intTypePromotion=1

Tổng hợp hệ thống điều khiển bám thích nghi bền vững cho đối tượng phi tuyến bất định

Chia sẻ: ViColor2711 ViColor2711 | Ngày: | Loại File: PDF | Số trang:10

0
10
lượt xem
0
download

Tổng hợp hệ thống điều khiển bám thích nghi bền vững cho đối tượng phi tuyến bất định

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài viết giới thiệu phương pháp tổng hợp hệ điều khiển bám cho đối tượng phi tuyến bất định, dưới tác động của nhiễu ngoài. Khả năng thích nghi của hệ thống được thiết lập trên cơ sở nhận dạng các thành phần bất định, bao gồm cả các hàm phi tuyến bất định, sử dụng mạng nơ-ron RBF; khả năng hoạt động bền vững của hệ thống được thiết lập nhờ sử dụng điều khiển mode trượt.

Chủ đề:
Lưu

Nội dung Text: Tổng hợp hệ thống điều khiển bám thích nghi bền vững cho đối tượng phi tuyến bất định

Nghiên cứu khoa học công nghệ<br /> <br /> TỔNG HỢP HỆ THỐNG ĐIỀU KHIỂN BÁM THÍCH NGHI BỀN<br /> VỮNG CHO ĐỐI TƯỢNG PHI TUYẾN BẤT ĐỊNH<br /> Nguyễn Trung Kiên*, Lê Ngọc Quyết<br /> Tóm tắt: Bài báo giới thiệu phương pháp tổng hợp hệ điều khiển bám cho đối<br /> tượng phi tuyến bất định, dưới tác động của nhiễu ngoài. Khả năng thích nghi của<br /> hệ thống được thiết lập trên cơ sở nhận dạng các thành phần bất định, bao gồm cả<br /> các hàm phi tuyến bất định, sử dụng mạng nơ-ron RBF; khả năng hoạt động bền<br /> vững của hệ thống được thiết lập nhờ sử dụng điều khiển mode trượt.<br /> Từ khóa: Hệ thống bám; Chế độ trượt; Mạng nơ-ron.<br /> <br /> <br /> 1. MỞ ĐẦU<br /> Trong lĩnh vực quân sự, vấn đề xây dựng các hệ thống bám với độ chính xác<br /> cao trong điều kiện đối tượng điều khiển phi tuyến bất định, lại chịu sự tác động<br /> của nhiễu từ bên ngoài, đồng thời đầu vào của hệ thống thay đổi với độ phức tạp<br /> cao đang trở nên ngày càng cấp thiết. Mặc dù đã được các nhà khoa học quan tâm<br /> giải quyết, song cho đến nay vẫn chưa được giải quyết thỏa đáng. Huang cùng các<br /> cộng sự đã sử dụng mạng nơ-ron xuyên tâm RBF (Radial Basic Function) để đánh<br /> giá (nhận dạng) các hàm phi tuyến bất định, kết quả nhận dạng được sử dụng trong<br /> bộ điều khiển trên cơ sở kết hợp với bộ điều khiển PID tối ưu [1]. Tuy nhiên, luật<br /> cập nhật được đề xuất ở đây còn có nhược điểm là tốc độ hiệu chỉnh các trọng số<br /> cho mạng RBF phụ thuộc vào sai số của hệ thống, trong lúc sai số này phụ thuộc<br /> vào rất nhiều yếu tố, đặc biệt là phụ thuộc vào sự biến đổi của đầu vào của hệ<br /> thống bám. Trong [2] đã đề xuất bộ điều khiển cho đối tượng SISO bậc hai chứa<br /> hàm phi tuyến bất định trong điều kiện không có nhiễu ngoài tác động. Tuy bộ điều<br /> khiển đảm bảo được ổn định, song chất lượng của hệ thống bị hạn chế do tốc độ<br /> hội tụ kém của quá trình nhận dạng hàm phi tuyến bất định với nhược điểm tượng<br /> tự như ở công trình [1] nêu trên. Các công trình [3], [4] đã đề xuất phương pháp<br /> tổng hợp hệ thống điều khiển cho đối tượng phi tuyến bất định trên cơ sở sử dụng<br /> mạng nơ-ron RBF với luật cập nhật các trọng số có ưu điểm nổi bật là tốc độ hiệu<br /> chỉnh các trọng số của mạng chỉ phụ thuộc vào tín hiệu sai lệch giữa đầu ra của đối<br /> tượng và đầu ra của mô hình nhận dạng và không phụ thuộc vào các yếu tố khác.<br /> Hơn nữa, trong [4] đã đề xuất phương pháp xây dựng hệ thống tự động bám cho<br /> các đối tượng mà động học của chúng gồm phần tuyến tính bậc hai và phần phi<br /> tuyến bất định dưới tác động của nhiễu ngoài, đảm bảo tính thích nghi bền vững và<br /> cận tối ưu theo tác động nhanh.<br /> Dưới đây, vấn đề tổng hợp hệ điều khiển bám thích nghi bền vững cho lớp đối<br /> tượng, mà động học của chúng bao gồm phần tuyến tính và phần phi tuyến bất<br /> định, được nghiên cứu giải quyết, nhằm đáp ứng yêu cầu bức thiết về xây dựng các<br /> hệ thống tự động bám chất lượng cao.<br /> <br /> 2. ĐẶT VẤN ĐỀ<br /> Giả sử động học của đối tượng điều khiển được mô tả bằng hệ phương trình:<br /> <br /> <br /> <br /> Tạp chí Nghiên cứu KH&CN quân sự, Số Đặc san TĐH, 04 - 2019 79<br /> Kỹỹ thuật điều khiển & Tự<br /> ự động hóa<br /> <br /> ̇ = <br /> ⎧ ̇ = <br /> ⎪<br /> ⎪ … … … … … … … … … … <br /> (1)<br /> ⎨ ̇ = + ( , ,…, ) + ( , ,…, ) +<br /> ⎪<br /> ⎪<br /> ⎩ = <br /> Trong đó:<br /> , , … , là các thành ph phầnn ccủaa véc tơ tr trạngng thái = [ , , … , ] ;<br /> , =1 1, … , là các th thamam ssố ố động học phần tuyến tín tính;;<br /> ộng điều khiển | | ≤ U;<br /> là tác đđộng<br /> (. ), (. ) là<br /> là các hàm phi tuy tuyến n trơn, bbấấtt định đ nh; là nhi nhiễu u ngoài;<br /> ngoài là đđầu ầu ra.<br /> Bài toán đđặt<br /> ặt ra llàà phải xây dựng hệ thống thích nghi bền vững cho đối ttượng<br /> phải ợng<br /> (1) đđảm<br /> ảm bảo bám sát đầu vvào ào ( ), trong đó ( ) có th thểể llàà hàm có đđộ ộ phức tạp<br /> cao, các tham ssố ố , = 1, … , và thoả thoả mãn mãn gi giảả thiết ccơ ơ bbản ản của lý thuyết nhận<br /> dạng<br /> ạng vvàà điều<br /> điều khiển thích nghi llàà các quá trình “c “cậnận dừng”, m màà theo đó, ttốc ốc độ thay<br /> đổi<br /> ổi của các tham số nnày ày ch ậm hơn<br /> chậm hơn nhi nhiều ều so với động học của đối ttượng ợng điều khiển.<br /> 3. GI<br /> GIẢI<br /> ẢI BÀI<br /> BÀI TOÁN T<br /> TỔNG<br /> ỔNG HỢP HỆ ĐIỀU KHI<br /> KHIỂN<br /> ỂN BÁM<br /> 3.1. Xây d<br /> dựng<br /> ựng cấu trúc hệ thống<br /> Cấu trúc của hệ thống đđược<br /> Cấu ợc thể hiện tr<br /> trên<br /> ên hình 1.<br /> <br /> <br /> <br /> <br /> Hình 1. Sơ đồ<br /> đồ cấu trúc hệ thống<br /> thống..<br /> Trong đó: NN1: kh<br /> khối<br /> ối nhận dạng 1; NN2: khối nhận dạng 22;;<br /> MH: mô hình; ĐTĐK: đđối<br /> ối tư<br /> tượng<br /> ợng điều khiển.<br /> khiển<br /> <br /> <br /> 80 N. T. Kiên, L. N. Quyết, “Tổng hợp hệ thống điều khiển … đđối<br /> Quyết, ối ttượng<br /> ợng phi tuy<br /> tuyến bất<br /> ất định<br /> định.”<br /> ”<br /> Nghiên cứu khoa học công nghệ<br /> <br /> Để làm rõ ý tưởng chủ đạo của phương pháp tổng hợp hệ thống, ta xây dựng<br /> cấu trúc hệ thống trên cơ sở cách tiếp cận giải bài toán tổng hợp. Các hàm phi<br /> tuyến bất định (. ), (. ) là các hàm trơn, vì vậy để nhận dạng, đánh giá chúng, ta<br /> sử dụng mạng nơ-ron RBF. Kết quả đánh giá có thể đạt tới độ chính xác tùy ý.<br /> Việc nhận dạng các tham số , = 1, … , phải được đồng thời cùng với việc nhận<br /> dạng các hàm phi tuyến bất định. Kết quả (. ), được sử dụng để bù trừ tác động<br /> của (. ), lên hệ thống.<br /> Tiếp theo, cần tổng hợp bộ điều khiển mode trượt trên cơ sở tín hiệu sai lệch<br /> của hệ thống và bộ tham số nhận dạng , = 1, … , .<br /> 3.2. Xây dựng thuật toán nhận dạng<br /> Theo cấu trúc hệ thống trên hình 1, phân hệ nhận dạng được xây dựng trên cơ<br /> sở mô hình (MH) và khối hiệu chỉnh thích nghi (HCTN). Khối này thực hiện các<br /> thuật toán nhận dạng và thực hiện hiệu chỉnh các tham số của mô hình trên cơ sở<br /> tín hiệu sai lệch giữa véc tơ trạng thái của đối tượng và véc tơ trạng thái của mô<br /> hình.<br /> Để giải quyết được các yếu tố bất định, hệ thống sẽ sử dụng công cụ nhận dạng<br /> trên cơ sở mạng nơ-ron [5], [6], [7]. Kết quả nhận dạng được sử dụng trong luật<br /> điều khiển, vì vậy hệ thống trở nên thích nghi với các yếu tố bất định. Luật điều<br /> khiển còn được xây dựng trên cơ sở mode trượt, nhờ vậy hệ thống bám sát đầu vào<br /> với các tính chất thích nghi và bền vững.<br /> Phương trình (1) được viết lại dưới dạng:<br /> ̇= + (. ) + (. ) + (2)<br /> Với:<br /> 0 1 0 . . . 0<br /> 0 0 1 . . . 0<br /> = ;<br /> . . . . . . .<br /> . . .<br /> (. ) = [0 0 . . . (. )] ;<br /> (. ) = [0 0 . . . (. )] ;<br /> = [0 0 . . . ]<br /> Các hàm (. ), (. ) là các hàm trơn, vì vậy có thể được xấp xỉ bằng mạng nơ-<br /> ron xuyên tâm RBF với độ chính xác tuỳ ý [6], [7]:<br /> ⎧ ∗ ∗<br /> ⎪ ( )= ( )+<br /> (3)<br /> ⎨<br /> ∗ ∗<br /> ⎪ ( )= ( )+<br /> ⎩<br /> Với:<br /> ( ) là các hàm cơ sở, ∗ , = 1, … , , ∗ , = 1, … , là các trọng số<br /> tối ưu, đảm bảo với số lượng nơ-ron tương ứng là , , đầu ra của mạng thứ<br /> nhất cho sai lệch so với ( ) là ∗ , của mạng thứ hai cho sai lệch so với ( )<br /> <br /> <br /> Tạp chí Nghiên cứu KH&CN quân sự, Số Đặc san TĐH, 04 - 2019 81<br /> Kỹ thuật điều khiển & Tự động hóa<br /> <br /> là ∗ . Các sai số ∗ và ∗ được chọn trước, tuỳ theo mức độ chính xác cần thiết.<br /> Trên mô hình MH, các mạng nơ-ron tương ứng được sử dụng với các đầu ra là<br /> ( ) và ( ).<br /> <br /> ⎧<br /> ⎪ ( )= ( )<br /> (4)<br /> ⎨<br /> ⎪ ( )= ( )<br /> ⎩<br /> Với , = 1, … , ; , = 1, … , là các trọng số được hiệu chỉnh (cập<br /> ∗<br /> nhật) để → ; → ∗ .<br /> Phương trình động học của MH có dạng:<br /> ̇ = + (. ) + (. ) + (5)<br /> Với: =[ . . . ] ;<br /> (. ) = [0 0 . . . (. )]<br /> (. ) = [0 0 . . . (. )] ;<br /> (. ) = [0 0 . . . (. )] .<br /> Khối hiệu chỉnh thích nghi HCTN có nhiệm vụ hiệu chỉnh tham số của mô hình<br /> sao cho: → ; → ∗; → ∗ ; → .<br /> Biến đổi phương trình (1) và (5) thu được phương trình mô tả sai lệch của véc<br /> tơ trạng thái của mô hình so với véc tơ trạng thái của đối tượng = −<br /> ̇ = + + (. ) + (. ) + (6)<br /> Trong đó:<br /> = − , = − (7)<br /> 0 1 0 . . 0<br /> 0 0 1 . . 0<br /> =<br /> . . . . . .<br /> − − − . . −<br /> (8)<br /> 0 1 0 . . 0<br /> 0 0 1 . . 0<br /> =<br /> . . . . . .<br /> . .<br /> (. ) = [0 0 . . (. )]<br /> (. ) = [0 0 . . (. )] (9)<br /> = [0 0 . . ]<br /> <br /> ∗ ∗<br /> (. ) = (. ) − (. ) = ( )+ − ( )<br /> <br /> <br /> ∗ ∗<br /> (. ) = ( )+ , = − (10)<br /> <br /> <br /> <br /> 82 N. T. Kiên, L. N. Quyết, “Tổng hợp hệ thống điều khiển … đối tượng phi tuyến bất định.”<br /> Nghiên cứu khoa học công nghệ<br /> <br /> <br /> ∗ ∗<br /> (. ) = (. ) − (. ) = ( )+ − ( ) (11)<br /> <br /> <br /> ∗ ∗<br /> (. ) = ( )+ , = − (12)<br /> <br /> = − (13)<br /> Vấn đề đặt ra tiếp theo là phải xây dựng các luật hiệu chỉnh các tham số<br /> , = 1, … , ; , = 1, … , ; , = 1, … , , và đảm bảo cho hệ (6) ổn<br /> định.<br /> Chọn hàm Lyapunov cho hệ (6) dưới dạng:<br /> <br /> = + + + +<br /> <br /> Trong đó là ma trận đối xứng xác định dương, kích thước ( × ).<br /> Định lý sau đây xác lập điều kiện đủ để hệ thống (6) ổn định.<br /> Định lý: Giả sử hệ thống động học (6) có ma trận luôn là Hurwitz. Hệ thống<br /> (6) sẽ ổn định thực tế (practical stability) nếu thoả mãn đồng thời các điều kiện sau<br /> đây:<br /> ̇ =− ( ) , = 1, … , (14)<br /> <br /> ̇ =− ( ) , = 1, … , (15)<br /> <br /> <br /> ̇ =− , = 1, … , (16)<br /> <br /> ̇=− (17)<br /> <br /> ( ∗ ∗ )‖ ‖<br /> +<br /> ‖ ‖><br /> ( ) (18)<br /> <br /> Trong đó =[ . . . ] là ma trận dòng thứ của ma trận .<br /> Chứng minh:<br /> Lấy đạo hàm theo thời gian của hàm Lyapunov ( ) dọc theo quỹ đạo của hệ (6),<br /> sau khi biến đổi, ta thu được:<br /> ̇ = + +2 +2 (. )<br /> +2 (. ) +2<br /> (19)<br /> +2 ̇ +2 ̇ +2 ̇ +2 ̇<br /> <br /> Vì là ma trận đối xứng xác định dương, ma trận luôn là Hurwitz, nên ta có [8]<br /> <br /> <br /> Tạp chí Nghiên cứu KH&CN quân sự, Số Đặc san TĐH, 04 - 2019 83<br /> Kỹ thuật điều khiển & Tự động hóa<br /> <br /> [ + ] =− (20)<br /> Với là ma trận đối xứng xác định dương. Chú ý đến các biểu thức (7) ÷ (13) và<br /> (20), biểu thức (19) được viết lại dưới dạng:<br /> <br /> ̇ =− + 2 +2 ( )<br /> <br /> <br /> ∗ ( ) ∗ (21)<br /> +2 +2 +<br /> <br /> <br /> +2 +2 ̇ +2 ̇ +2 ̇ +2 ̇<br /> <br /> Từ (21) ta rút ra các điều kiện đủ để cho đạo hàm ̇ luôn có giá trị âm, tức là điều<br /> kiện đủ để hệ thống (6) ổn định:<br /> <br /> ( ) + ̇ =0 (22)<br /> <br /> <br /> ( ) + ̇ =0 (23)<br /> <br /> <br /> 2 + ̇ =0 (24)<br /> <br /> <br /> + ̇=0 (25)<br /> <br /> − + ( ∗ + ∗)
ADSENSE
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2