Tuyển tập các đề thi thử đại học cao đẳng môn Toán - có đáp án và hướng dẫn giải
lượt xem 73
download
Tham khảo sách 'tuyển tập các đề thi thử đại học cao đẳng môn toán - có đáp án và hướng dẫn giải', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(1) Đăng nhập để gửi bình luận!
Nội dung Text: Tuyển tập các đề thi thử đại học cao đẳng môn Toán - có đáp án và hướng dẫn giải
- Tuy n t p các thi th i h c, cao ng trên t p chí Toán h c và Tu i tr qua các năm TRƯ NG TRUNG H C PH THÔNG TH XÃ CAO LÃNH -------------- T P TH L P CHUYÊN TOÁN NIÊN KHÓA 2006 – 2009 “Nguy n c Tu n - TUY N T P CÁC THI TH I H C , CAO NG TRÊN T P CHÍ QUA CÁC NĂ QUA CÁC NĂM ---- Tháng 03-2009 ---- T p th l p 12T – THPT Th xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Th y Nguy n ình Huy
- Tuy n t p các thi th i h c, cao ng trên t p chí Toán h c và Tu i tr qua các năm B GIÁO D C VÀ ÀO T O THI TH I H C, CAO NG S 1 T P CHÍ TOÁN H C VÀ TU I TR Môn thi: TOÁN Th i gian làm bài: 180 phút NĂM 2003 Câu I: (2 i m) Cho hàm s : y = x 4 − mx 2 + 4 x + m. 1. Kh o sát và v th hàm s khi m = 0. 2. Tìm các giá tr c a m th hàm s có ba i m c c tr sao cho tam giác có nh là ba i m c c tr nh n g c t a làm tr ng tâm. Câu II: (2 i m) 1. Gi i các phương trình : log 2002− x (log 2002− x x ) = log x (log x (2002 − x )) 2a + x f (x ) = 2. Tìm t t c các giá tr c a a ch a t p giá tr c a hàm t p xác nh c a hàm s 2a − x 1 s g (x ) = . 2 x + 2 x + 4a − 2 Câu III: (2 i m) 1. Gi i phương trình : ( ) cos 8 x + sin 8 x = 64 cos14 x + sin 14 x 2. Hai ư ng cao AA1 , BB1 c a tam giác nh n ABC c t nhau t i H . G i R là bán kính ư ng tròn ngo i ti p tam giác ABC . Ch ng minh r ng di n tích tam giác HA1 B1 b ng R 2 . sin 2C. cos A. cos B. cos C . Câu IV: (2 i m) 1. Cho t di n OABC có: AOB + BOC = 1800 g i là OD ư ng phân giác trong c a góc AOB ∧ Hãy tính góc BOD . 2. Trong không gian v i h t a êcác vuông góc Oxyz cho hai ương th ng : 2 x + y + 1 = 0 3 x + y − z + 3 = 0 (∆) ( ∆ ') x − y + z −1 = 0 2 x − y + 1 = 0 a. Ch ng minh r ng hai ư ng th ng ( ∆ ) và ( ∆ ' ) c t nhau. b. Vi t phương trình chính t c c a c p ư ng th ng phân giác c a các góc t o b i ( ∆ ) và ( ∆ ' ) . Câu V: (2 i m) π sin 2 xdx 4 ∫ 1. Tính tích phân : I = cos 4 x ( tan 2 x − 2 tan x + 5 ) −π 4 2. Trong h p ng 2n viên bi có n viên bi gi ng h t nhau và n viên bi xanh i m t khác nhau. H i có bao nhiêu cách khác nhau l y n viên bi t h p ó. ------------------ H T ------------------- T p th l p 12T – THPT Th xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Th y Nguy n ình Huy
