối với mỗi hỗn hợp nổ nhất định, nhiệt độ tự bốc cháy cũng là một hàm của áp suất (hình 15). Sưu t m b i: www.daihoc.com.vn
  15. 85 Từ kết quả trên hình 15, người ta rút ra một nhận xét rằng: nói chung, nhiệt độ tự bốc cháy càng cao nếu như áp suất của hỗn hợp cháy càng thấp. Song đường cong có một số đặc trưng. Thật vậy, đối với nhiều hiđrocacbon người ta quan sát thấy rằng ở một áp suất đã cho đủ cao P có ba nhiệt độ tới hạn của sự tự bốc cháy T1, T2, T3. Chính trong vùng áp suất và nhiệt độ này tạo nên cái gọi là ngọn lửa lạnh. ở những áp suất đủ yếu, đường cong tách vùng nổ khỏi vùng phản ứng chậm và có một vùng được gọi là vùng tự bốc cháy với thời hạn dài (autoinflamation à longs détailles). Đặc biệt trong vùng này, ở một nhiệt độ T đã cho, có ba áp suất tới hạn của sự tự bốc cháy P1, P2, P3. Ta hãy nghiên cứu một hỗn hợp nổ được đưa tức thời tới nhiệt độ tự bốc cháy của nó, thậm chí ngay ở nhiệt độ cao hơn một cách rõ ràng thì sự tự bốc cháy sẽ không xảy ra ngay mà phải sau một khoảng thời gian nào đó. Khoảng thời gian tự bốc cháy này càng ngắn khi nhiệt độ càng cao và việc tồn tại thời hạn tự bốc cháy là do cần phải đạt được một nồng độ gốc tự do để cho phản ứng oxi hoá có thể tự bùng lên hay tự bốc cháy. Nhiệt độ tự bốc cháy và thời hạn tự bốc cháy là những thông số quan trọng trong sự nổ. Ví dụ, việc biết nhiệt độ tự bốc cháy là rất quan trọng trong lĩnh vực an toàn khi phải làm việc với các nhiên liệu. Thật vậy, nhiên liệu tương đối dễ bay hơi và trong quá trình chuyển thiết bị đựng hay do nguyên nhân thất thoát có thể dễ dàng tạo nên các hỗn hợp nổ với không khí ngay khi một vật tiếp xúc với hỗn hợp này nếu như nhiệt độ của nó cao hơn nhiệt độ tự bốc cháy của hỗn hợp. Bảng 33. Nhiệt độ tự bốc cháy của các nhiên liệu (các hỗn hợp hợp thức với oxi tinh khiết và với không khí ở áp suất khí quyển) Nhiệt độ tự bốc cháy (°C) Nhiên liệu Với oxi tinh khiết Với không khí Hiđro H2 560 570 Amoniac NH3 - 650 Oxit cacbon CO 590 630 Metan CH4 555 580 Propan C3H8 470 480 Etilen C2H4 485 520 Axetilen C2H2 295 320 n-hexan n-C6H14 - 260 n-heptan n-C7H16 - 235 n-octan C8H18 - 220 iso-octan C8H18 - 670 Benzen C6H6 - 620 Axetanđehit CH3CHO 150 230 Đietylete (C2H5)2O 180 190 Sưu t m b i: www.daihoc.com.vn
  16. 86 Axit axetic CH3COOH - 575 Axeton CH3COCH3 - 560 Sunfuacacbon CS2 - 130 Metylclorua CH3Cl 605 650 Etylclorua C2H5Cl 470 505 Một ví dụ khác, nhiều tổng hợp hoá học công nghiệp được thực hiện trong các lò phản ứng lớn mà ở đó những chất tham gia phản ứng có thể tạo nên hỗn hợp nổ. Những lò phản ứng này là nơi của những phản ứng chậm phát nhiệt cho nên rất quan trọng, phải có các biện pháp ngăn ngừa tỉ mỉ như lấy nhiệt được giải phóng ra từ phản ứng, loại nhiệt của lò phản ứng để nó không đạt được nhiệt độ tới hạn của sự tự bốc cháy. Ta thấy ở bảng 33, các nhiên liệu cho động cơ như các C6 hay C8 có nhiệt độ tự bốc cháy trong không khí từ 230 ÷ 260°C. Thế mà chỉ việc tiếp xúc với thành xilanh cũng đủ để đưa hỗn hợp này đến khoảng 230°C và nhiệt độ này còn tăng lên khi pittong nén khí tăng lên. Thời hạn chậm nổ là một thông số rất quan trọng. Ví dụ, trong động cơ điezen người ta phun gazoin vào xilanh sau khi đã nén không khí làm cho nhiệt độ tăng lên trên nhiệt độ tự bốc cháy. Nếu thời hạn tự bốc cháy tương ứng với chế độ của động cơ, nghĩa là thời gian kéo dài 1 vòng nén thì sự tự bốc cháy xảy ra. Ngược lại, nếu thời hạn quá dài, hỗn hợp không thể nổ trước khi giai đoạn giảm áp bắt đầu thì nhiên liệu bị thải ra khỏi xilanh và không bị đốt cháy. Trong động cơ xăng, người ta tạo nên một tia lửa điện đốt cháy hỗn hợp nhiên liệu - không khí. Từ điểm bắt cháy, ngọn lửa được truyền đi và đốt cháy nhiên liệu trên đường truyền của nó. Sự truyền này đòi hỏi một thời gian nhất định trong đó nhiệt độ của phần chưa bị cháy tăng lên liên tục do sự tăng liên tục của áp suất do sản phẩm cháy tạo ra. Phần này của hỗn hợp nằm ngay trong các điều kiện nổ. Và nó sẽ nổ sau một thời hạn có thể là tương đối ngắn làm xuất hiện các sóng áp suất có hại cho động cơ. Hiện tượng này được gọi là tiếng “lách cách” kim loại. Để loại hiện tượng này thì tất cả các nhiên liệu trong xilanh phải bốc cháy, nghĩa là thời hạn tự bốc cháy phải đủ dài. Thời hạn tự bốc cháy của nhiên liệu thường được phân loại theo chỉ số octan: một nhiên liệu càng lâu tự bốc cháy thì chỉ số octan của nhiên liệu càng cao và ngược lại. Trong thực tế có nhiều phụ gia được thêm vào nhiên liệu với nồng độ nhỏ đã làm tăng chỉ số octan của nhiên liệu lên hàng chục đơn vị. 5.3.1 Xác định nhiệt độ tự bốc cháy Phương pháp phổ biến nhất để đo nhiệt độ tự bốc cháy của nhiên liệu là phương pháp hoả kế. Hoả kế được chế tạo rất đơn giản, gồm một lò phản ứng được đặt trong một lò điện. Sau khi đã làm chân không trước trong lò phản ứng và nhiệt độ trong lò phản ứng phải đồng đều, người ta đưa hỗn hợp nhiên liệu và không khí vào trong đó. Nếu nhiệt độ đủ cao, sự tự bốc cháy sẽ xảy ra khi đưa hỗn hợp vào sau một khoảng thời gian nhất định. Sự tự bốc cháy được xác định hoặc bằng sự tăng lên đột ngột về nhiệt độ hay áp suất, hoặc bằng sự xuất hiện một quá trình phát quang hóa học. Tùy theo từng trường hợp, bộ phận phát hiện sẽ hoặc là một cặp nhiệt điện hay một áp kế rất nhạy, hoặc là một tế bào quang Sưu t m b i: www.daihoc.com.vn
  17. 87 điện (hình 16). Thời gian từ lúc đi vào của hỗn hợp và sự xuất hiện sự tự bốc cháy là thời hạn tự bốc cháy. Hình 16. Sơ đồ nguyên lí của phương pháp hoả kế để xác định thời hạn và nhiệt độ tự bốc cháy Hỗn hợp nhiên liệu và không khí được trộn trước, cho vào bình chứa (c). Lò phản ứng (a) được đưa tới nhiệt độ mong muốn nhờ lò đốt nóng bằng điện (b). Sau khi hỗn hợp được đưa vào đó qua khoá (d). Sự tự bốc cháy được phát hiện bằng một nhiệt kế điện trở G, hay bằng một áp kế (f) hay bằng 1 tế bào quang điện (e). Một phương pháp khác thường xuyên được sử dụng để xác định nhiệt độ tự bốc cháy của nhiên liệu lỏng là đưa một giọt nhiên liệu lỏng vào trong một chén nung bị đốt nóng ở nhiệt độ đã biết. Chén nung có chứa chất duy trì sự cháy. Bất tiện của phương pháp này là người ta không biết thành phần của hỗn hợp nổ. Thật vậy, sự hoá hơi của giọt nhiên liệu tiếp theo sự khuếch tán của hơi trong chất duy trì sự cháy làm xuất hiện những gradient nồng độ rất khó biết. Còn về các phương pháp xác định thời hạn tự bốc cháy, tất cả các phương pháp này đều cùng phải giải quyết một vấn đề: làm thế nào để đưa ngay tức thời và đồng nhất một hỗn hợp nổ t ới một nhiệ t độ đủ cao. Trong một số trường hợp thời hạn này có thể là vài ba phút, nhưng thông thường là một vài mili giây hoặc một vài micro giây. Một phương pháp khác là đốt nóng một cách riêng biệt nhiên liệu và chất duy trì sự cháy tới nhiệt độ mong muốn, sau đó đưa chúng vào tiếp xúc với nhau. Nhưng phương pháp này gặp phải một khó khăn liên quan tới thời gian cần thiết để làm đồng nhất hỗn hợp tham gia phản ứng. Trong phương pháp này cần chú ý rằng đại đa số các nhiên liệu chỉ cần được đốt nóng trước vừa phải để tránh những phản ứng nhiệt phân làm thay đổi bản chất của chất tham gia phản ứng. Đối với các nhiên liệu có thời hạn tự bốc cháy trên một giây thì phương pháp hoả kế là hoàn toàn thoả đáng. Đối với các thời hạn ngắn hơn, phương pháp hoả kế không còn giá trị nữa bởi vì việc đưa hỗn hợp vào lò phản ứng cũng mất hàng trăm mili giây. Những thời hạn nằm giữa mili giây và giây được đo bằng hai phương pháp khác nhau: phương pháp thứ nhất được thực hiện trên một hỗn hợp đồng nhất, còn phương pháp thứ hai sử dụng kỹ thuật đốt nóng sơ bộ những chất tham gia phản ứng. Trong phương pháp thứ nhất, việc tăng nhiệt độ được thực hiện bằng cách nén đoạn nhiệt hỗn hợp đồng nhất Sưu t m b i: www.daihoc.com.vn
  18. 88 trong một xilanh. Ngược với hệ thống biên tay quay được dùng trong các động cơ ở đó tốc độ nén giảm từ từ khi sự nén càng cao. ở đây sự chuyển động của pittong được điều chỉnh sao cho tốc độ nén liên tục tăng lên nhằm mục đích giảm thiểu thời gian trong đó hỗn hợp cháy nằm ở một nhiệt độ cao hơn nhiệt độ tự bốc cháy. Việc thực hiện những điều kiện này là rất khó, đặc biệt đối với việc bất động pittong vào cuối của quá trình. Trên sơ đồ xác định thời gian tự bốc cháy bằng phương pháp nén đoạn nhiệt (hình 17) sự bất động của pittong thu được bằng cách truyền toàn bộ năng lượng tịnh tiến lên một hệ thống khác gồm một pittong triệt tiêu chống lại pittong thứ nhất đến va đập vào lúc kết thúc quá trình. Hỗn hợp nổ được giữ trong buồng đốt (A) và được nén bởi pittong B đạt tới nhiệt độ T và một áp suất P, áp suất này có thể đo được bằng một bộ phận cảm biến áp điện C. Việc nén được bắt đầu khi nhận một khí ở một áp suất nào đó có trong bình chứa D ở phía trên cao của xilanh E bằng cách mở van F. Van này được khoá bởi một nam châm điện G. Các pittong H và B phải không chuyển động do sự thay đổi năng lượng ở thời điểm mà phần thấp của pittong H va vào khối triệt tiêu I khối này bị chạy chậm lại một cách độc lập trong xilanh triệt tiêu J. Hỗn hợp giữ nguyên ở nhiệt độ T và áp suất P cho đến khi sự nổ bắt đầu. Sự tăng đột ngột của áp suất được phát hiện bởi biến áp điện C và chỉ ra sự kết thúc của thời hạn tự bốc cháy. Hình 17. Xác định thời hạn tự bốc cháy bằng phương pháp nén đoạn nhiệt Sau khi nén, hỗn hợp đạt tới nhiệt độ T2 và áp suất P2 và chúng không thay đổi liên quan tới nhiệt độ T1 và áp suất P1 lúc ban đầu theo định luật nén đoạn nhiệt: γ−1 ⎛ V1 ⎞ ⎜⎟ γ ⎛V ⎞ T2 ⎝ V2 ⎠ = =⎜ 1 ⎟ P2 T1 ⎝ V2 ⎠ P1 trong đó V1 và V2 là các thể tích ban đầu và cuối cùng bị chiếm bởi hỗn hợp, γ là tỉ số của các nhiệt dung riêng ở áp suất và ở thể tích không đổi. Sưu t m b i: www.daihoc.com.vn
  19. 89 Để đo các thời hạn tự bốc cháy, người ta đặt máy biến áp điện trên các thành của xilanh. Máy biến áp điện này sẽ vẽ trên màn hình của một máy dao động ký sự tiến triển tín hiệu áp suất tuỳ thuộc vào thời gian; sau khi kết thúc sự nén, áp suất được giữ không đổi sau đó tăng lên một cách đột ngột khi sự tự cháy xảy ra (hình 17). Thời gian kéo dài đoạn thẳng ở áp suất không đổi tạo nên một phép đo trực tiếp thời hạn tự bốc cháy. Một phương pháp khác xác định thời hạn tự bốc cháy của nhiên liệu được sơ đồ hoá trên hình 18. Nguyên lý của phương pháp này rất đơn giản: chất duy trì sự cháy được nâng lên nhiệt độ mong muốn qua một thiết bị trao đổi nhiệt, sau đó được đưa vào buồng đốt với một tốc độ đã biết qua một ống dẫn trong suốt. Hình 18. Sơ đồ nguyên lý của phương pháp xác định thời hạn tự bốc cháy của khí Nhiên liệu cũng được đốt nóng trước ở cùng một nhiệt độ như chất duy trì sự cháy, nhiệt độ được chọn sao cho các phản ứng nhiệt phân của nhiên liệu là không đáng kể. Sau đó được tiêm vào ở một thời điểm đã cho và được trộn với chất duy trì sự cháy. Sau một thời gian nhất định (thời gian này sẽ phụ thuộc vào thời gian trộn lẫn và thời hạn tự bốc cháy) hỗn hợp sẽ nổ và khoảng cách từ khi xuất hiện sự tự bốc cháy này đến điểm tiêm nhiên liệu chia cho tốc độ chảy của hỗn hợp sẽ cho ta giá trị gần đúng của thời hạn tự bốc cháy. Thời hạn tự bốc cháy thu được bằng việc xác định vị trí của nơi xảy ra sự tự bốc cháy : θ = ta − t1 = (xa − x1) / ν Trong một số ứng dụng, ví dụ như trong các động cơ phản lực thẳng, thời hạn tự bốc cháy thường rất thấp: một vài phần trăm giây hay vài chục micro giây (10−6 giây). Để đo các đại lượng này người ta dùng phương pháp sóng va chạm. Đó là các sóng áp suất siêu âm có thể nâng lên trong vài micro giây nhiệt độ và áp suất của khí trên đường đi của chúng. Những va chạm này được thực hiện trong những ống dẫn (hay ống va chạm) có chứa hỗn hợp khí cháy. Nguyên lý đo được giải thích bằng giản đồ thời gian - khoảng cách (hình 19). Sưu t m b i: www.daihoc.com.vn
  20. 90 Hình 19. Nguyên lý đo thời hạn tự bốc cháy theo sóng va chạm A - Hỗn hợp nổ ở nhiệt độ thường, B - Hỗn hợp được đưa đến nhiệt độ cao Tc do sóng va chạm, C - Các sản phẩm cháy. Sóng va chạm được tạo nên bằng một kỹ thuật đặc biệt, đi qua từ đầu này của ống sang đầu kia của ống với một tốc độ siêu âm không đổi. Trên đường đi hỗn hợp khí được nâng tới một áp suất và một nhiệt độ có thể tính toán được hoàn toàn chính xác bằng cách áp dụng các lý thuyết khí động lực học; sau đó nó nổ sau một thời gian lưu nhất định bằng thời hạn tự bốc cháy. Người ta dễ dàng thấy rằng nơi mà sự nổ xảy ra phải là một đường thẳng song song với sóng va chạm trên giản đồ “thời gian - khoảng cách”. Trong thực tế, mặc dù nguyên lý của phương pháp là như nhau nhưng các chi tiết trong sơ đồ xảy ra phức tạp hơn. 5.3.2 Giới hạn cho sự tự bốc cháy Sự tăng cực kì nhanh của tốc độ phản ứng oxi hoá tạo nên sự tự bốc cháy chỉ có thể thực hiện được nếu như nồng độ của các gốc tự do, chất truyền mạch, đạt tới một giá trị tới hạn (XR). Sự thay đổi nồng độ của các gốc tự do bị khống chế bởi các yếu tố của sự phân nhánh. Mặt khác, qua các phản ứng đứt gãy ở pha khí và trên thành xilanh lại làm giảm nồng độ gốc. Tốc độ của mỗi một trong các bước này phụ thuộc vào nhiệt độ theo luật Arrhénius (V=A.e−E/RT). Như vậy, ta có thể viết gần đúng sự thay đổi phần mol của các gốc tự do theo dX R thời gian bằng tổng đại số của các tốc độ phản ứng của các bước cơ bản (coi f = 1): dt dX R = Vn − Vt − Vt’ = Z2 . XA . XY . e−Er/RT − Z3 . XY . XX − Z5 . XR . e−Et’/RT hay: dt Z X XX dX R = Z2 . XA . Y . XR . e−Er/RT − Z2 . 3 . XR2 . Y 2 X XR Z2 XR dt Z − Z5. 5 . XR . e−Et’/RT (14) Z2 XY . e−Er/RT là δ Nếu kí hiệu: (15) XR Z3 X Y X X là Ft (16) . X2 Z2 R Sưu t m b i: www.daihoc.com.vn

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản