intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Sáng tạo và giải phương trình, bất phương trình, hệ phương trình, bất đẳng thức - Tài liệu ôn thi Đại học môn Toán: Phần 2

Chia sẻ: Liên Minh | Ngày: | Loại File: PDF | Số trang:97

187
lượt xem
46
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Nối tiếp nội dung phần 1 tài liệu Tài liệu ôn thi Đại học môn Toán - Sáng tạo và giải phương trình, bất phương trình, hệ phương trình, bất đẳng thức, phần 2 trình bày phương pháp giải hàm số trong các bài toán chứa tham số, phương pháp hàm số trong chứng minh bất đẳng thức. Mời các bạn cùng tham khảo.

Chủ đề:
Lưu

Nội dung Text: Sáng tạo và giải phương trình, bất phương trình, hệ phương trình, bất đẳng thức - Tài liệu ôn thi Đại học môn Toán: Phần 2

  1. V i dv 2: G i i i cac h$ phuong trinh sau: b) Dat ^ ^'^•^ dieu ki?n > 4P h§ phucmg trinh da cho tro thanh: P = x.y 2 2xy ^ 7 x 2 + y 2 + ^ / ^ = 8N/2 x^ + y a) c) x+y S ( s 2 - 3 P ) = 19 SP = -8S SP = -8S S =l S ^ - 3 ( 2 - 8 S ) = 1 9 ^ | S 3 + 2 4 S - 2 5 = O ' ^ 1 P = -6 7x + y = x^ - y S(8 + P) = 2 Suy ra x,y la hai nghi^m ciia phuong trinh: (x + y ) 1 + - = 5 xy x^y(l + y) + x V ( 2 + y) + x y ^ - 3 0 = 0 x 2 - X - 6 = 0c>Xj=3;X2=-2 b) d) x^y + x^l + y + y^ j + y - 1 1 = 0 V^y h? da cho c6 hai cap nghi^m (x;y) = ( - 2 ; 3 ) , ( 3 ; - 2 ) 1+ = 9 xV; 2 ( a ^ + b 3 ) = 3(a2b + b2a) Giii: c) Dat a = \/x, b = ^ h? da cho tro tharJi: a+b=6 a) Dgt Vx = a,7y = b dieu ki?n a,b > 0. fS = a + b Va^+b^+N/2ab = 8V2 D^t dieu kif n > 4P thi h^ da cho tro thanh. phuong trinh tro thanh: . Ta viet Igi h^ phuong P = ab a +b= 4 2 f s ^ - 3 S P l = 3SP [ 2 ( 3 6 - 3 P ) = 3P [S = 6 ^|ia + b)" - 4ab(a + b)^ + 2a^b^ + yflab = 8V2 trinh thanh: S=6 S=6 P =8 a +b=4 Suy ra a,b la 2 nghi^m cua phuong trinh: IS = a + b 19^ > 4P D^t -I „ , dieu ki?n x = 8 fa = 4=>x = 64 P = ab S,P>0 x 2 - 6 X + 8 = 0 o X i = 2;X2=4=> b = 4=i>y = 64 [b = 2 = > y = 8 V 2 5 6 - 6 4 P - 6 P 2 +N/2P = 8N/2 Vay h f da cho c6 hai cap nghi?m (x;y) = (8;64),(64;8) o S = P = 4«.a = b = 2 o x = y = 4 S=4 xy >0 Ngoai ra ta cung c6 the giai ngan gpn hon nhu sau: d) Dieu ki^n: . Dat ^ dieu ki^n >4P h f phuong trinh da x,y>-l P = x.y ^ 2 ( x 2 + y 2 ) + 2 7 ; ^ = 16 cho tro thanh: x + y + 27xy =16 S->/P=3 S>3;P = ( S - 3 f S + 2 + 2VS + P + l = 1 6 ^2^x^ +y^^ = x + y^{x-yf =0ox =yo2N/x=4ox =4 2^S + ( S - 3 f + 1 = 1 4 - S Vay h? CO mpt cap nghi^m duy nhat (x;y) = (4;4) 3£S
  2. Cty TNHH M f V D W H Khattg Vift Vi > 4P,S > 0 suy ra + S - 2P > 0 . D o d o S = 1 x= : ;y = V o i X + y = 1 thay vao (2) ta du
  3. Tdi li(u on III, ,t,u ho, s v.) gtdi Fl, bat PI, hfPi, bdl i J i -?Wglf T r u hai p h u o n g t r i n h cvia h f cho nhau ta t h u dugrc: x=0 x 3 + 3 x - l + V2x + 1 - ( y 3 + 3 y - l + 72y + l ) = y - x H a y x ^ - 2 x + > / x = 0 < » x ^ + > / x = 2 x o V x | > / x - l | | x + >/x-lj = 0 x = l 2(x-y) < : : > ( x - y ) x^ + x y + y^ + 4(x - y ) + = 0 X =- V2x + l+72y + l (3-N/5 3-N/5^ 0 ? 2 -—;y^-— 2 2 De y r ^ n g X = y = - - ^ k h o n g p h a i la n g h i ? m . Ta xet t r u o n g h p p x + y 5>t -1
  4. He c6 Y^u T6 DANG CAP DANG CAP De y rSng ne'u nhan cheo 2 phuong trinh ciia hf ta c6: 6(x^ + y'') = (8x + 2y)(x^ + 3y') day la phuong trinh dJing cap bac 3: Tu do + La nhung he chua cac phuong trinh dang cap ta CO 16i giai nhu sau: + Hoac cac phuong trinh ciia hf khi nhan hoac chia cho nhau thi tao ra Vi X = 0 khong la nghiem cua h^ nen ta dat y = tx . Khi do h? thanh: phuong trinh dang cap. Ta thuong gap dang h^ nay 6 cac hinh thuc nhu: - 8 x = t^x-' +2tx ( l - t ^ ) = 2t + 8 ^_^3 t+ - :x i -U. ^ ax^ + bxy + cy^ = d ^ ex^+gxy + hy^ = k -^ r • ^ ^, t a ^ jax^+ bxy + cy^ =dx + ey 4 .-t-^ , < » 3 ( l - t ^ ) = (t + 4 ) ( l - 3 t ^ j « 1 2 t ^ - t - l = O o 3 gx + hxy + ky = Ix + my t = - i 4 ax + bxy + cy = d ' '(i-st^j^e gx'^ + hx^y + kxy^ + ly^ = mx + ny x = ±3 t = -=> 3 x y=±r Mot so' h^ phuong trinh tinh dang cap dugc giau trong cac bieu thuc chua can doi hoi nguoi giai can tinh y de phat hi^n: 4N/78 Phuong phap chung de giai h^ dang nay la: Tu cac phuong trinh cua h? ta x= ± 13 nhan hoac chia cho nhau de tao ra phuong trinh dang cap bac n : t = --=> 4 alx"+a,x"-^y^... + a „ y " = 0 y-+- 13 Tu do ta xet hai truang hgp: Suy ra he phuong trinh c6 cac cap nghiem: + y = 0 thay vao de tim x ^4^78 VTSI/ 4^78 VTS' (x;y)=(3,l);(-3,-l); + y 5^ 0 ta dat x = ty thi thu dugc phuong trinh: ajt" + a^t""''.... + a„ = 0 13 ' 13 ' 13 ' 13 + Giai phuong trinh tim t sau do the vao h^ ban dau de tim x,y Phuong trinh (2) ciia he c6 dang: Chii y: (Ta ciing c6 the dat y = tx ) xy|x^ + y^j + 2 = x^ +y^ + 2xy o |x^ + y^ j(xy -1) - 2(xy -1) = 0 • Vi d\ 1: Giai cac h | phuong trinh sau: xy = 1 x ^ - 8 x = y^ + 2y ( x y - l ) ( x ^ +y^ - 2 ) = 0 x2+y2=2 a) x 2 - 3 = 3 I..2 y^+1 5 x ^ ' - 4 x v ' + 3v•^-2(x + y) = 0 [x = l , [ x = - l 3^^Y THI: , ^ '
  5. Tdi li?u on thi dai hQC sang tao vd giai PT, hat PT, hf fl, mi t>J -histuySiTrw^^^_ lang vtfT Tu do ta CO loi giai nhu sau: Ta thay y = 0 khong la nghi^m ciia h?. i ,\ . Dlit Vy = ^ y = t^x^ thay vao (1) ta du(?c: + = "t^^ Xet y ^ 0 d§t X = ty thay vao h? ta c6: St^y^ - 4ty^ + 3y^ = 2 (ty + y) Riit gpn bien x ta dua ve phuong trinh an t: -r,,rs;,u t2y2+y2 =2 ( t - 2 f (t2 + t + lj = 0 o t = 2 0 . ' ' Chia hai phuoiig trinh aia h? ta Avtqc: Thay vao (2) ta du^c: 5^!zilll = l l i o t 3 - 4 t 2 + 5 t - 2 . 0 t^+l 4x2+8x = V2x + 6 «.4x2+10x + — = 2x + 6 + V2x + 6 + - 2N/2 2^/2 V2x + 6 + i 4 4 t=l x-y x = l fx = - l X =• 2j 1 » x = —y Giai ra ,ta dug-c . x = >/l7-3 => y = 13-3N/I7 y = l [y = - l y=- s/5 —• Vi dv 2: Giii cic phucmg trinh sau: V|iy nghifm ciia hf (x;y) = ^ / l 7 - 3 13-3N/I7^ 7x2+2y+3+2y-3 =0 2(2y3 + x^) + 3y (x + i f + 6x(x +1) + 2 = 0 Vi dv 3: Gidi cac hf phuong trinh sau: 3x3-y3=^ x^^y + l - 2 x y - 2 x = l 1 2 x _ x + 7y a) \ + y b) x^ - 3x - 3xy = 6 b) 3x 3y 2x2+y x2+y2=l 2(2x + 7y) = V2x + 6 - y Giii: Giii: a) Ta CO the viet lai h? thanh: 3x3-y3)(x + y) = l (1) a) Dieu ki^n: x^ + 2y + 3 ^ 0. x2+y2=l Phuong trinh (2) tuoTig duong: Ta thay ve trai ciia phuong trinh (1) la bac 4. De tao ra phucmg trinh dang 2(2y3 + x^) + 3y(x +1)^ + 6x2 + 6x + 2 = 0 o 2(x + i f + ^. ^ ^Q cap ta se thay ve phai thanh (x^ + y^ )2. Day la phuong trinh diing cap giua y va x + 1 . Nhu vay ta c6: + Xet y = 0 h^ v6 nghi^m x2+y2 0 2x''+3x3y-2x2y2-xy3-2y''=0 ' + Xet y 7t 0. D§t x +1 = ty ta thu dug-c phuong trinh: 2t^ + St^ + 4 = 0 3x3-y3 ^^^^y Suy ra t = -2 X +1 = -2y x=y o (x - y)(x + 2y)(2x2 + xy + y^) = 0 x = -2y Thay vao phuong trinh (1) ta duQc: Vx^ - x + 2 = x + 4 o x = — ^ => y = , 2x2 + xy + y2 = 0 9 * 18 V$y h^ CO mpt c^p nghi^m: (x; y) = 14._5_ Neu 2x2 + xy + y2 = 0 —x2 + / N2 X+y = O o x = y = 0 khongthoaman. I 9'is; 2 b) De thay phuong trinh (1) ciia hf la phuong trinh dang cap ciia x va yjy Neu X = y ta c6 2x2 = 1 o x = ±
  6. V e t r a i ciia cac p h u o n g t r i n h t r o n g h? la p h u o n g t r i n h d i n g cap bac 3 doi •u vol x,yjy .De thay y > 0 . Ta dat x = t ^ thi t h u d u g c h?: + Neu x = - 2 y < » 5 y ^ = l » y = + — T o m lai p h u o n g t r i n h c6 cac cap nghi?m: ^ ( 2 t + t^) = 3 t2+2 3 ,2 . . . '2N/5 -^/5^ f-275 4£ = - o 2 t ^ - 3 t + l = 0 t= l (x;y) = 2 2 ' 2 5 ' 5 5 ' 5 + Ne'u t = 1 t h i X = ^y o X = 1 => y = 1 x2 7 y 7 T - 2 x ( y + l ) = l 5 b) Dieu ki?n y > - 1 . Ta viet lai h ^ thanh: x'^''-3x(y + l ) = 6 + l t hthi Ne'u t = — i xx = —l ^ y < : > y = 4xx"'= — o x = 2 2 ^ ^ ^ ^ ^ Ta thay cac p h u o n g t r i n h ciia h$ deu la p h u o n g t r i n h d a n g cap bac 3 d o i v o l 1 4 T o m lai he c6 cac nghiem: ( x ; y ) = ( l ; l ) . De thay y = - 1 k h o n g phai la nghiem ciia he p h u o n g t r i n h . b) Dieu k i ^ n : x^y + 2y > 0 0 . Xet y > - 1 . Dat x = t ^ y + 1 thay vao h? ta c6: T u p h u o n g t r i n h t h u nhat ta c6: xy = - x ^ - x - 3 thay vao p h u o n g t r i n h t h u t^ - 2 t = 1 t= 0 hai ta t h u dugc: » t ^ - 3 t - 6 ( t 2 - 2 t ) = 0 0 . 3y 4 T r u o n g hop 2xy + x^ = 3 ta c6 h?: 2xy + x"' = 3 P h u o n g t r i n h (2) t u o n g d u o n g : ,t. ,if .. xy + X'
  7. 4x + 3y n , ; — ft ^4 t^4 Sy"" 6 V 12y 8y l 6 6 J V8t^-3t2+4 =4-to t ^ l phuong trinh tro x^ x-* Vx Vxj X X = 6y X 4x + 3y 2 • By 6 thanh: t^ + 31^ - 1 = 3(Vt - y f t ^ f o ( t ^ + 3t^ - l ) ( V t + yft^f =3 T H l : X = 6y thay vac (1) ta c6: Xet ham so' f(t) - (t^ + 3t^ - lj(>/t + r / T ^ ta thay t = 1 th6a man phuong trinh. 28 168,-, y= =>x = (L) | y 2 + y 2 - 1 6 y = 16 ^ 3 7 37 ^ ' Xet t > l . T a c 6 f ( t ) = f3t^ + 6t]fN/F + V T ^ f + - ^ ^ . ^ ^ ^ — j + 3t^ - 1 ] > 0 4 24 \2 Vt.Vt-1 ^ ' y = —=>x = — N h u vay ham so' f(t) dong bie'n tren [ l ; +oo) suy ra f(t) > f(1) = 3 . T u do suy T H 2 : X = - - y thay vao (1) ta c6: ra phuong trinh c6 nghi?m khi va chi khi t = 1 o x = 1 4 , , Tom lai h^ phuong trinh c6 nghi^m ( x ; y ) - ( l ; l ) y= -^(L) - y + y - 1 6 y = 16 C h u y: Ta cung c6 the tim quan h? x,y d y a vao phuong trinh thu hai ciia y = 12=>x = - 8 ( T M ) h^ theo each: r24 4^ Vay h? C O nghi?m (x; y ) = ,(-8;12). Phuong trinh c6 d^ing: . 7 7 V8x^-3xy^4y^-3y^7;:^-y = 0 o , (^"yK^^^^y) ^(pOy^p xy >0 [x,y>0 78x2-3xy + 4y2+3y V'^y + y b) Dieu ki^n: x 0 nen ta suy ra x = y . De y rang phuong trinh thu hai cua h? la phuong trinh dang cap doi voi ^ / 8 x 2 - 3 x y + 4y2 + 3 y V^y+y x , y . T a thay neu y = 0 thi tit phuong trinh thu hai cua h^ ta suy ra x = 0, cap nghi^m nay khong thoa man h?. Xet y>0. T a chia phuong trinh thu hai cua h? cho y ta thu dug-c: x ''•.••.in -3-+4+ -=4. D|t thu duQfC phuong trinh y y
  8. TTFTr PHLTONG P H A P BIEN O O l TL/ONG DLTONG Dat t = Vx + 1 + 7 4 - x > 0 => \lx + l.y/4-x = - y ^ • Thay vao p h u o n g t r i n h t2-5 t = -5 Bie'n dot titvng ditong la phteang phdp gidi he dua tren nhimg ky thudt ca ban ta c6: t + = 5ci> t'^ + 2 t - 1 5 = 0 t =3 •J'. nhir. The, bie'n doi cdc phuang trinh vedqng tich,cgng trk cac phuang trinh trong he de tqo ra phuang trinh he qua c6 dang dqc biet... > x =0 K h i t = 3 => N/X + 1 . V 4 - X = 2 • » - X ^ + 3x = 0 O * Ta xet cac v i d u sau: x =3 V i d u 1: G i a i cac p h u o n g t r i n h sau T o m lai he c6 n g h i e m ( x ; y ) = ( 0 ; 0 ) . V ^ + V 4 - 2 y + x/5 + 2 y - ( x - l ) 2 ^5 a) N h a n x e t : D i e u kien t > 0 chua phai la dieu k i f n chat ciia bien t 3 x ^ + ( x - y ) 2 = 6 x 3 y + y2 (j) That vay ta c6: t = Vx + 1 + V 4 - x => t^ = 5 + 27(x + l ) ( 4 - x ) => t^ > 5 x3-12x =y^-6y2+16 M a t khac theo bat d^ng thuc Co si ta c6 b) + y^ + xy - 4x - 6y + 9 = 0 2V(x + l ) ( 4 - x ) < 5 = ^ t 2 < 1 0 « t € [ N / 5 ; v ' l O 2xy - X + 2y = 3 c) x-''-12x = ( y - 2 ) 3 - 1 2 ( y - 2 ) \^ +4y^ = 3 x + 6y^ - 4 b) He viet lai d u o i dang X + x ( y - 4 ) + (y-3r =0 y^-7x-6-^y(x-6)=l Dat t = y - 2 . Ta c(S he : d) sJ2(x-yf + 6x - 2y + 4 - 7y = Vx+T x^^-12x = t - ' ' - ] 2 t (x-tKx^+t^+xt-i2)=o n . Giai: x^ + x ( t - 2 ) + ( t - l ) ^ = 0 x ^ + t ^ + x t - 2 ( x + t) + l = 0 (2*) x>-l x^+t^+ xt-12 = 0 (3*) T u (*) suy ra a). D i e u k i ^ n s y < 2 x=t 5 + 2y>(x-])^ Vol x = t thay vao ( 2 * ) ta c6 p h u o n g t r i n h 3x^ - 4x + 1 = 0 Xuat phat t u p h u o n g t r i n h (2) ta c6: 3x''-6x-V + { x - y ) 2 - y 2 = 0 T u day suy ra 2 n g h i e m cua h ^ la ( x ; y ) = ( l ; 3 ) . '1 V 3'3 x=0 Vol (3*) ke't h o p v o l ( 2 * ) ta c6 h ^ X = 2y X+t = — V o i x = 0 thay v a o ( l ) t a c 6 : 1+ 7 4 - 2 y + 7 4 + 2y = 5 c ^ 7 4 - 2 y + 7 4 + 2y = 4 (x + tr - x t - 1 2 = 0 ( V N ) . D o (x + t f < 4 x t Theo ba't dang thuc Cauchy-Schwarz ta c6 (x + t)^ - x t - 2 ( x + t) + l = 0 = 0 121 xt = 7 4 - 2 y + 74 + 2 y ) ^ < 2(4 - 2y + 4 + 2y) = 16 7 4 - 2 y + 74 + 2y < 4 'I 7^ Vay he p h u o n g t r i n h da cho c6 2 nghiem: ( x ; y ) = ( l ; 3 ) , Da'u = xay ra k h i : 4 - 2v = 4 + 2v V = 0 [3'3) H ? CO n g h i e m : ( 0 ; 0 ) (x + l ) ( 2 y - l ) = 2 " - V o i : X = 2y . Thay vao p h u o n g t r i n h tren ta d u g c ) D u a he p h u o n g t r i n h ve dang: 12 ^3 +. ^ ( 2 y -1)3 = 3{x +1)2 + | ( 2 y - 1 ) - 5 (X +1)-^ NATTT + V 4 - X + ^5 + \-{x-lf =5 + V 4 - X + 7(x + l ) ( 4 - x ) = 5 (*)
  9. D$t: a = x + l; b = 2y-l. 2(x + l - y ) 2 + ( V ^ - V y ) ^ = 0 « | ' ' / ^ ^ ^ < » x + l = y Khi do ta thu dug-c h§ phuong trinh: [ Vx +1 = ^ y ab = 2 ab = 2 ^y,, Thay vao phuong trinh (2) ta c6: ,3+ib3=3a2+|b-5' 2a^+b^=6a^+3b-10 ^ 2' 2 ^ Dlt a = ^ y ( y - 7 ) ta c6 phuong trinh: , :! Tir h? phuong trinh ban dau ta nham dugc nghi?m la x = y = 1 nen ta se c6 h# nay c6 nghi?m khi: a = 2; b = 1 a>-l [(a-2)b = 2 ( l - b ) a^-1 a =0 Dod6tasephantichheved,ng:|^^_^^,^^^^^^^^_^^,^^^^^^ Va^ +1 = a +1 < o a^-a2-2a = 0 a = -l ^ 2(l-b) a=2 y = 0=>x = - l Vi ta luon c6: b ^ 0 nen tu phuong trinh tren ta rut ra a - 2 = — - — Voi a = 0: y = 7=>x = 6 The xuong phuong tririh duoi ta dugc: 7-3S 5-3S y= =>x = — i ^ ^ ^ ( a +1) = (b - l)Hh + 2) o (b - if [4(a +1) - b2(b + 2)] = 0 Vol a = - l = > y 2 - 7 y + l = 0 ^ 2 2 7 + 375 5 + 3>/5 b=l y = —-—=>x = ^ 4(a + l) = b2(b + 2) y=-l (L) Voi a = 2 r : > y 2 - 7 y - 8 = 0 0 Voi: b = 1 => a = 2 , suy ra: x = y = 1; . b+2 y = 8=>x = 7 H | phuong trinh da cho c6 nghi?m la : Vol 4(a + l) = b^(b + 2).Talaic6: ab = 2 o b ( a + l) = b + 2 o a + l = - ^ 5-3N/5 7 - 3 V 5 ' 5 + 375 7 + 375 (x;y) = (-l;0),(6;7). ,(7; 8) • The len phuong trinh tren taco: b = -2 => a = -1 o X = -2; y = - - i ( ^ = b^(b.2). b Vi 2: Giai cac phuong trinh sau b^ = 4 (Khong TM) ,2 x^-(2y + 2 ) x - 3 y 2 = 0 x^ - 2 x y + 2y^ +2y = 0 a) V^y h? da cho c6 2 nghi^m la: (x;y) = (1;1), x^ + 2xy2 - (y + 3)x - 2y^ - 6y2 +1 = 0 x^-x2y + 2y2+2y-2x =0 x>-l x^ + x y + 9y = y^x + y^x^ + 9x xy^ - 3x^y - 4yx^ - y + 3x^ = 0 d) Dieu ki^n: . Ta Viet lai h? phuong trinh thanh: c) d) y >0 x(y3-x^) = 7 3x^y-y2+3xy + l = 0 ^ 2 ( x - y ) 2 + 6 x - 2 y + 4 - ^ = Vx+T Giii: a) Cach 1: Lay phuong trinh thu hai tru phuong trinh thu nhat theo ve ta ^ 2 ( x - y ) ^ + 6 x - 2 y + 4 = ^y + Vx + 1 . Binh phuong 2 ve ta thu dugc: du(?c: 2xy^ - (y + 3)x - 2y^ - 6y^ +1 + (2y + 2)x + 3y2 = 0 2x^ - 4 x y + 2y^ + 6x - 2y + 4 = x + y +1 + 2^y(x +1) O 2xy2 + xy - 2y3 - 3y^ +1 - X = 0
  10. 1 2 3±2-\/3 + Neu y = - thay vao phuong trinh (1) ta c6: 4x - 12x - 3 = 0 x = ^3 - X - X"^ = 7. (5). D|itt = V ^ ( t > 0 ) . (5) CO d^ng nhu sau + Neu y = X - 1 thay vao phuong trinh (1) ta c6: - 2x^ - 3(x -1)2 = 0 o -4x2 + 6x - 3 = 0 . V6 nghi^m. l-t3 -t^ = 7 « t ^ - ( 3 - t ^ ) 3 + 7t = 0. • 3 - 2 V 2 1^ 3 + 2N/2 t Ketluan: ( x ; y ) = ( ^ ^ ; l ) , ( - ^ / 3 ; l ) , 2 '2 2 '2 Xet ham so £(t) = t^ - (3 - 1 ^ )3 + 7 t (t > 0). Ta c6 f'(t) = + 9t^ (3 - 1 ^ )2 + 7 > 0. » Cach 2: Phuong trinh thu hai phan richdu(?c: {2y^ + x ) ( x - y - 3 ) + l = 0 V^y phuong trinh f(t) = Oco toi da mpt nghi^m. Mat khac ta c6 f ( l ) = 0 nen Phuong trinh t h u nhat phan tich du(?c: (x - y)^ - 2{x + 2y2) = 0 , suy ra t = 1 la nghi^m duy nhat ciia phuong trinh f(t) = 0. T u do ta du
  11. My» nyi- —.-- -o - • , . —•.^xtw^i' V i d\ 3: Giai cac h f phuang trinh sau x^ + 1 6 x - 1 5 > 0 - Zx^y - 15x = 6y(2x - 5 - 4y) 36x2 ^ _ ;j5jj^2 ^ _ j5 a) b) x^ 2x - y^ + 9y = x(9 + y - y ^ +— = Xet phuang trinh (*) 36x2 ^ _j g j p ^ _ j 8y 3 4 2 3x-6V2x-4=473y-9-2y x ^ y - 8 y ^ + 3x^y = - 4 Vi x = 0 khong phai la nghi^m. Ta chia hai ve phuang trinh cho x^ ta c6: c) 6 x ^ - 3 x ^ y + 2xy + 4 = y^+4x + 6x^ [2xy + y - y ^ = 2 15 t=2 36 = X x + 16- Dat X - — = t = > t 2 + 1 6 t - 3 6 = 0 x t = -18 Giki: x=5 a) Tir phuong trinh (2) ciia h§ ta c6: + Neu t = 2x- — = 2 < : > x 2 - 2 x - 1 5 = 0 ( x - y ) ^ x + y^ - 9 x + y3-9 = 0 + N e u t = -18 Vi y < 1 va ^ 1 + x + ^ 1 - y = 2 nen ^ 1 + x < 2 o x < 7 . X = -9-4N/6 O X - — = - 1 8 < » x 2 + 1 8 x - 1 5 = 0 Do do x + y'^ - 9 < - 1 < 0 nen x + y'' - 9 = 0 v6 nghi^m. X X = - 9 + 476 Ta chi can giai truong hgp x = y . The vao phuong trinh ban dau ta _9-4V^;^^±1276] N g h i f m ciia h f da cho la: (x; y) = dugc. ^ 1 + x + y J T ^ = 2. D l t a = ^ l + x;b = V T o c (b > O) thi TH 2: x = 2y Thay vao phuang trinh thii hai ciia h$ ta c6: .^"^'^"^ =^a^+(2-af = 2 o a 3 + a 2 - 4 a + 2 = 0 o { a - l ) f a 2 + 2 a - 2 ) = 0 a^+b2=2 ^ ' V /V / x^ 2x 2x^ x^ X 7 llx^ -+ o—x =. X = 0 (loai) (do dieu ki§n y^O) Tir do suy ra nghi^m cua phvrong trinh ban dau ; 4x 3 V 3x 4 4 6 V 12 x = 0;x = - 1 1 + 6N/3;X = - 1 1 - e V s / KL: Nghi^m ciia h$ da cho la: (x;y) = f Vay h f da cho c6 3 nghi^m la x = y = 0;x = y = - l l + 6V3; x = y = -11 - 6\/3 V 2y = x x>2 b) Phuang trinh t h u nhat ciia h? (2y - x)[\^ - 12y - is) = 0 o ) Dieu ki§n x^-15 y>3 y=- 12 Phuang trinh (2) ciia h^ tuang duong vai: x^ -15 THI: y = thay vao phuang trinh t h u hai cua h | ta duQc: y = 2x-2 12 ( 2 x - 2 - y ) ( 3 x 2 + y - 2 ) = 0 y = 2-3x2 3x^ 2x 4x^ x2 x2-15 • + — = , Voi y = 2x - 2 the vao phuang trinh (1) ta dugc: 2(x2-15) 3 Vx2-15 24 (1)«7X-6N/2X-4-4V6X-15-4 =0 (3) 36x^ Den day su dung bat dSng thuc Co si ta c6: •-12, x2+16x-15) + (x2+16x-15) = 0 x^-lS ^'"Vx^-lS f6N/2x-4=3.2V2(x-2)0 x2+16x-15^0 , 1— =i>6V2x-4+4V6x-15^7x-4 4V6x - 1 5 = 2.273(2x - 5) < 2(2x - 2) 6 36 = x^ +16X-15 Dau " = " xay ra khi chi khi x = 4 , x2-15 Tir (3) suy ra x = 4 la nghi^m duy rthat. V^iy h? c6 nghi?m (x;y) = (4; 6)
  12. j:tyTNHHMlV DWHKhangVift - V o i y = 2 - 3 x ^ 3 Ta c6: x^+4+x vx^+4-x =4; y y ^ + 4 + y y y ^ + 4 - y = 4 nen ta V^y h§ da cho chi c6 1 n g h i ^ m ( x ; y ) = (4;6) >, d) The p h u o n g t r i n h 2 vao p h u o n g t r i n h 1 a i a h# ta duQC phuong trinh : •y/x^+4+x = - ^ y ^ + 4 + y suy ra: • X = y . - x^y - 8 y * + Sx^y = - 2 ( 2 x y + y - y^) (x^ - 8 y ^ + 3x^ ) y = (-4x - 2 + 2 y ) y Vy^ + 4 - y = Vx^ + 4 - X ; ; V i y = 0 k h o n g la n g h i ^ m a i a h?. Chia ca h a i ve cho y ta d u g c p h u o n g t r i n h Thay vao p h u o n g t r i n h t h u h a i a i a h ^ ta c6: x^ - 8y^ + Bx^ = - 4 x - 2 + 2 y o x^ + Sx^ + 4x = 8y^ + 2 y - 2 x 2 - 8 x + 10 = (x + 2 ) V 2 x - l < » x 2 - 8 x + 1 0 - ^ ( x 2 + 4 x + 4 ) ( 2 x - l ) = 0 D a t : z = x + l = > x = z - l . K h i do ta c6 p h u o n g t r i n h : x2 + 4x + 4 - 6(2x - 1 ) - ^(x^ + 4 x + 4 ) ( 2 x - l ) = 0 . Chia phuong trinh cho + z = 8y^ + 2 y o (z - 2y){z^ + 4y^ + 2zy) = 0 do (z^ + 4y^ + 2zy > 0 z = 2 y = > x + l = 2y=J>x = 2 y - l , x^ + 4 x + 4 Ix^ + 4 x + 4 x^ + 4x + 4 > 0 . Ta CO - 6 = 0. 2x-l 2x-l The vao p h u o n g t r i n h 2 a i a h | ta dug^c p h u o n g t r i n h : y =l =>x = l t= 3 DMt t = J — > 0 t h u d u g c p h u o n g t r i n h : t^ - 1 - 6 = 0 =>t = 3 3 y ^ - y - 2 = 0 b) 2y-yx^+2y + l = ( x - y ) y(y-x) = 3-3y +2y + l = x + y 2x + ( 3 - 2 x y ) y 2 = 3 THl: ^ + 2 y + l = 3 y - x . B i n h p h u o n g h a i ve p h u o n g t r i n h ta dug^c: c) 2x2-x3y = 2x2y2-7xy + 6 3y>x f3y.: x = l ; y = l(TM) 6xy = 9y^ - 2 y - l o 415 1 7 , ^ „• x^ + 2xy + 6 y - (7 + 2 y ) x ^ = - 9 x'' + 2y + 1 = 9y^ - 6xy + x^ x = — ; y = -(TM) d) xy = y^ + 3 y - 3 Giai: TH2: ^ + 2 y + l = x + y . B i n h p h u o n g hai ve p h u o n g t r i n h : a) P h u o n g t r i n h d a u a i a h f d u p e viet l a i n h u sau: x + y>0 x + y >0 x = l;y = l logj x + Vx +4 + l o g 2 yjy +i-y =log2 4 2xy = - y ^ + 2y + 1 o x = —;y = —(L) V / V J xy = y^ + 3y - 3 21^ 3 x^ + 2 y + 1 = x^ + 2 x y + y^ o x +Vx^ +4 .^yjy^ + 4 - y = 4 415,17 V | y h ? c 6 n g h i # m (x;y) = ( l ; l ) . 51 ' 3
  13. CtyTNHH. angViet c) Tu phuong trinh (1) ta thay: 2x(l - y^) = sjl - y^). + xy + -3 = y^ 3 x2 + y2 + X= 3 THI: y = l thay vao (2) ta c6: -7x+ 6 = 0 x = l;x = 3;x =-2. c) d) - 4 y 2 . ^ =_l f2x + 2xy + 2xy2 =3 + 3y (•) (xy + 2 f + - l - = 2y + i x + y-1 TH2: Ket h
  14. Cty TNHH MTV D W H miang Vift Tai li$u on thi dai hoc sdng Uio va giai PT, bat PI, he PI. bai Pi \^^„i,c,t intn^]^'l 4(x + y + 2)r(x + 2)^-(x + 2)y + y2 =3y(y2+2y + x y - 4 + 4) = 3y2(x + y + 2) TH2: Ket h(?p vol (1) ta c6 h# moi: • ''^ xy + y +1 [x +y^+x = 3 / (x + y + 2)(^4(x + 2^ -4(x + 2)y + y2 = 0. Giai bang each: P T ( l ) - P T ( 2 ) « 3 y 2 + x y + x - y - 4 = 0
  15. 16-x x=l / , 7= + 1 = > 0 . Do do X = y thay vao phuone trinh (1) 473x(x + 2) = 3(x + 3) 27 thu dup-c: 2x = 3(Vx + 3 + V x - S J '' ' ' Tom lai c6 nghi?m duy nhat: ( x ; y ) = ( l ; l ) b) Dieu kifn: x , y > 0. Ta viet lai phuong trinh (1) cua h ? thanh: ( x - 6 f (x2+3x + 9) = 0 o x = 6 V|y h0 CO nghi?m x = y = 6. ^ x y - ( x - y ) ( ^ - 2 ) - y + >^-7y =0 (*). De thay x = y = 0 khong thoa x^y man h^. T a xet x^ + y^ 0 d) Dieu ki$n: 1 7 x>-;x^ - x - y > 0 NhMenh^pntaco: - J - V ) ^ - ! ^ - ^ ) ' . ^ ^ =0 ^xy + ( x - y ) ( ^ - 2 ) + y Vx+^y Phuong trinh dau ciia h? duq>c viet l^ii n h u sau: .(x-y) =0 x-y-1 x^ - y^ - x - y + , ^ =0 '•J I ' , ' Tir phuong trinh thu hai ciia h^ ta c6: i('^-y)'+^+i 2 yjx^ - x-y +y 4 2 /— 4 -5 ( x - l ) (x + 2) x + 1- + X - X . y^ + J^^^- 2 = — x+1 + x2-x-2--^^ x+1 ^>0 «(x-y-l) =0 suy ra X = y thay vao phuong trinh thu hai cua h^ ta c6: Si^-yf +^x-y +l V x 2 x- x+ -yy + 'x = l (x + l ) ( 3 x - x ^ ) = 4 o l±Vi7 Mat khac tu phuong trinh (1) ciia h f ta c6: ^ > 0. X =• ^N-y ' l + ^/l7 1 + N/I7 Neu y3/;r7
  16. -x^ - 3 x y - 8 x + 4y^ +13y + 9 = 0 x^ + (3y + 8)x - (4y2 + 13y + 9J = 0 V i dv 7) Giai phuong trinh v6i nghi^m la so thyc: +2y^ +2x + 8y + 6 = 0 2x^ + 2xy + y - 5 = 0 Ta C O A = (3y + 8)^ + 4(4y^ + 13y + 9) = 25y^ + lOOy +100 = (5y + lO)^ b) a) y2 + xy + 5x - 7 = 0 + xy + y + 4x + l = 0 3y + 8-(5y + 10) x= ^ = -V y. -1 Giai: 2 Tu do tinh du^c: 3y + 8 + (5y + 10) x = u + a thay vao phuong trinh (1) cua h? ta c6: x= = 4y + 9 * Cachl:Dat y=v+b Phan vi?c con lai la kha don gian. n,u (u + a)2+2(v + b)2+2(u + a) + 8(v + b) + 6 = 0 v * >; b) Lay phuang trinh (1) tru phuang trinh (2) ta thu dugc: .s ^ o +2v^+2(a + l)u + 4v(b + 2) + a^+2b2+2a + 8b + 6 = 0. 2x*^ + 2xy + y - 5 - ^y^ + xy + 5x - 7j = 0 o 2x^ + (y - 5)x - y^ + y +12 = 0 Ta mong muon khong c6 so h^ng b^c nhat trong phuang trinh nen dieu a+l= 0 a=-l ki?n la: b + 2=:0 b = -2 x=-y+2 X = u-1 Tu do ta CO cac h dat an phu nhu sau: Dgt thay vao h$ ta c6: Nhan xet: Khi gap cac he phuong trinh dang: y = v-2 a j X ^ + ajxy + a3y^ + a4X + agy + =0 u2+2v2=3 b j X ^ + b2xy + b3y^ + b 4 X + b j y + b^ = 0 day la h$ dSng cap. u^ +uv = 2 + Ta dat x = u + a,y = v + b sau do tim dieu ki?n de phuang trinh khong c6 so' u = V hang bac 1 hoac khong c6 so' hang tu do. T u h? ta suy ra 2(u^ + 2v^ j = S^u^ + uvj u^ + 3uv - 4v^ = 0 u = -4v + Hoac ta cpng phuang trinh (1) voi k Ian phuong trinh (2) sau do chpn k sao cho C O the bieu dien duQfC x theo y . De c6 dugic quan h^ nay ta can dya Cong vifc con lai la kha don gian. vao tinh chat. Phuang trinh ax^ + bx + c bieu dien du^c thanh dang: Cach 2:Ta cong phuang trinh (1) vai k Ian phuang trinh (2). (Ax + B)^ci>A = 0 +2y^+2x + 8y + 6 + k x^+xy + y + 4x + l =0 Doi voi cac d^i so bac 3: (l + k)x^ +(2 + 4k + ky)x + 2y^ +8y + ky + k + 6 = 0 Ta C O the van dung cac huang giai Ta CO + Bie'n doi h^ de tao thanh cac hSng dang thiic A = (2 + 4k + ky)2-4(k + l)(2y2+8y + ky + k + 6) + Nhan cac phuang trinh voi mpt bieu thiic d^i so' sau do cpng cac phuang = (k^ - 8k - 8)y2 + (4k2 - 32k - 32)y + Uk^ - 12k - 20 . Vi dy 8) Giai h^ phuang trinh vai nghi^m la so' thyc: Ta mong muon A c6 d^ng (Ay -hB)^ o A = 0 c6 nghi^m kep: x^ + 3xy^ = -49 x^ + 3x^y = 6xy - 3x -49 a) i c) x^ -8xy + y^ =8y-17x x^ - 6 x y + y^ =10y- 25x-9 o (4k2 - 32k - 32)^ - 4(k2 - 8k - 8)(l2k2 - 12k - 2o) = 0 o k = - | x3-y3=35 x^ + y^ = (x - y)(xy - 1) Tu do ta C O each giai nhu sau: b) . d) 2x^ +3y^ = 4 x - 9 y x^ - x^ + y +1 = xy(x - y - 1 ) Lay 2 Ian phuang trinh (1) tru 3 Ian phuang trinh (2) cua h? ta c6:
  17. Giii: Trir hai phuong trinh cho nhau ta c6: y = - 1 thay vao thi h? v6 nghif m +3xy^ +49 = 0 . 1 3 + 3N/5^ 1 3-32/5' a) Phan tich: Ta viet lai nhu sau: KL: Nghi^m cua h# la: (x;y) = y2+8(x + l ) y + x2+17x = 0 2' 4 2' 4 -3y2+48 = 0 Nh?n thay x = - 1 thi tro thanh: y = ±4 iity y2-16 = 0 PHLTONG P H A P D A T A N P H U Tir do ta CO loi giai nhu sau: D|t an phu la vi?c chpn cac bieu thuc f(x,y);g(x,y) trong h? phuong trinh Lay phuong trinh (1) cpng voi 3 Ian phuong trinh (2) ciia h? ta c6: de d$t thanh cac an phy moi lam don g i ^ cau true cua phuong trinh, h^ x^ + 3xy^ + 49 + 3(x2 - 8xy + y^ - 8y + 17x) = 0 phuong trinh. Qua do tao thanh cac h? phuong trinh m o i don gidn hon, hay quy ve cac d^ng h ^ quen thupc nhu doi xung, dla\ cap... o ( x + l)r(x + l ) 2 + 3 ( y - 4 ) 2 ] = 0 De t^o ra an phy ngudi giai can xu ly linh ho^it cac phuong trinh trong h? T u do ta de dang tim dugc cac nghi^m cua h?: {x;y) = ( - l ; 4 ) , ( - l ; - 4 ) thong qua cac ky thuat: Nhom nhan t u chung, chia cac phuong trinh theo nhung so'hang c6 sin, nhom dya vao cac hang dSng thuc, doi bien theo dac b) Lam tuong ty nhu cau a thii phuong trinh... Lay phuong trinh (1) cpng voi 3 Ian phuong trinh (2) thi thu du(?c: Ta quan sat cac VI dy sau: (x +1) (x +1)^ + 3(y - 5)^ = 0 . T u do de dang tim dugc cac nghi^m cua h^. V i dy 1: GiAi cac h^ phuong trinh sau c) Lay phuong trinh (1) t r u 3 Ian phuong trinh (2) ta thu dugc: 2 x 2 - 2 x y - y 2 =2 x*-4x^ + y ^ - 6 y + 9 = 0 ( x - 2 ) 3 = ( y + 3)^x = y + 5 a) < b) < 2x^-3x2-3xy2-y3+l = 0 x^y + x^ + 2 y - 2 2 = 0 Thay vao phuong trinh (2) ta c6: y = -3 Giii: 2(y + 5)2+3y2 ^4(y + 5 ) - 9 y o 5 y 2 + 2 5 y + 30 = 0 o a) Ta viet lai h? phuong trinh thanh: y = -2 3 x 2 - ( x + y r =2 3x2-(x + y)2=2 Vay h? phuong trinh c6 cac nghi^m la: (x;y) = (2;-3),(3;-2) [3x3+3x2y-(x + y ) 3 - 3 x 2 = - l [3x^{x + y)-(\ y f = - 1 \" d) Lay 2 Ian phuong trinh (2) tru d i phuong trinh (1) ta thu du(?c: ( x - l ) r y 2 - ( x + 3)y + x 2 - x - 2 =0 .2 a-b^ =2 D§t a = 3x ,b = x + y ta thu du^c h$ phuong trinh: o Truong hg^p 1: x 1 h# v6 nghi?m [ab-b^-a = - l " y2 - ( x + 3)y + x ^ - x - 2 = 0 T u phuong trinh (1) suy ra a = b^ + 2 vao phuong trinh t h u hai aia h? ta Truong hgp 2: x^ +y^ = ( x - y ) ( x y - l ) thuduQc: ( b 2 + 2 ) b - b ^ - ( b 2 + 2) = - l o b 2 - 2 b + l = 0b = l = > a = 3 Lay 2 Ian phuong trinh (2) t r u d i phuong trinh (1) ta thu dug-c: (2x + l ) r y 2 - ( x - l ) y + x 2 - x + 2 = 0 a= 3 x2=l y=0 , , Khi b=l ' x+y=1 x=- l ^ NT- 1 3±3>/5 + Neu X = — => V = Tom l ^ i h? phuong trinh c6 2 c$p nghi?m: (x; y ) = ( l ; O),(-1; 2) - y^ - ( x - l ) y + x^ - x + 2 = 0 + Neu y ^ - ( 2x - l ) ^y + x ^ -4x + 2 = 0 tacoh^: y 2 - ( x + 3)y + x 2 - x - 2 = 0
  18. -cry iNHHmiVDWHKftangVifr b) Ta viet l?i phuong trinh thanh: (x^-2f.(y-3f=4 Dat x^+v^ y + ~1 = a; X + y +1 = b . Ta c6: x^y + x^ + 2 y - 2 2 = 0 D | t a = x^ - 2; b = y - 3 . Ta CO h? phuong trinh sau: ab = 25 x2+y2=5(y + l) x = 3;y = l • a = b = 5 a2 + b 2 = 4 a2+b2=4 j(a + b ) 2 - 2 a b = 4 a + b = 10 x+y=4 x = - - - =11 < (a + 2)(b + 3) + a + 2 + 2(b + 3) = 22 [ab + 4(a + b) = 8 [ab + 4(a + b) = 8 V|iy CO nghiem (x; y) = (3; l). ' 23 ' 11^ a + bi=2 2 (a + b r + 8 ( a + b)-20 = 0 ab = 0 b) Dieu ki^n: x ?t y. ab + 4(a + b) = 8 a + b = -10.(L) da cho tuong duong: ab = 48 (y-x) 2(x + y f - y - x + - 25 „ a = 2,b = 0 Xet a + b = 2 a = 0,b = 2 . y-x ab = 0 x = ±^/2 ^-x + -y - x j y-x +- y-x + Neu: a = 0 , b - 2 y = 5 Dat x + y = a; y - X + = b; b > 2 h | thanh: x = ±2 + Neu a = 2,b = 0=>. y-x y =3 5 Tom lai hf c6 cac cap nghiem: (x;y) = (%/2;5J,^-\/2;5J,(2;3),(-2;3) y +x= — a + b=: — 5 ^ 4 13 3 4 a =— y - X = -2 Vi d\ 2: Giai cac phuang trinh sau 4 y +x= - X = —;y = — 2a2-b2=-^ 4 x^ +y^ +6xy L _ + ^=:0 b= -5 8^ 8 1 ^7 ^3 a) x2 + y 2 j ( x + y + l) = 25(y + l) b) (x-y)2 8 + xy + 2y^ + x - 8 y = 9 y-x=-- 2 y - i - . ^ =0 ^ x-y 4 V^y hf CO nghifm (x;y) = ^7 3Vl3 3) 8'8 8 ' 8 Giai: Vi dvi 3: Giai cac h^ phuang trinh sau a) De y rang khi y = -1 thi hf v6 nghiem xVl7-4x2 +y7l9-9y2 =3 x^ + X y^-4y2+y + l = 0 a) ( x 2 + y 2 ] ( x + y + l ) = 25(y + l) V17-4x2 + ^ 1 9 - 9 y 2 = 1 0 - 2 x - 3 y xy+ x 2 y 2 + l - ( 4 - x ^ ) y 3 =0 Xet y 7i - 1 . Ta vie't lai h? thanh: i Giai: [ x 2 + y 2 + x ( y + l) + (y + l) =10(y + l) 1 Dieuki^n: - : ^ < x < : ^ ; - ^ < y Chia x 2 +hai y 2 phuang trinh cua hf cho y +1 ta thu i ^ -du^c: ^ ( x + y + l) = 25 (x + y + l) = 25 V+1 ^ ^ ' 2 2 3 3 y+1 • - o x2+y2 Dey x V l 7 - 4 x 2 lien quan den 2x va V l 7 - 4 x ^ y ^ l 9 - 9 y 2 lien quan deh x 2 + y 2 + x ( y + l) + (y + l)^ =10(y + l) + (x + y + l ) = 10 3y va - 9y2 . Va tong binh phuang cua chiing la nh&ng hang so. y +1
  19. V i dv 4: G i i i cdc h# p h u o n g trinh s a u D l t 2x + \ / l 7 - 4 x ^ = a;3x + y-y/l^ - 9y^ = b . H | da cho tuong duong: 5y a + b = 10 6x'* - ( x ^ - x)y2 - ( y +12)x^ = - 6 =4 a = 5;b = 5 x -y x+y a ^-17 b2 - 1 9 b) = 3 a = 3;b = 7' 5x''-(x2-l)^y2-llx2 =-5 4 6 5x + y- xy 1 Giii 2x + 7l7- -4x2 "" = 2 x=2 a) Nhan thay x = 0 khong la nghi^m ciia h ^ . THl: 3y + -9y2 5±Vl3 Chia hai ve phuong trinh cho x^ ta c6: y=—7— 6 (X 1' f 2 / 6x2 y2-y-12 = 0 1^ 6 X - X - y -y =o -4x2 X 2x + \ \ TH2: (lo9i). 5 -> • /• 2 / -9y2 5x2 ( 1^ y 2 - l l = 0 3y + + 2 X 5 X - X - y2-l =0 X ' l 5 + N/I31 f 1 5->/l3' V9yh?c6nghi?m (x;y) = 6a2 - a y 2 - y=0 2' 6 2' 6 Dat X — = a . H? thanh: 5 a 2 - a 2 y 2 - i = o ^x^ + x y2 + y + l = 4y 2 X b) Ta viet l?i h# nhu sau: Chia hai vecho a2 va d^t y + — = X, — = Y g i a i ra ta du(?c xy + x2y2 + i + x^y^ =4y^ Ta thay y = 0 khong thoa man h^.Chia phuong trinh dau cho y^, phuong - i = i l±Vl7 X = x ~2 x^ +x y+1 y =l y = l y trinh thii 2 cho y^ ta dug-c: ^ a = l,y„ _=o2 1 1± Vs X x , 3 , X — = 1 X = + — + l + x-^ =4 X 1>C [y = 2 y = 2 xy + 1 x2+4 = 2 V^y h? CO nghi^m (x;y) = y Viet l ^ i duoi d^ng: y xy+ 1 =4 b). Dieu ki^n: \,y ^
  20. 3 o b) Phuang trinh (2) tuong duong: x =__,y =3 1 5 (x^-y) = x (2x - y2 ) ( y - 9x2 ) = i8x2y2 ^ g^l^l ^ jg^3 ^ y 3 ^ 2xy —+—=4 1 . 5R 1 1 thanh: a b c^a=-,b = - « x=l,y=- . (x + y 2 ) = 5y 9x2y2+18x^+y3 „ ^ ISx^ y^ >'= 5 . b + 5a = 5 ^ ^ = 29xy + +— + 2 = 4 c, xy X r 2x^ 2x 2x Vay CO nghi?m (x;y) = -1 ] 1^ fa 3^ o9x H + = 4 < » 9x + ^ y +- = 4.--- I 2' . U'2j y J yJ V i d\ 5: G i a i cac h$ phuong trinh sau 2x Dat a = 9x + ^ ;b = y + - . H ? thanh: x> 11 {xy + 3 ) % ( x + y ) = 8 9x + ^ = 4 a) X y _ 1 b) a+2b=4 9x + y = 4x 2x a = 2;b = l o x^+1 y^+1 -1 = 18 ab = 2 2x , y^ +2x = y GiAi x = 0(L) y = 4x-9x^ a) Trien khai phuang trinh (1) 1 1 • (4x-9x2j^ +2x = 4x-9x^ X = —=> y=— (1) o x^y^ + 6xy + 9 + x^ + 2xy + y^ = 8 o x^y^ + x^ + y^ +1 = - S x y 9 ^ 3 o ( x 2 + l ) ( y ^ + l ) = -8xy. Vay h§ CO nghi^m (x; y ) = 9'3 Nhan thay x = 0, y = 0 khong la nghi^m cua h?. V i d y 6: G i a i cac h ? phuong trinh sau Phuang trinh (1) khi do la: ^ ^ ^ - ^ " ^ = • XN/X^ + 6 + yVx^ + 3 = 7 x y 2x2y + y ^ = 2 x * + x^ a) . b) • xVx^ + 3 + y-y/y2 + 6 =x^ +y^ + 2 (x + 2 ) 7 y + l = ( x + l ) ' D a t - ^ = a ; ^ =- b . H ? da cho tuang duang vai: x^+l y2+l Gi4i Giai he:. r 1 H f phuang trinh tuang duang voi : a = — x^+1 : 2 x =- l y _ i / y N x'^ + 3 + X a +b = — b=i 2,1 4 y = 2±V3 x J y ^ + 6 + y + y Vx^ + 3 + X = 9xy y +6 + y 4 4 y + J V / =9 ; 1 x=2+±V3 Vx^+3-x a =— X +y =2 4 4 < ) Vx^+3-x +yf^y2+6- =2 y=-i . b=-i y _ 1 - 2 y^+1 2 T =9 \/y^+6-y x^+3-x V^y h ? CO nghifm (x;y) = (-1;2 - ),(-1;2 + >/3),(2 - VS; -l),(2 + V S ; - l ) , |x V x 2 + 3 - x j + y[^7y2+6-y = 2 " O K I (1), cf-fln? ;
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
6=>0