- Tuy n t p các thi th i h c, cao ng trên t p chí Toán h c và Tu i tr qua các năm ÁP S HO C HƯ NG D N GI I S 1-2003: Câu I: 1. Các b n t gi i. 2. Áp d ng n lí Vi-ét b c ba. áp s : : m = 6. Câu II: 1. áp s : x = 1001. 3 + 17 2. áp s : a > . 8 Câu III: 1. Phương trình vô nghi m. Áp d ng B T Cauchy. 2. Các b n t gi i. Câu IV: 1. áp s : BOD = 900. 2. a. Ch ng minh h có nghi m duy nh t . b. Dùng vectơ ơn v . 1 3 x+ z− y 2 2 ; = = 1 1 −2 2 −3 5 + + + 14 30 14 30 14 30 áp s : 1 3 x+ z− y 2 2. = = 1 1 −2 2 −3 5 − − − 14 30 14 30 14 30 Câu V: 3π 1. t t = tan x . áp s : I = 2 − ln 2 − . 8 n ∑C 2. áp s : = 2 n. k n k =0 ------------------ H T ------------------- T p th l p 12T – THPT Th xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Th y Nguy n ình Huy
- Tuy n t p các thi th i h c, cao ng trên t p chí Toán h c và Tu i tr qua các năm B GIÁO D C VÀ ÀO T O THI TH I H C, CAO NG S 2 T P CHÍ TOÁN H C VÀ TU I TR Môn thi: TOÁN Th i gian làm bài: 180 phút NĂM 2003 Câu I: (2 i m) Cho hàm s : y = − x 3 + ax 2 − 4 1. Kh o sát và v th hàm s khi a = 3. 2. Tìm a phương trình x 3 − ax 2 + m + 4 = 0 luôn có 3 nghi m phân bi t, v i m i giá tr c a m t h a i u k i n : − 4 < m < 0. Câu II: (2 i m) 1− x + 1− y = 2 1. Gi i h phương trình : . 1+ x + 1+ y = 6 x+2 x+3 2. Tính : lim x 2 . −3 x x x →∞ Câu III: (2 i m) 2x +1 2x +1 2x + 1 − 2 cos 2 1. Tìm các nghi m c a phương trình: sin = 0 th a mãn i u ki n : + sin 3x 3x x 1 . x≥ 10 ra rb rc = 4 3. S (trong ó S là di n t ích c a tam giác ; 2. Cho tam giác ABC th a mãn i u k i n : 3 ra , rb , rc l n lư t là bán kính các ư ng tròn bàng ti p ng v i các nh A, B,C ). Ch ng minh r ng tam giác ABC u. Câu IV: (2 i m) 1. Cho hai hình chóp SABCD và S ' ABCD có chung áy là hình vuông ABCD c nh a. Hai nh S và S ' n m v cùng m t phía i v i m t ph ng ( ABCD ) , có hình chi u vuông góc lên áy l n lư t là trung i m H c a AD và trung i m K c a BC. Tính th tích ph n chung c a hai hình chóp, bi t r ng SH = SK = h . cho ư ng tròn (C) có phương trình x 2 + y 2 = 9 . Tìm m 2. Trên m t ph ng t a trên ư ng n (C) và m i th ng y = m có úng 4 i m sao cho t m i i m ó k ư c úng hai ti p tuy n c p ti p tuy n ó t o thành m t góc 450 . Câu V: (2 i m) 1 1 + x4 1.Tính tích phân I = ∫ dx 1 + x6 0 2.Trong m t bu i liên hoan có 6 c p nam n , trong ó có 3 c p là v ch ng và c n ch n 3 ngư i ng ra t ch c liên hoan. H i có bao nhiêu cách ch n sao cho 3 ngư i ư c ch n không có c p v ch ng nào ? ------------------ H T ------------------- T p th l p 12T – THPT Th xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Th y Nguy n ình Huy
- Tuy n t p các thi th i h c, cao ng trên t p chí Toán h c và Tu i tr qua các năm ÁP S HO C HƯ NG D N GI I S 2-2003: Câu I: 1. Các b n t gi i. 2. L p b ng bi n thiên. áp s : a ≥ 3 . Câu II: 1 1. Áp d ng B T B.C.S. áp s : x = y = 2 1 2. áp s : . 2 Câu III: 2x +1 1 1 2 1. áp s : x = t t= t ≥ . ; . 3x 10 3π − 4 5π − 4 2. Các b n t gi i. Câu IV: 52 1. áp s : V = a h. 24 −6 6 2. áp s : .
- Tuy n t p các thi th i h c, cao ng trên t p chí Toán h c và Tu i tr qua các năm B GIÁO D C VÀ ÀO T O THI TH I H C, CAO NG S 3 T P CHÍ TOÁN H C VÀ TU I TR Môn thi: TOÁN Th i gian làm bài: 180 phút NĂM 2003 Câu I: (2 i m) x2 − x + m Cho hàm s : y = (Cm ) (m ≠ 0) x −1 1. Kh o sát hàm s v i m=1. 2. Tìm m th hàm s (Cm ) c t tr c Ox t i hai i m phân bi t A, B sao cho các ti p tuy n v i th t i A, B vuông góc v i nhau. 3. Tìm m tam giác t o b i m t ti p t uy n b t kì c a th (Cm ) và hai ư ng ti m c n có diên tích nh hơn 2. Câu II: (2 i m) 1. Ch ng minh r ng n u tam giác ABC có các góc tho mãn i u ki n sau thì nó là tam giác u C 3 C A B A B sin + sin + sin cos + cos + cos = ( sin A + sin B + sin C ) . 2 2 2 2 2 2 2 2. Tìm m hai phương trình sau tương ương: sin x + sin 2 x = −1 và cos x + m sin 2 x = 0 . sin 3 x Câu III: (2 i m) x2 − x + 1 = x 2 − 3x + 2 . 1. Gi i phương trình : log 2 2 2x − 4x + 3 2. Gi i b t phương trình : 3x + 5x < 2.4 x . Câu IV: (2 i m) x2 + y 2 = 1. 1. Hãy l p phương trình các c nh c a m t hình vuông ngo i ti p elip 3 2. Trong không gian v i h t a -các vuông góc Oxyz cho m t ph ng (P) có phương trình x − 2 y + 2 z + 2 = 0 và hai i m A ( 4;1;3) , B ( 2; −3; −1) . Hãy tìm i m M thu c (P) sao cho MA2 + MB 2 có giá tr nh nh t. Câu V: (2 i m) 1 ln(1 + x) ∫ 1. Tính dx . 1 + x2 0 10 1 2x 2. Tìm h s có giá tr l n nh t khi khai tri n + ra a th c. 2 3 ------------------ H T ------------------- T p th l p 12T – THPT Th xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Th y Nguy n ình Huy
- Tuy n t p các thi th i h c, cao ng trên t p chí Toán h c và Tu i tr qua các năm ÁP S HO C HƯ NG D N GI I S 3-2003: Câu I: 1. Các b n t gi i. 2. Áp d ng nh lí Vi-ét. Hai ti p tuy n vuông góc khi k1.k2 = −1 . 1 áp s : m = . 5 3. áp s : m < 1 ( m ≠ 0 ) . Câu II: A B A B 1. G i ý: v i m i ∆ABC , sin ≥ sin ⇔ cos ≤ cos . 2 2 2 2 sin x + sin 2 x 2. = −1 ⇔ cos x = 0 . sin 3 x 1 áp s : m ≤ . 2 Câu III: 1. áp s : x = 1; x = 2 2. Dùng o hàm, l p b ng xét d u. áp s : 0 < x < 1 . Câu IV: 1. Phương trình các c nh hình vuông là: x + y + 2 = 0 ; − x + y + 2 = 0 ; x + y − 2 = 0 ; − x + y − 2 = 0 . 2. áp s : M ( 2;1; −1) Câu V: π 1. t x = tan t . áp s : I = ln 2 8 840 2. áp s : a6 = 729 ------------------ H T ------------------- T p th l p 12T – THPT Th xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Th y Nguy n ình Huy
- Tuy n t p các thi th i h c, cao ng trên t p chí Toán h c và Tu i tr qua các năm B GIÁO D C VÀ ÀO T O THI TH I H C, CAO NG S 4 T P CHÍ TOÁN H C VÀ TU I TR Môn thi: TOÁN Th i gian làm bài: 180 phút NĂM 2003 Câu I: (2 i m) 1 Cho hàm s : y = mx − 1 + . x +1 1. Kh o sát và v th hàm s ng v i m = 2. 2. Tìm các giá tr c a tham s m th hàm s c t các ư ng th ng y = x t i hai i m A, B mà các ti p tuy n v i th t i A và B song song v i nhau . Câu II: (1 i m) 20 nh h s c a x 5 y 3 z 6t 6 trong khai tri n a th c ( x + y + z + t ) . Xác Câu III: (2 i m) Kí hi u a, b, c và r l n lư t là dài ba c nh và bán kính ư ng tròn n i ti p tam giác ABC. Ch ng minh r ng tam giác ABC là tam giác u khi và ch khi: 1 1 1 1 = 2. + + 2 2 2 ( p − a) ( p − b) ( p − c) r Câu IV. (2 i m) th c a hàm s y = ( x + 1) ( x 2 − x − 4mx + 3m2 − m − 2 ) ti p 1. Tìm các giá tr c a tham s m xúc v i tr c hoành. π 4 2. V i n là m t s nguyên không âm tùy ý ã cho, tính I n = ∫ tan 4 n xdx . 0 Câu V: (3 i m) -các vuông góc Oxyz, cho hình l p phương ABCD. A ' B ' C ' D ' c nh a, trong ó A ' Trong h to trùng v i g c O; B ' ∈ Ox; D ' ∈ Oy; A ∈ Oz . Gi s M và N l n lư t trên BB ' và AD sao cho BM = AN = b ( 0 < b < a ) . G i I , I ' l n lư t là trung i m các c nh AB và C ' D ' . 1. Vi t phương trình m t ph ng (α ) i qua ba i m I, M, N.Ch ng t r ng (α ) cũng i qua I ' . 2. Tính di n tích thi t di n t o b i mp (α ) v i hình l p phương ã cho. 3. Xác nh v trí c a M sao cho chu vi thi t di n nói trên nh nh t. ------------------ H T ------------------- T p th l p 12T – THPT Th xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Th y Nguy n ình Huy
- Tuy n t p các thi th i h c, cao ng trên t p chí Toán h c và Tu i tr qua các năm ÁP S HO C HƯ NG D N GI I S 4-2003: Câu I: 1. Các b n t gi i. 2. áp s : m = 0 ho c m = 2 . Câu II: 5 3 6 áp s : C20 .C15 .C12 . Câu III: Áp d ng B T Cauchy. Câu IV: 3 1. áp s : m = 0; −1; − 2 2. Xét hi u I k − I k −1 . 1 1 1 1 1 1 11π + ... + − + . In = − + − + − 4n − 1 4n − 3 4n − 5 4n − 7 4n − 9 4n − 11 314 Câu V: 1. Các b n t gi i. 2 ( 2a − b ) a 2 + 2b2 2. áp s : S = 2 3. Dùng o hàm. Chu vi thi t di n nh nh t b ng 3 2a , t ư c khi và ch khi m là trung i m BB ' . ------------------ H T ------------------- T p th l p 12T – THPT Th xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Th y Nguy n ình Huy
- Tuy n t p các thi th i h c, cao ng trên t p chí Toán h c và Tu i tr qua các năm B GIÁO D C VÀ ÀO T O THI TH I H C, CAO NG S 1 T P CHÍ TOÁN H C VÀ TU I TR Môn thi: TOÁN Th i gian làm bài: 180 phút NĂM 2004 Câu I: (2 i m) x2 − 2 x + 2 Cho hàm s : y = (C) x −1 1. Kh o sát và v th hàm s . 2. G i I là giao i m c a hai ư ng ti m c n c a (C). Hãy vi t phương trình hai ư ng th ng i qua I sao cho chúng có h s góc nguyên và c t (C) t i 4 i m phân bi t là các nh c a m t hình ch nh t . Câu II: (2 i m) 3 1. B ng nh nghĩa hãy tính o hàm c a hàm s : f ( x) = x + e x t i i m x=0 mx 2 + (m + 3) x + 3 2. Bi n lu n theo m, mi n xác nh c a hàm s : y = x +1 2 2 2 3. Các s th c x, y, z th a mãn i u ki n : x + y + z − 4 x + 2 z ≤ 0 . Hãy tìm giá tr l n nh t và nh nh t c a bi u th c F = 2x + 3y -2z . Câu III: ( 2 i m ) 1. Các góc c a tam giác ABC th a mã i u k i n : A−B B−C C−A sin 2 A + sin 2 B + sin 2C = sin A + sin B + sin C + 4 sin sin sin 2 2 2 Ch ng minh tam giác ABC u. y 3 tan + 6 sin x = 2 sin( y − x) 2 2. Gi i h phương trình : . y tan − 2 sin x = 6 sin( y + x) 2 Câu IV: ( 2 i m ) a 1. Trong m t ph ng v i h tr c t a êcac vuông góc Oxy cho Hypebol y = (a ≠ 0).( H ). Trên x (H) l y 6 i m phân bi t Ai (i = 1,...,6) sao cho : A1 A2 // A4 A5 ; A2 A3 // A5 A6 . Ch ng minh r ng A3 A4 // A1 A6 32 3 2. Cho t di n ABCD có bán kính m t c u n i t i p là r. Ch ng minh r ng: VABCD ≥ r. 3 Câu V: (2 i m) t 2et x 1. Tìm x>0 sao cho ∫ dt = 1. 2 0 (t + 2) 2. Có bao nhiêu s t nhiên có úng 2004 ch s mà t ng các ch s b ng 4. ------------------ H T ------------------- T p th l p 12T – THPT Th xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Th y Nguy n ình Huy
- Tuy n t p các thi th i h c, cao ng trên t p chí Toán h c và Tu i tr qua các năm ÁP S HO C HƯ NG D N GI I S 1-2004: Câu I: 1. Các b n t gi i. 2. áp s : ∆ 1 : y = 2( x − 1) ; ∆ 2 : y = 3( x − 1) . Câu II: 1. áp s : f’(x) = -1 2. TH 1 : m = 0 : D = (−1;+∞) − 3 TH 2 : m > 3 : D = (− ∞;−1) ∪ ;+∞ m 3 0 < m < 3 : D = − ∞; ∪ (− 1;+∞ ) m − 3 m < 0 : D = − 1; . m 3. S d ng b t ng th c B.C.S ho c v n d ng hình h c gi i tích trong không gian. Câu III: A− B B−C C−A 1. 4 sin sin sin = sin(C − B ) + sin( B − A) + sin( A − C ) 2 2 2 y 2. N u tan = 0 h có nghi m (lπ ; k 2π ) 2 2π π y + k 2π ) trong ó α ∈ − ;0 và N u tan = 3 h có nghi m (α + l 2π ; 2 2 3 1 −4 3 cos α = , sin α = 7 7 − 2π π y N u tan = − 3 h có nghi m − α + l 2π ; + k 2π trong ó α ∈ − ;0 và 3 2 2 1 −4 3 cos α = , sin α = . 7 7 Câu IV: a 1. Ai ( xi ; ) xi T p th l p 12T – THPT Th xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Th y Nguy n ình Huy
- Tuy n t p các thi th i h c, cao ng trên t p chí Toán h c và Tu i tr qua các năm Ch ng minh : A1 A2 // A4 A5 ⇔ x1 x 2 = x 4 x5 1 1 1 2. V = ha .dt ( BCD) = ha .CD.BK ≥ ha .hb .hc 3 6 6 11 1 1 1 4 . = + ++ ≥ r ha hb hc hd 4 ha hb hc hd Câu V: 1. áp s : x=2. 2. áp s : 1343358020. ------------------ H T ------------------- T p th l p 12T – THPT Th xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Th y Nguy n ình Huy
- Tuy n t p các thi th i h c, cao ng trên t p chí Toán h c và Tu i tr qua các năm B GIÁO D C VÀ ÀO T O THI TH I H C, CAO NG S 2 T P CHÍ TOÁN H C VÀ TU I TR Môn thi: TOÁN Th i gian làm bài: 180 phút NĂM 2004 Câu I: (2,25 i m) 1 1. Kh o sát hàm s (C) y = x+2 + x 1 2. Tìm m phương trình x + 2 + = log 2 (log 1 m) có úng 3 nghi m phân bi t. x 2 Câu II: (2,25 i m) 1 1. Gi i phương trình : cos3xsin2x-cos4xsin2x= sin 3 x + 1 + cos x . 2 8 + 21+ 3− x 3− x + 21+ 3− x 2. Gi i b t phương trình : > 5. −4 Câu III: (1 i m) Cho hình vuông ABCD c nh b ng 1. Hai i m M, N l n lư t di chuy n trên c nh AD và DC sao cho π AM=x, CN=y và ∠MBN = . Tìm x, y di n t ích tam giác MBN t giá tr l n nh t ? Nh nh t ? 4 Câu IV: (3,5 i m) 1. Trong không gian v i h tr c t a các vuông góc Oxyz sao cho m t c u (I,R) có phương trình : 2 2 2 x + y + z − 2 x + 4 y − 6 z − 11 = 0 và m t ph ng (α ) có phương trình : 2 x + 2 y − z + 17 = 0. L p phương trình m t ph ng ( β ) song song m t ph ng (α ) và c t m t c u theo giao tuy n là ư ng tròn có bán kính b ng 3. 2. Cho hình lăng tr ng ABC. A1B1C1 có áy là tam giác vuông cân t i A , BC=2a. G i M là m t i m trên c nh AA1 . t ∠BMC = α , góc gi a (MBC) và (ABC) là β . 1 2 a. Ch ng minh r ng : −1 = tan 2 β cos α b. Tính th tích hình lăng tr theo a, α bi t r ng M là trung i m AA1 . Câu V: (1 i m) 21 a b Trong khai tri n 3 tìm s h ng ch a a, b có s mũ b ng nhau. + 3 b a ------------------ H T ------------------- T p th l p 12T – THPT Th xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Th y Nguy n ình Huy
- Tuy n t p các thi th i h c, cao ng trên t p chí Toán h c và Tu i tr qua các năm ÁP S HO C HƯ NG D N GI I S 2-2004: Câu I: 1. Các b n t gi i. 1 1/ 2 1
- Tuy n t p các thi th i h c, cao ng trên t p chí Toán h c và Tu i tr qua các năm B GIÁO D C VÀ ÀO T O THI TH I H C, CAO NG S 3 T P CHÍ TOÁN H C VÀ TU I TR Môn thi: TOÁN Th i gian làm bài: 180 phút NĂM 2004 Câu I : (2,5 i m) Cho hàm s y = x 3 − (4m + 1) x 2 + (7 m + 1) x − 3m − 1 1. Kh o sát và v th hàm s v i m = −1 2. Tìm m hàm s có c c tr ng th i các giá tr c c i, c c ti u hàm s trái d u nhau. 3. Tìm m ò th hàm s ti p xúc v i tr c hoành. Câu II: (2 i m) x − y = e x − e y 1. Gi i h phương trình : log 2 x + 3 log y + 2 = 0 . 2 1 2 x 2 − xy + y 2 = 1 2. Tìm m h phương trình sau có nghi m: x 2 − 3 xy + 2 y 2 = m . Câu III: (2 i m) 1. Bi t tam giác ABC có c ba góc cùng là nghi m c a phương trình 2sin2x + tanx = 2 3 . Ch ng minh r ng tam giác ABC u. 2. Tìm GTLN bi u th c : Q = sin 2 A + sin 2 B + 2 sin 2 C , trong ó A,B,C là ba góc m t tam giác b t kì. Câu IV: (2 i m) x2 y 2 1. Cho hypebol có phương trình = 1 (H) − 5 4 Gi s (d) là m t ti p tuy n thay i và F là m t tiêu i m c a (H). K FM vuông góc v i (d). Ch ng minh r ng i m M luôn n m trên m t ư ng tròn c nh. 2. Cho hình chóp SABC có SA = 2 BC , góc ∠BAC = 60 , c nh bên SA vuông góc v i m t ph ng áy ABC. K AM, AN l n lư t vuông góc v i SB, SC. Tính góc ph ng nh di n t o b i hai m t ph ng (AMN) và (ABC). Câu V: ( 1,5 i m) 1. Trong m t ph ng v i h tr c t a vuông góc Oxy cho hình tròn ( x − 2) 2 + y 2 ≤ 1 . Tính th tích c a kh i tr tròn xoay ư c t o thành khi quay hình tròn ó m t vòng xung quanh Oy. 2. Tính s nghi m nguyên dương phương trình : x + y + z = 100 . ------------------ H T ------------------- T p th l p 12T – THPT Th xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Th y Nguy n ình Huy
- Tuy n t p các thi th i h c, cao ng trên t p chí Toán h c và Tu i tr qua các năm ÁP S HO C HƯ NG D N GI I S 3-2004: Câu I: 1. Các b n t gi i. 1 m < − 4 2. áp s : . m > 1, m ≠ 2 3. áp s : m = 2, m = −1, m = 4 . Câu II: 1. áp s : x = 2, x = 4 . 3− 2 2 3+ 2 2 2. áp s : . ≤m≤ 3 3 Câu III: 1. t t = tan x . 25 2. áp s : Max Q = . 8 Câu 4: 1. i m M n m trên ư ng tròn x 2 + y 2 = 5 . 2. áp s : 3 0 . Câu 5 : 1. áp s : V = 4π 2 . 2 2. . áp s : C 99 . ------------------ H T ------------------- T p th l p 12T – THPT Th xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Th y Nguy n ình Huy
- Tuy n t p các thi th i h c, cao ng trên t p chí Toán h c và Tu i tr qua các năm B GIÁO D C VÀ ÀO T O THI TH I H C, CAO NG S 4 T P CHÍ TOÁN H C VÀ TU I TR Môn thi: TOÁN Th i gian làm bài: 180 phút NĂM 2004 Câu I: (2,5 i m) x 2 + mx − 8 Cho hàm s y = (Cm ) x−m 1. Kh o sát s bi n thiên và v th hàm s v i m = 6 2. V i giá tr nào c a m thì hàm s có c c i và c c ti u. Khi ó vi t phương trình ư ng th ng i qua hai i m c c i và c c t i u ó. 3. Tìm t t c các giá tr c a m th hàm s (Cm ) c t tr c hoành t i hai i m phân bi t. Ch ng t 2x + m r ng : H s góc c a ti p tuy n t i các giao i m ó ư c tính b i công th c : k = . x−m Câu II: (2 i m) 1. Tìm t t c các giá tr c a tham s m phương trình : 41+ x + 41− x = (m + 1)(22 + x − 2 2 − x ) + 2m có nghi m thu c [0;1] . 2 = 1 + 3 + 2x − x2 . 2. Gi i phương trình x +1 + 3 − x Câu III: (2 i m) x 1. Gi i phương trình : ∫ sin 2t. 1 + cos 2 t dt = 0 . 0 2. Tính l n các góc tam giác ABC n u có 2 sin A.sin B (1 − cos C ) = 1 . Câu 4 : (2 i m) 1. Parabol y 2 = 2 x chia di n tích hình tròn x 2 + y 2 = 8 theo t s nào. 12 14 1 0 2002 2. Tính t ng : S = C 2003 + C 2003 + C 2003 + ... + C 2003 . 3 5 2003 Câu 5 : (1,5 i m) 1. Cho h ư ng tròn có phương trình : x 2 + y 2 − 2(m + 1) x − 4my − 5 = 0 a. Tìm i m c nh thu c h ư ng tròn khi m thay i. b. Tìm t p h p các i m có cùng phương tích i v i m i ư ng tròn trong h ư ng tròn ã cho. 2.Cho hình chóp t giác SABCD có áy ABCD là hình thoi c nh a, ∠ABC = 60 . Chi u cao SO c a a3 hình chóp b ng , trong ó O là giao i m c a hai ư ng chéo áy. G i M là trung i m c nh 2 AD, (α ) là m t ph ng i qua BM, song song v i SA, c t SC t i K. Tính th tích hình chóp K.BCDM. ------------------ H T ------------------- T p th l p 12T – THPT Th xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Th y Nguy n ình Huy
- Tuy n t p các thi th i h c, cao ng trên t p chí Toán h c và Tu i tr qua các năm ÁP S HO C HƯ NG D N GI I S 4-2004: Câu I: 1. Các b n t gi i. 2. áp án: m2; y = 2x+m. Câu II: 1. áp s : − 2 + 11 ≤ m ≤ 4 . 2. áp s : S = {− 1;3}. Câu III: 1. áp s : x = kπ . 2. áp s : ∠C = 90 , ∠A = ∠B = 45 . Câu IV: 2π + 4 / 3 1. áp s : . 6π − 4 / 3 2 2003 2. áp s : S = . 2004 Câu V: 1. − 2 + 29 − 2 − 29 a. áp s : M 1 (2 − 29 ; ); M 2 (2 + 29 ; ). 2 2 b. áp án: x+2y = 0. a3 2. áp s : V = . 8 ------------------ H T ------------------- T p th l p 12T – THPT Th xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Th y Nguy n ình Huy
- Tuy n t p các thi th i h c, cao ng trên t p chí Toán h c và Tu i tr qua các năm B GIÁO D C VÀ ÀO T O THI TH I H C, CAO NG S 5 T P CHÍ TOÁN H C VÀ TU I TR Môn thi: TOÁN Th i gian làm bài: 180 phút NĂM 2004 Câu I: (2 i m) x 2 − 2x + 2 1. Kh o sát s bi n thiên và v th hàm s : y = . x −1 2. Gi s A và B là hai i m trên th c a hàm s có hoành tương ng là x1 , x 2 th a mãn h th c x1 + x 2 = 2 . Ch ng minh r ng các ti p tuy n v i th t i các i m A và B song song v i nhau. Câu II: (2 i m) 1. Gi i phương trình: 3 x 2 − 2 x 3 = log 2 ( x 2 + 1) − log 2 x . 2. Gi i và bi n lu n phương trình : a − x + a + x = 4 (a là tham s ). Câu III: (2 i m) 1. Gi i phương trình : 4cosx.cos2x.cos3x = cos6x. A B C 2. Tam giác ABC có các góc th a mãn 2 sin A + 3 sin B + 4 sin C = 5 cos + 3 cos + cos 2 2 2 Ch ng minh r ng tam giác ABC u. Câu IV: (2 i m) Trên m t ph ng t a Oxy cho elip (E) có phương trình x 2 + 4 y 2 = 4 Gi s (t) là m t ti p tuy n b t kì c a (E) mà không song song v i Oy. G i M, N là các giao i m c a (t) v i các ti p tuy n c a (E) tương ng t i các nh A1 (−2;0); A2 (2;0) . 1. Ch ng minh r ng A1 M . A2 N = 1 2. Ch ng minh r ng khi ti p tuy n (t) thay i thì ư ng tròn ư ng kính MN luôn i qua hai i m c nh. Câu V: (2 i m) x2 +1 1. Tìm h nguyên hàm c a hàm s f ( x) = . x 4 − 3x 2 + 1 2. Ch ng minh r ng v i m i n nguyên dương ta luôn có 12.C n + 2 2 C n + ... + n 2 C n = n(n + 1)2 n − 2 . 1 2 n ------------------ H T ------------------- T p th l p 12T – THPT Th xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Th y Nguy n ình Huy
- Tuy n t p các thi th i h c, cao ng trên t p chí Toán h c và Tu i tr qua các năm ÁP S HO C HƯ NG D N GI I S 5-2004: Câu I: 1. Các b n t gi i. 1 . T x1 + x 2 = 2 có ( x1 − 1) 2 = ( x 2 − 2) 2 ⇒ y ' ( x1 ) = y ' ( x 2 ) 2. y ' = 1 − 2 ( x − 1) ⇒ pcm Câu II: 1. áp s : x = 1. 2. áp án: a ∈ [4;8], phương trình có hai nghi m x = ± 4 a − 4 a ∉ [4;8], phương trình vô nghi m. Câu III: π kπ π 1. áp s : x = , x = ± + mπ . + 4 2 3 C 2. S d ng sin A + sin B ≤ 2 cos . 2 Câu IV: 1. Các b n t gi i. 2. ư ng tròn ư ng kính MN luôn i qua hai tiêu i m M,N c a (E). Câu V: 1 u −1 1 1. áp án: ln +C v iu= x− . 2 u +1 x 2. Các b n t gi i. ------------------ H T ------------------- T p th l p 12T – THPT Th xã Cao Lãnh – Niên khoá 2006-2009 – GVCN: Th y Nguy n ình Huy
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Tuyển tập các đề thi thử Đại học , cao đẳng các năm
66 p | 7902 | 721
-
Tuyển tập 60 đề thi thử Đại học môn Lý năm 2013 - GV Nguyễn Hồng Khánh
122 p | 1344 | 638
-
Tuyển tập các đề thi thử Đại học, cao đẳng trên tạp chí Toán học và Tuổi trẻ qua các năm
66 p | 1084 | 330
-
tuyển tập 90 đề thi thử Đại học - cao đẳng kèm lời giải chi tiết và bình luận môn hóa học
45 p | 576 | 214
-
Tuyển tập các đề thi thử Đại học, Cao đẳng qua các năm
66 p | 397 | 109
-
Tuyển tập 20 đề thi thử THPT quốc gia năm 2016 môn: Toán
85 p | 188 | 32
-
Tuyển tập 60 đề thi thử Đại học môn Vật lí 2013: Tập 1 - GV. Nguyễn Hồng Khánh
58 p | 139 | 24
-
Môn Hóa học và tuyển tập 90 đề thi thử Đại học - Cao đẳng (Tập 1)
364 p | 127 | 13
-
Tuyển tập 90 đề ôn tập thi thử Quốc gia môn Toán (Tập 3): Phần 1
233 p | 91 | 13
-
Tuyển tập 90 đề ôn tập thi thử Quốc gia môn Vật lý (Tập 3): Phần 2
225 p | 104 | 9
-
Tuyển tập 90 đề ôn tập thi thử Quốc gia môn Vật lý (Tập 3): Phần 1
231 p | 74 | 7
-
Tuyển tập 12 đề thi thử Đại học năm học 2010 - 2011
14 p | 76 | 7
-
Môn Hóa học và tuyển tập 90 đề thi thử Đại học - Cao đẳng (Tập 3)
279 p | 70 | 6
-
Tuyển tập 100 đề thi thử THPT QG môn Toán năm 2016
595 p | 112 | 6
-
Môn Hóa học và tuyển tập 90 đề thi thử Đại học - Cao đẳng (Tập 2)
415 p | 82 | 4
-
Tuyển tập 90 đề thi thử Đại học, Cao đẳng kèm lời giải chi tiết và bình luận môn Vật lí - Tập 1
37 p | 87 | 4
-
tuyển tập 90 đề thi thử thpt quốc gia môn toán
434 p | 69 | 4
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn