YOMEDIA
ADSENSE
UiARINE TRUCTURAL DESIGN Ultimate strength, Fatigue and frature Structural reliability
26
lượt xem 2
download
lượt xem 2
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Tham khảo tài liệu 'uiarine tructural design ultimate strength, fatigue and frature structural reliability', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: UiARINE TRUCTURAL DESIGN Ultimate strength, Fatigue and frature Structural reliability
- i ARINE LV T RUCTURAL U DESIGN Functional Ultimate strength, Structural reliability, Loads requirements Risk assessment Fatigue and frature I I I I Limit-state design R(ftJym,...,) > S(Y,Q,) ELSEVIER
- MARINE STRUCTURAL DESIGN
- Elsevier Internet Homepage: http:Nwww.elsevier.com Consult the Elsevier homepage for f ull catalogue information on all books, journals and electronic products and services. Elsevier Titles of Related Interest O WENS Ocean Engineering Series Steel in Construction (CD-ROM Proceedings with Printed Abstracts Volume, 268 papers) WATSON ISBN 008-042997-1 Practical Ship Design ISBN 008-042999-8 GODOY YOUNG Thin-Walled Structureswith Structural Imperfections: Analysis Wind Generated Ocean Waves and Behavior ISBN: 008-043317-0 ISBN: 008-042266-7 BAl FUKUMOTO Pipelinesand Risers StructuralStability Design ISBN 008-043712-5 ISBN: 008-042263-2 JENSEN Local and Global Response of Ships GUEDES-SOARES ISBN: 0080439S3-S Advances in Safety and Reliability (3 Volume Set) ISBN: 008-04283s-S TUCKER & PITT Waves in Ocean Engineering ISBN 008-043566-1 CHAN & TENG ICASS '02. Advances in Steel Structures (2 Volume Set) ISBN. 008-044017-7 Other Titles MOAN & BERGE OHTSUBO & S UM1 13&Int Ship & Offshore StructuresCongress (ISSC 1997) 14' Int. Ship and OffshoreStructures Congress (ISSC 2000) ISBN: 008-042829-0 ISBN: 008-043602-1 Related J ournals Free specimen copy gladly sent on request. Elsevier Lid, The Boulevard, Langford Lane, Kidlington, Oxford, OX5 IGB, UK Applied Ocean Research Engineering Structures Advances in Engineering Software Finite Elements in Analysis and Design CAD International Journal of Solids and Structures Coastal Engineering Journal of Constructional Steel Research Composite Strua~res Marine Structures Computers and Structures NDT & E International Construction and Building Materials Ocean Engineering Engineering Failure Analysis Structural Safety Engineering Fracture Mechanics Thin-Walled Structures To Contaet the Publisher Elsevier welcomes enquiries concerning publishing proposals: books,journal special issues, conference proceedings, etc. All formats and media can be considered. Should you have a publishing proposal you wish to discuss, please contact, without obligation, the publisher responsible for Elsevier's civil and strucutral engineering publishing programme: James Sullivan Publishing Editor Elsevier Ltd The Boulevard, Langford Lane Phone: -4-441865 843178 Kidlington, Oxford Fax: +44 I865 843920 OX5 IGB, U K E.mail: j.sullivan@elsevier.com General enquiries, including placing orders, should be directed to Elsevier's Regional Sales Offices - please access the Elsevier homepage for f ull contact details (homepage details at the top of this page).
- MARINE STRUCTURAL DESIGN YONG BAI 2003 ELSEVIER Amsterdam - Boston - Heidelberg - London - New York - Oxford Paris - San Diego - San Francisco - Singapore - Sydney - Tokyo
- ELSEVIER SClENCE Ltd The Boulevard, Langford Lane Kidlington, Oxford OX5 IGB, U K 8 2003 Dr. Yong Bai. All rights reserved This work is protected under copyright of Dr. Yong Bai with assigned rights to Elsevier Science. The following terms and conditions apply to its use: Photocopying Single photocopies of single chapters may be made for personal use as allowed by national copMght laws. Permission of the Publisher and payment of a fee is required for all other photocopying, including multiple or systematic copying, copying for advertising or promotional purposes, resale, and all forms of document delivery. Special rates are available for educational institutions that wish to make photocopies for non-profit educational classroom use. Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, U K phone: (+44)1865 843830, fax: (+44) 1865 853333, e-mail: pennissions@elsevier.com. You may also complete your request on-line via the Elsevier Science homepage (http:Nwww.elsevier.com), by selecting ‘Customer Support’ and then ‘Obtaining Permissions’. In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA, phone: ( +I) (978) 7508400, fax: ( +I) (978) 7504744, and in the UK through the Copyright Licensing Agency Rapid Clearance Service (CLARCS), 90 Tottenham Court Road, London W1P OLP, U K, phone: (4) 631 5 555; fax: (+44) 207 631 5 500. Other countries may have a local 207 reprographic rights agency for payments. Derivative Works Tables of contents may be reproduced for internal circulation, but permission of Elsevier Science is required for external resale or distribution of such material. Permission of the Publisher is required for all other derivative works, including compilations and translations. Electronic Storage or Usage Permission of the Publisher is required to store or use electronically any material contained in this work, including any chapter or part of a chapter. Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electmnic, mechanical, photocopying, recording or otherwise, without prior written permission of the Publisher. Address permissions requests to: Elsevier’s Science & Technology Rights Department, at the phone, fax and e- mail addresses noted above. Notice No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made. First edition 2003 Library of Congress Cataloging in Publication Data A catalog record from the Library of Congress has been applied for. British Library Cataloguing in Publication Data Bai, Yong Marine Structural Design 1. Offshore structures - Design and construction 2. Marine engineering 1. Title 627.9’8 ISBN: 0-08-043921-7 8 The paper used in this publication meets the requirements of ANSVNISO 239.48-1992 (Permanence of Paper). Printed in Hungary.
- PREFACE This book is written for marine structural engineers and naval architects, as well as mechanical engineers and civil engineers who work on struch~raldesign. The preparation of the book is motivated by extensive use of the finite element analysis and dynamidfatigue analysis, fast paced advances in computer and information technology, and application of risk and reliability methods. As the professor of offshore structures at Stavanger University College, I developed this book for my teaching course TE 6076 “Offshore Structures” and TE6541 “Risk and Reliability Analysis of Offshore Structures” for M.Sc and Ph.D. students. This book has also been used in IBC/Clarion industry training courses on design and construction of floating production systems for engineers in the oil/@ industry. As reliability-based limit-state design becomes popular in structural engineering, this book may also be a reference for structural engineers in other disciplines, such as buildings, bridges and spacecraft. My former supervisors should be thanked for their guidance and inspiration. These include: Executive Vice President Dr. Donald Liu at American Bureau of Shipping (ABS), Professor Torgeir Moan at Norwegian University of Science and Technology 0rofessor Robert Bea and P, Professor Alaa Mansour at University of California at Berkeley, Prof. Preben Terndrup Pedersen at Technical University of Denmark, Professor T. Yao at Osaka University and Professor M. Fujikubo at Hiroshima University. The friendship and technical advice from these great scientists and engineers have been very important for me to develop materials used in this book. As manager of advanced engineering department at JP Kenny Norway office (now a section of ABB) and manager of offshore technology department at the American Bureau of Shipping, I was given opportunities to meet many industry leaders in oil companies, desigdconsulting offices, classification societies and contractors. From ISSC, IBC, S N M , OMAE, ISOPE and OTC conferences and industry (ISO/APYDeepstar) committees, I leamed about the recent developments in industry applications and research. The collaboration with Dr. R u i n Song and D .Tao Xu for a long period of time has been helpful to r develop research activities on structural reliability and fatigue respectively. Sections of this book relating to extreme response, buckling of tubular members, FPSO hull girder strength and reliability were based on my SNAME, 0 and ISOPE papers co-authored with Professors Preben Temdrup - Pedersen and T. Yao and Drs. Yung Shin, C.T. Zhao and H.H. Sun. Dr. Qiang Bai and Ph.D. student Gang Dong provided assistance to format the manuscript. Professor Rameswar Bhattacharyya, Elsevier’s Publishing Editor James Sullivan and Publisher Nick Pinfield and Senior Vice President James Card of ABS provided me continued encouragement in completing this book. I appreciate my wife H a Peng and children, Lihua and Carl, for creating an environment in which it u has been possible to continue to write this book for more than 5 years in different culture and working environments. I wish to thank all of the organizations and individuals mentioned in the above (and many friends and authors who were not mentioned) for their support and encouragement. Yong BAI Houston, USA
- TABLE OF CONTENTS Preface................................................................................................................................................ v Part I: Structural Design Principles CHAPTER 1 INTRODUCTION. ........................................................................................................ 3 1.1 Structural Design Principles ........................................................................................................ 3 1.1.1 Introduction.......................................................................................................................... 3 1.1.2 Limit-State Design ............................................................................................................... 4 1.2 Strength and Fatigue Analysis..................................................................................................... 5 1.2.1 Ultimate Strength Criteria.................................................................................................... 6 1.2.2 Design for Accidental Loads................................................................................................ 7 1.2.3 Design for Fatigue................................................................................................................ 8 1.3 Structural Reliability Applications............................................................................................ 10 1.3.1 Structural Reliability Concepts .......................................................................................... 10 1.3.2 Reliability-Based Calibration of Design Factor ................................................................. 12 1.3.3 Requalification of Existing Structures.............................................................................. 12 1.4 Risk Assessment........................................................................................................................ 13 1.4.1 Application of Risk Assessment ........................................................................................ 13 1.4.2 Risk-Based Inspection (RBI) ............................................................................................. 13 1.4.3 Human and Organization Factors....................................................................................... 14 1.5 Layout of This Book .................................................................................................................. 14 1.6 How to Use This Book .............................................................................................................. 16 1.7 References ................................................................................................................................. 16 ............. CHAPTER 2 WAVE LOADS FOR SHIP DESIGN AND CLASSIFICATION 19 2.1 Introduction ............................................................................................................................... 19 2.2 Ocean Waves and Wave Statistics............................................................................................. 19 2.2.1 Basic Elements of Probability and Random Process.......................................................... 19 2.2.2 StatisticalRepresentation of the Sea Surface..................................................................... 21 2.2.3 Ocean Wave Spectra .......................................................................................................... 22 2.2.4 Moments of Spectral Density Function.............................................................................. 24 2.2.5 StatisticalDetermination of Wave Heights and Periods .................................................... 26 2.3 Ship Response to a Random Sea ............................................................................................... 26 2.3.1 Introduction........................................................................................................................ 26 2.3.2 Wave-Induced Forces......................................................................................................... 28 2.3.3 Structural Response............................................................................................................ 29 2.3.4 Slamming and Green Water on Deck................................................................................. 30 2.4 Ship Design for Classification................................................................................................... 32 2.4.1 Design Value of Ship Response......................................................................................... 32 2.4.2 Design Loads per Classification Rules............................................................................... 33 2.5 References ................................................................................................................................. 35 ........39 CHAPTER 3 LOADS AND DYNAMIC RESPONSE FOR OFFSHORE STRUCTURES 3.1 General....................................................................................................................................... 39
- viii Contents 3.2 Environmental Conditions......................................................................................................... 39 3.2.1 Environmental Criteria....................................................................................................... 39 3.2.2 Regular Waves ................................................................................................................... 41 3.2.3 Irregular Waves . ................................................................................................................. 41 3.2.4 Wave Scatter Diagram ....................................................................................................... 42 3.3 Environmental Loads and Floating Structure Dynamics........................................................... 45 3.3.1 Environmental Loads ......................................................................................................... 45 3.3.2 Sea loads on Slender Structures......................................................................................... 45 3.3.3 Sea loads on Large-Volume Structures.............................................................................. 45 3.3.4 Floating Structure Dynamics .............................................................................................. 46 3.4 Structural Response Analysis . ................................................................................................... 47 3.4.1 Structural Analysis ............................................................................................................. 47 3.4.2 Response Amplitude Operator ( RAO)............................................................................... 49 3.5 Extreme Values.......................................................................................................................... 53 3.5.1 General ............................................................................................................................... 53 3.5.2 Short-Term Extreme Approach.......................................................................................... 54 3.5.3 Long-Term Extreme Approach.......................................................................................... 58 3.5.4 Prediction of Most Probable Maximum Extreme for Non-Gaussian Process. . . . . ..... 61 3.6 Concluding Remarks ................................................................................................................. 65 3.7 References ................................................................................................................................. 66 3.8 Appendix A Elastic Vibrations of Beams................................................................................. 68 3.8.1 Vibration of A Springhiass System . ................................................................................. 68 3.8.2 Elastic Vibration of Beams ................................................................................................ 69 ............................ CHAPTER 4 SCANTLING OF SHIP'S HULLS BY RULES 71 4.1 General....................................................................................................................................... 71 4.2 Basic Concepts of Stability and Strength of Ships. ................................................................... 71 4.2.1 Stability.............................................................................................................................. 71 4.2.2 Strength. ............................................................................................................................. 73 4.2.3 Corrosion Allowance ......................................................................................................... 75 4.3 Initial Scantling Criteria for Longitudinal Strength................................................................... 76 4.3.1 Introduction........................................................................................................................ 76 4.3.2 Hull Girder Strength........................................................................................................... 77 4.4 Initial Scantling Criteria for Transverse Strength. ..................................................................... 79 4.4.1 Introduction........................................................................................................................ 79 4.4.2 Transverse Strength............................................................................................................ 79 4.5 Initial Scantling Criteria for Local Strength .............................................................................. 79 4.5.1 Local Bending of Beams.................................................................................................... 79 4.5.2 Local Bending Strength of Plates....................................................................................... 82 4.5.3 Structure Design of Bulkheads, Decks, and Bottom. ......................................................... 83 4.5.4 Buckling of Platings........................................................................................................... 83 4.5.5 Buckling of Profiles ........................................................................................................... 85 4.6 References ................................................................................................................................. 87 ............................................ CHAPTER 5 SHIP HULL SCANTLING DESIGN BY ANALYSIS 89 5.1 General....................................................................................................................................... 89 5.2 Design Loads . ............................................................................................................................ 89 5.3 Strength Analysis using Finite Element Methods...................................................................... 91 5.3.1 Modeling ............................................................................................................................ 91 5.3.2 Boundary Conditions ......................................................................................................... 93 5.3.3 Type of Elements ............................................................................................................... 94 5.3.4 Post-Processing.................................................................................................................. 94 5.4 Fatigue Damage Evaluation....................................................................................................... 95
- Contents ir References ................................................................................................................................. 5.5 97 ............................................................... CHAPTER 6 OFFSHORE STRUCTURALANALYSIS 99 Introduction ............................................................................................................................... 6. I 99 6.1 .1 General ............................................................................................................................... 99 6.1.2 Design Codes . .................................................................................................................... 99 6.1.3 Government Requirements............................................................................................... 100 6.1.4 CertificatiodClassificationAuthorities............................................................................ 100 6.1.5 Codes and Standards. ....................................................................................................... 101 6.1.6 Other Technical Documents............................................................................................. 102 6.2 Project Planning....................................................................................................................... 102 6.2.1 General ............................................................................................................................. 102 6.2.2 Design Basis . .................................................................................................................... 103 6.2.3 Design Brief ..................................................................................................................... 105 6.3 Use of Finite Element Analysis ............................................................................................... 105 6.3.1 Introduction. ..................................................................................................................... 105 6.3.2 Stiffness Matrix for 2 D Beam Elements .......................................................................... 107 6.3.3 Stifmess Matrix for 3D Beam Elements .......................................................................... 109 6.4 Design Loads and Load Application ....................................................................................... 112 6.5 Structural Modeling. ................................................................................................................ 114 6.5.1 General ............................................................................................................................. 114 6.5.2 Jacket Structures............................................................................................................... 114 6.5.3 Floating Production and Offloading Systems (FPSO) . .................................................... 116 6.5.4 TLP, Spar and Semi-submersible ..................................................................................... 123 6.6 References ............................................................................................................................... 125 ................ CHAPTER 7 LIMIT-STATE DESIGN OF OFFSHORE STRUCTURES 127 7.1 Limit State Design ................................................................................................................... 127 7.2 Ultimate Limit State Design .................................................................................................... 128 7.2.1 Ductility and Brittle Fracture Avoidance. ........................................................................ 128 7.2.2 Plated Structures............................................................................................................... 129 7.2.3 Shell Structures ................................................................................................................ 130 7.3 Fatigue Limit State Design ...................................................................................................... 134 7.3.1 Introduction...................................................................................................................... 134 7.3.2 Fatigue Analysis............................................................................................................... 135 7.3.3 Fatigue Design ................................................................................................................. 137 7.4 References . .............................................................................................................................. 138 Part 11: Ultimate Strength ................141 CHAPTER 8 BUCKLINGKOLLAPSEOF COLUMNS AND BEAM-COLUMNS 8.1 Buckling Behavior and Ultimate Strength of Columns. .......................................................... 141 8.1.1 Buckling Behavior ........................................................................................................... 141 8.1.2 Peny-Robertson Formula................................................................................................. 143 8.1.3 Johnson-OstenfeldFormula ............................................................................................. 144 8.2 Buckling Behavior and Ultimate Strength of Beam-Columns . ............................................... 145 8.2.1 Beam-Column with Eccentric Load ................................................................................. 145 8.2.2 Beam-Column with Initial Deflection and Eccentric Load .............................................. 146 8.2.3 Ultimate Strength of Beam-Columns . .............................................................................. 147 8.2.4 Alternative Ultimate Strength Equation - Initial Yielding .............................................. 148 8.3 Plastic Design of Beam-Columns ............................................................................................ 148 8.3.1 Plastic Bending of Beam Cross-section ........................................................................... 148
- Contents X 8.3.2 Plastic Hinge Load . .......................................................................................................... 150 ....................................... 8.3.3 Plastic Interaction Under Combined Axial Force and Bending 150 8.4 Examples . ................................................................................................................................ 151 ....... 8.4.1 Example 8.1: Elastic Buckling of Columns with Alternative Boundaty Conditions 151 8.4.2 Example 8.2 Two Types of Ultimate Strength Buckling vs.Fracture . .......................... 153 8.5 References ............................................................................................................................... 154 ...............155 CHAPTER9 BUCKLING ANDLOCALBUCKLINGOFTUBULARMEMBERS 9.1 Introduction . ............................................................................................................................ 155 9.1.1 General . ............................................................................................................................ 155 9.1.2 Safety Factors for Offshore Strength Assessment. ........................................................... 156 9.2 Experiments. ............................................................................................................................ 156 9.2.1 Test Specimens. ................................................................................................................ 156 9.2.2 Material Tests. .................................................................................................................. 158 9.2.3 Buckling Test Procedures ................................................................................................ 163 9.2.4 Test Results . ..................................................................................................................... 163 9.3 Theory of Analysis . ................................................................................................................. 169 9.3.1 Simplified Elasto-Plastic Large Deflection Analysis. ...................................................... 169 ................................................................................... 9.3.2 Idealized Structural Unit Analysis 180 9.4 Calculation Results .................................................................................................................. 186 9.4.1 Simplified Elasto-Plastic Large Deflection Analysis. ...................................................... 186 9.4.2 Idealized Structural Unit Method Analysis. ..................................................................... 190 9.5 Conclusions . ............................................................................................................................ 194 9.6 Example ................................................................................................................................... 195 9.7 References ............................................................................................................................... 196 ...............199 CHAPTER 10 ULTIMATE STRENGTH O F PLATES AND STIFFENED PLATES 10.1 Introduction . ............................................................................................................................ 199 10.1.1 General ............................................................................................................................. 199 10.1.2 Solution of Differential Equation. .................................................................................... 200 10.1.3 Boundary Conditions . ...................................................................................................... 202 10.1.4 Fabrication Related Imperfections and In-Service Structural Degradation . .................... 202 10.1.5 Correction for Plasticity . .................................................................................................. 204 10.2 Combined Loads...................................................................................................................... 205 10.2.1 Buckling - ServiceabilityLimit State . ............................................................................. 205 ........................................................................ 10.2.2 Ultimate Strength- Ultimate Limit State 206 10.3 Buckling Strength of Plates ..................................................................................................... 207 10.4 Ultimate Strength of Un-Stiffened Plates. ............................................................................... 208 10.4.1 Long Plates and Wide Plates............................................................................................ 208 10.4.2 Plates Under Lateral Pressure . ......................................................................................... 209 10.4.3 Shear Strength.................................................................................................................. 209 10.4.4 Combined Loads .............................................................................................................. 209 10.5 Ultimate Strength of Stiffened Panels . .................................................................................... 209 10.5.1 Beam-Column Buckling................................................................................................... 209 10.5.2 Tripping of Stiffeners. ...................................................................................................... 210 10.6 Gross Buckling of Stiffened Panels (Overall Grillage Buckling). ........................................... 210 10.7 References . .............................................................................................................................. 210 .................. CHAPTER 11 ULTIMATE STRENGTH OF CYLINDRICALSHELLS 213 11.1 Introduction . ............................................................................................................................ 213 11.1.1 General ............................................................................................................................. 213 11.1.2 Buckling Failure Modes . .................................................................................................. 214 11.2 Elastic Buckling of Unstiffened Cylindrical Shells................................................................. 215
- xi Contents 11.2.1 Equilibrium Equations for Cylindrical Shells. ................................................................. 215 11.2.2 Axial Compression ........................................................................................................... 216 11.2.3 Bending ............................................................................................................................ 217 11.2.4 External Lateral Pressure ................................................................................................. 218 11.3 Buckling of Ring Stiffened Shells ........................................................................................... 219 1 1.3.1 Axial Compression. .......................................................................................................... 219 11.3.2 Hydrostatic Pressure......................................................................................................... 220 11.3.3 Combined Axial Compressionand Pressure.................................................................... 221 11.4 Buckling of Stringer and Ring Stiffened Shells....................................................................... 221 11.4.1 Axial Compression........................................................................................................... 221 1 1.4.2 Radial Pressure................................................................................................................. 223 11.4.3 Axial Compression and Radial Pressure .......................................................................... 223 11.5 References ............................................................................................................................... 224 ............ CHAPTER 12 A THEORY OF NONLINEAR FINITE ELEMENT ANALYSIS 227 12.1 General..................................................................................................................................... 227 12.2 Elastic Beam-Column With Large Displacements. ................................................................. 228 12.3 The Plastic Node Method ........................................................................................................ 229 12.3.1 History of the Plastic Node Method................................................................................. 229 12.3.2 Consistency Condition and Hardening Rates for Beam Cross-Sections. ......................... 230 12.3.3 Plastic Displacementand Strain at Nodes . ....................................................................... 233 12.3.4 Elastic-Plastic Stiffness Equation for Elements ............................................................... 235 12.4 Transformation Matrix............................................................................................................. 236 12.5 Appendix A: Stress-BasedPlasticity Constitutive Equations.................................................. 237 12.5.1 General ............................................................................................................................. 237 12.5.2 Relationship Between Stress and Strain in Elastic Region .............................................. 239 12.5.3 Yield Criterion ................................................................................................................. 240 12.5.4 Plastic Strain Increment ................................................................................................... 242 12.5.5 Stress Increment- Strain Increment Relation in Plastic Region ...................................... 246 12.6 Appendix B: DeformationMatrix ........................................................................................... 247 12.7 References ............................................................................................................................... 248 ........................................................... CHAPTER 13 COLLAPSE ANALYSIS OF SHIP HULLS 251 13.1 Introduction ............................................................................................................................. 251 13.2 Hull Structural Analysis Based on the Plastic Node Method .................................................. 252 13.2.1 Beam-Column Element.................................................................................................... 252 13.2.2 Attached Plating Element. ................................................................................................ 254 13.2.3 Shear Panel Element ........................................................................................................ 257 13.2.4 Non-Linear Spring Element ............................................................................................. 257 13.2.5 Tension Tearing Rupture.................................................................................................. 257 13.2.6 Computational Procedures ............................................................................................... 259 13.3 Analytical Equations for Hull Girder Ultimate Strength. ........................................................ 260 13.3.1 Ultimate Moment Capacity Based on Elastic Section Modulus ...................................... 260 13.3.2 Ultimate Moment Capacity Based on Fully Plastic Moment ........................................... 261 13.3.3 Proposed Ultimate Strength Equations ............................................................................ 263 13.4 Modified Smith Method Accounting for Corrosion and Fatigue Defects . .............................. 264 13.4.1 Tensile and Comer Elements ........................................................................................... 265 13.4.2 Compressive Stiffened Panels .......................................................................................... 265 13.4.3 C a k Propagation Prediction........................................................................................... 266 rc 13.4.4 Corrosion Rate Model ...................................................................................................... 267 13.5 Comparisons of Hull Girder Strength Equations and Smith Method ...................................... 269 13.6 Numerical Examples Using the Proposed Plastic Node Method . ............................................ 271 13.6.1 Collapse of a Stiffened Plate ............................................................................................ 271
- Contents x ii 13.6.2 Collapse of an Upper Deck Structure. .............................................................................. 273 13.6.3 Collapse of Stiffened Box Girders ................................................................................... 274 13.6.4 Ultimate Longitudinal Strength of Hull Girders . ............................................................. 276 13.6.5 Quasi-Static Analysis of a Side Collision . ....................................................................... 278 13.7 Conclusions ............................................................................................................................. 279 13.8 References ............................................................................................................................... 280 .................. CHAPTER 14 OFFSHORE STRUCTURES UNDER IMPACT LOADS 285 14.1 General..................................................................................................................................... 285 14.2 Finite Element Formulation..................................................................................................... 286 14.2.1 Equations of Motion. ........................................................................................................ 286 14.2.2 Load-DisplacementRelationship ofthe Hit Member . ..................................................... 286 14.2.3 Beam-Column Element for Modeling of the Struck Structure. ........................................ 287 14.2.4 Computational Procedure. ................................................................................................ 287 14.3 Collision Mechanics ................................................................................................................ 289 14.3.1 Fundamental Principles.................................................................................................... 289 14.3.2 Conservation of Momentum . ........................................................................................... 289 14.3.3 Conservation of Energy.................................................................................................... 290 14.4 Examples ................................................................................................................................. 291 14.4.1 Mathematical Equations for Impact Forces and Energies in ShiplPlafformCollisions...29 1 14.4.2 Basic Numerical Examples . ............................................................................................. 292 14.4.3 Application to Practical Collision Problems . ................................................................... 298 14.5 Conclusions ............................................................................................................................. 303 14.6 References . .............................................................................................................................. 303 ............ 305 CHAPTER 15 OFFSHORE STRUCTURES UNDER EARTHQUAKE LOADS 15.1 General..................................................................................................................................... 305 15.2 Earthquake Design as per API RP2A ...................................................................................... 305 15.3 Equations and Motion. ............................................................................................................. 307 15.3.1 Equation of Motion .......................................................................................................... 307 15.3.2 Nonlinear Finite Element Model ...................................................................................... 308 15.3.3 Analysis Procedure........................................................................................................... 308 15.4 Numerical Examples................................................................................................................ 308 15.5 Conclusions ............................................................................................................................. 313 15.6 References ............................................................................................................................... 314 Part 111: Fatigue and Fracture ........................ CHAPTER 16 MECHANISM OF FATIGUE A ND FRACTURE 317 Introduction ............................................................................................................................. 16.1 317 Fatigue Overview .................................................................................................................... 16.2 317 Stress-ControlledFatigue . ....................................................................................................... 16.3 318 Cumulative Damage for Variable Amplitude Loading. ........................................................... 16.4 320 Strain-ControlledFatigue ........................................................................................................ 16.5 321 Fracture Mechanics in Fatigue Analysis. ................................................................................. 16.6 323 Examples ................................................................................................................................. 16.7 325 References ............................................................................................................................... 16.8 326 ............................................................................................ CHAPTER 17 FATIGUE CAPACITY 329 17.1 S-N Curves .............................................................................................................................. 329 17.1.1 General ............................................................................................................................. 329 17.1.2 Effect of Plate Thickness ................................................................................................. 33 1
- Contents xiii 17.1.3 Effect of Seawater and Corrosion Protection................................................................... 331 17.1.4 Effect of Mean Stress ....................................................................................................... 331 17.1.5 Comparisons of S-N Curves in Design Standards. ........................................................... 332 17.1.6 Fatigue Strength Improvement......................................................................................... 335 17.1.7 Experimental S-NCurves................................................................................................. 335 17.2 Estimation of the Stress Range ................................................................................................ 336 17.2.1 Nominal Stress Approach................................................................................................. 336 17.2.2 Hotspot Stress Approach. ................................................................................................. 337 17.2.3 Notch Stress Approach..................................................................................................... 339 17.3 Stress ConcentrationFactors ................................................................................................... 339 17.3.1 Definition of Stress ConcentrationFactors ...................................................................... 339 17.3.2 Determination of SCF by ExperimentalMeasurement .................................................... 340 17.3.3 Parametric Equations for Stress Concentration Factors. .................................................. 340 17.3.4 Hot-Spot Stress Calculation Based on Finite Element Analysis ...................................... 341 17.4 Examples ................................................................................................................................. 343 17.4.1 Example 17.1: Fatigue Damage Calculation.................................................................... 343 17.5 References ............................................................................................................................... 344 ................................................................ CHAPTER 18 FATIGUE LOADING AND STRESSES 347 18.1 Introduction ............................................................................................................................. 347 18.2 Fatigue Loading for Ocean-Going Ships................................................................................. 348 18.3 Fatigue Stresses ....................................................................................................................... 350 18.3.1 General ............................................................................................................................. 350 18.3.2 Long Term Fatigue Stress Based on Weibull Distribution .............................................. 350 18.3.3 Long Term Stress Distribution Based on Deterministic Approach.................................. 351 18.3.4 Long Term Stress Distribution- Spectral Approach ....................................................... 352 18.4 Fatigue Loading Defined Using Scatter Diagrams.................................................................. 354 18.4.1 General ............................................................................................................................. 354 18.4.2 Mooring and Riser Induced Damping in Fatigue Seastates ............................................. 354 18.5 Fatigue Load Combinations..................................................................................................... 355 18.5.1 General ............................................................................................................................. 355 18.5.2 Fatigue Load Combinations for Ship Structures. ............................................................. 355 18.5.3 Fatigue Load Combinations for Offshore Structures ....................................................... 356 18.6 Examples ................................................................................................................................. 357 18.7 Concluding Remarks ............................................................................................................... 361 18.8 References ............................................................................................................................... 361 .............................................................. CHAPTER 19 SIMPLIFIEDFATIGUE ASSESSMENT 363 19.1 introduction ............................................................................................................................. 363 19.2 Deterministic Fatigue Analysis................................................................................................ 364 19.3 Simplified Fatigue Assessment................................................................................................ 365 19.3.1 Calculation of Accumulated Damage . ............................................................................. 365 19.3.2 Weibull Stress Distribution Parameters . .......................................................................... 366 19.4 Simplified Fatigue Assessment for Bilinear S-N Curves ........................................................ 366 19.5 Allowable Stress Range ........................................................................................................... 367 19.6 Design Criteria for Connections Around Cutout Openings..................................................... 367 19.6.1 General ............................................................................................................................. 367 19.6.2 Stress Criteria for Collar Plate Design ............................................................................. 368 19.7 Examples ................................................................................................................................. 370 19.8 References ............................................................................................................................... 371 ............................................. CHAPTER 20 SPECTRAL FATIGUE ANALYSIS AND DESIGN 373 20.1 Introduction ............................................................................................................................. 373
- Contents xiv 20.1.1 General ............................................................................................................................. 373 20.1.2 Terminology..................................................................................................................... 374 20.2 Spectral Fatigue Analysis . ....................................................................................................... 374 20.2.1 Fatigue Damage Acceptance Criteria............................................................................... 374 20.2.2 Fatigue Damage Calculated Using Frequency Domain Solution. .................................... 374 20.3 Time-Domain Fatigue Assessment. ......................................................................................... 377 20.3.1 Application....................................................................................................................... 377 20.3.2 Analysis Methodology for TimeDomain Fatigue of Pipelines . ...................................... 377 20.3.3 Analysis Methodology for Time-Domain Fatigue of Risers. ........................................... 378 20.3.4 Analysis Methodology for Time-Domain Fatigue of Nonlinear Ship Response .............378 20.4 Structural Analysis .................................................................................................................. 379 20.4.1 Overall Structural Analysis .............................................................................................. 379 20.4.2 Local Structural Analysis................................................................................................. 381 20.5 Fatigue Analysis and Design ................................................................................................... 381 20.5.1 Overall Design ................................................................................................................. 381 20.5.2 Stress Range Analysis . ..................................................................................................... 382 20.5.3 Spectral Fatigue Parameters............................................................................................. 382 20.5.4 Fatigue Damage Assessment............................................................................................ 387 20.5.5 Fatigue Analysis and Design Checklist. ........................................................................... 388 20.5.6 Drawing Verification ....................................................................................................... 389 20.6 Classification Society Interface ............................................................................................... 389 20.6.1 Submittal and Approval of Design Brief.......................................................................... 389 20.6.2 Submittal and Approval of Task Report .......................................................................... 389 20.6.3 Incorporation of Comments from Classification Society. ................................................ 389 20.7 References ............................................................................................................................... 389 ......................... CHAPTER 21 APPLICATION OF FRACTURE MECHANICS 391 21.1 Introduction ............................................................................................................................. 391 21.1.1 General . ............................................................................................................................ 391 21.1.2 Fracture Mechanics Design Check................................................................................... 391 21.2 Level 1: The CTOD Design Curve .......................................................................................... 392 21.2.1 The Empirical Equations. ................................................................................................. 392 21.2.2 The British Welding Institute (CTODDesign Curve) . .................................................... 393 21.3 Level 2: The CEGB R6 Diagram............................................................................................. 394 21.4 Level 3: The Failure Assessment Diagram (FAD) .................................................................. 395 21.5 Fatigue Damage Estimation Based on Fracture Mechanics . ................................................... 396 21.5.1 Crack Growth Due to Constant Amplitude Loading . ....................................................... 396 21.5.2 Crack Growth due to Variable Amplitude Loading......................................................... 397 21.6 Comparison of Fracture Mechanics & S-N Curve Approaches for Fatigue Assessment........397 21.7 Fracture Mechanics Applied in Aerospace, Power Generation Industries . ............................. 398 2 1.8 Examples ................................................................................................................................. 399 21.9 References . .............................................................................................................................. 399 ........401 CHAPTER 22 MATERIAL SELECTIONS AND DAMAGE TOLERANCE CRITERIA 22.1 Introduction ............................................................................................................................. 401 22.2 Material Selections and Fracture Prevention........................................................................... 401 22.2.1 Material Selection ............................................................................................................ 401 22.2.2 Higher Strength Steel ....................................................................................................... 402 22.2.3 Prevention of Fracture...................................................................................................... 402 22.3 Weld Improvementand Repair................................................................................................ 403 22.3.1 General............................................................................................................................. 403 22.3.2 Fatigue-ResistantDetails . ................................................................................................ 403 22.3.3 Weld Improvement........................................................................................................... 404
- Contents xv 22.3.4 Modification of Residual Stress Distribution................................................................... 405 22.3.5 Discussions. ...................................................................................................................... 405 22.4 Damage Tolerance Criteria...................................................................................................... 406 22.4.1 General ............................................................................................................................. 406 22.4.2 Residual Strength Assessment Using Failure Assessment Diagram. ............................... 406 22.4.3 Residual Life Prediction Using Paris Law ....................................................................... 407 22.4.4 Discussions....................................................................................................................... 407 22.5 Non-Destructive Inspection..................................................................................................... 407 22.6 References ............................................................................................................................... 408 Part IV: Structural Reliability ........................................................ CHAPTER 23 BASICS OF STRUCTURAL RELIABILITY 413 23.1 Introduction ............................................................................................................................. 413 23.2 Uncertainty and Uncertainty Modeling ................................................................................... 413 23.2.1 General ............................................................................................................................. 413 23.2.2 Natural vs.Modeling Uncertainties ................................................................................. 414 23.3 Basic Concepts ........................................................................................................................ 415 23.3.1 General ............................................................................................................................. 415 23.3.2 Limit State and Failure Mode........................................................................................... 415 23.3.3 Calculation of Structural Reliability ................................................................................ 415 23.3.4 Calculation by FORM . ..................................................................................................... 419 23.3.5 Calculation by S O W ...................................................................................................... 420 23.4 Component Reliability.............................................................................................................. 421 23.5 System Reliability Analysis..................................................................................................... 421 23.5.1 General ............................................................................................................................. 421 23.5.2 Series System Reliability ................................................................................................. 421 23.5.3 Parallel System Reliability............................................................................................... 421 23.6 Combination of Statistical Loads............................................................................................. 422 23.6.1 General ............................................................................................................................. 422 23.6.2 Turkstra’s Rule ................................................................................................................. 423 23.6.3 F eny Borges-CastanhetaModel....................................................................................... 423 23.7 Time-Variant Reliability.......................................................................................................... 424 23.8 Reliability Updating................................................................................................................. 425 23.9 Target Probability. ................................................................................................................... 426 23.9.1 General ............................................................................................................................. 426 23.9.2 Target Probability............................................................................................................. 426 23.9.3 Recommended Target Safety Indices for Ship Structures................................................ 427 Software for Reliability Calculations.............................................................................. 427 23.10 Numerical Examples ....................................................................................................... 427 23.1 1 23.1 1.1 Example 23.1 : Safety Index Calculation of a Ship Hull ............................................. 427 23.1 1.2 Example 23.2: p Safety Index M t o ....................................................................... ehd 428 23.1 1.3 Example 23.3: Reliability Calculation of Series System ............................................ 429 23.1 I .4 Example 23.4: Reliability Calculation of Parallel System ......................................... 430 References....................................................................................................................... 23.12 431 .............. CHAPTER 24 RANDOM VARIABLES AND UNCERTAINTY ANALYSIS 433 24.1 Introduction ............................................................................................................................. 433 24.2 Random Variables ................................................................................................................... 433 24.2.1 General ............................................................................................................................. 433 24.2.2 Statistical Descriptions..................................................................................................... 433 24.2.3 Probabilistic Distributions................................................................................................ 434
- Contents m i 24.3 Uncertainty Analysis . .............................................................................................................. 436 24.3.1 Uncertainty Classification. ............................................................................................... 436 24.3.2 Uncertainty Modeling . ..................................................................................................... 437 24.4 Selection of Distribution Functions. ........................................................................................ 438 24.5 Uncertainty in Ship Structural Design . .................................................................................... 438 24.5.1 General. ............................................................................................................................ 438 24.5.2 Uncertainties in Loads Acting on Ships. .......................................................................... 439 24.5.3 Uncertainties in Ship Structural Capacity. ....................................................................... 440 24.6 References ............................................................................................................................... 441 ............................................................. CHAPTER 25 RELIABILITY OF S HIP STRUCTURES 443 25.1 General..................................................................................................................................... 443 25.2 Closed Form Method for Hull Girder Reliability. ................................................................... 44 4 25.3 Load Effects and Load Combination. ...................................................................................... 445 25.4 Procedure for Reliability Analysis of Ship Structures............................................................. 448 25.4.1 General ............................................................................................................................. 448 25.4.2 Response Surface Method . ............................................................................................... 448 25.5 Time-Variant Reliability Assessment of FPSO Hull Girders. ................................................. 450 25.5.1 Load Combination Factors. .............................................................................................. 452 25.5.2 Time-Variant Reliability Assessment . ............................................................................. 454 25.5.3 Conclusions...................................................................................................................... 459 25.6 References . .............................................................................................................................. 459 ............ CHAPTER 26 RELIABILITY-BASEDDESIGN AND CODE CALIBRATION 463 26.1 General..................................................................................................................................... 463 26.2 General Design Principles . ...................................................................................................... 463 26.2.1 Concept of Safety Factors . ............................................................................................... 463 26.2.2 Allowable Stress Design . ................................................................................................. 463 26.2.3 Load and Resistance Factored Design . ............................................................................ 464 26.2.4 Plastic Design ................................................................................................................... 465 26.2.5 Limit State Design (LSD) . ............................................................................................... 465 26.2.6 Life Cycle Cost Design . ................................................................................................... 465 26.3 Reliability-BasedDesign . ........................................................................................................ 466 26.3.1 General ............................................................................................................................. 466 26.3.2 Application of Reliability Methods to ASD Format . ....................................................... 467 26.4 Reliability-BasedCode Calibrations ....................................................................................... 468 26.4.1 General ............................................................................................................................. 468 26.4.2 Code Calibration Principles . ............................................................................................ 468 26.4.3 Code Calibration Procedure ............................................................................................. 469 26.4.4 Simple Example of Code Calibration. .............................................................................. 469 26.5 Numerical Example for Tubular Structure . ............................................................................. 471 26.5.1 Case Description . ............................................................................................................. 471 26.5.2 Design Equations . ............................................................................................................ 471 26.5.3 Limit State Function (LSF) . ............................................................................................. 472 26.5.4 Uncertainty Modeling . ..................................................................................................... 473 26.5.5 Target Safely Levels . ....................................................................................................... 474 26.5.6 Calibration of Safety Factors. ........................................................................................... 475 26.6 Numerical Example for Hull Girder Collapse of FPSOs. ........................................................ 476 26.7 References ............................................................................................................................... 479 ....................................................................................... CHAPTER 27 FATIGUE RELIABILITY 481 27.1 Introduction ............................................................................................................................. 481 27.2 Uncertainty in Fatigue Stress Model . ...................................................................................... 481
- xvii Contents 27.2. I Stress Modeling................................................................................................................ 481 27.2.2 Stress Modeling Error . ..................................................................................................... 482 27.3 Fatigue Reliability Models ...................................................................................................... 483 27.3.1 Introduction...................................................................................................................... 483 - 27.3.2 Fatigue Reliability S-N Approach ................................................................................. 484 - 27.3.3 Fatigue Reliability Fracture Mechanics (FM) Approach . .............................................. 484 27.3.4 Simplified Fatigue Reliability Model - Lognormal Format. ............................................ 487 27.4 Calibration of FM Model by S-N Approach............................................................................ 488 27.5 Fatigue Reliability Application . atigue Safety Check.......................................................... F 489 27.5.1 Target Safety Index for Fatigue . ...................................................................................... 489 27.5.2 Partial Safety Factors ....................................................................................................... 489 27.6 Numerical Examples................................................................................................................ 490 27.6.1 Example 27.1 : Fatigue Reliability Based on Simple S-N Approach. ............................... 490 27.6.2 Example 27.2: Fatigue Reliability of Large Aluminum Catamaran. ................................ 491 27.7 References ............................................................................................................................... 496 ........... CHAPTER 28 PROBABILITYAND RISK BASED INSPECTION PLANNING 497 28.1 Introduction ............................................................................................................................. 497 28.2 Concepts for Risk Based Inspection Planning......................................................................... 497 28.3 Reliability Updating Theory for Probability-BasedInspection Planning. ............................... 500 28.3.1 General ............................................................................................................................. 500 28.3.2 Inspection Planning for Fatigue Damage . ........................................................................ 500 28.4 Risk Based Inspection Examples ............................................................................................. 502 28.5 Risk Based 'Optimum' Inspection........................................................................................... 506 28.6 References ............................................................................................................................... 512 Part V: Risk Assessment ............................................................. CHAPTER 29 RISK ASSESSMENT METHODOLOGY 515 29.1 Introduction ............................................................................................................................. 515 29.1.1 Health, Safety and EnvironmentProtection..................................................................... 515 29.1.2 Overview of Risk Assessment.......................................................................................... 515 29.1.3 Planning of Risk Analysis................................................................................................ 516 29.1.4 System Description .......................................................................................................... 517 29.1.5 Hazard Identification........................................................................................................ 517 29.1.6 Analysis of Causes and Frequency of Initiating Events. .................................................. 518 29.1.7 Consequence and Escalation Analysis ............................................................................. 518 29.1.8 Risk Estimation................................................................................................................ 519 29.1.9 Risk Reducing Measures.................................................................................................. 519 29.1.10 Emergency Preparedness. ........................................................................................... 520 29.1.1 1 Time-VariantRisk . ..................................................................................................... 520 29.2 Risk Estimation........................................................................................................................ 520 29.2.1 Risk to Personnel.............................................................................................................. 520 29.2.2 Risk to Environment ........................................................................................................ 522 29.2.3 Risk to Assets (Material Damage and Production LossDelay) . ...................................... 522 29.3 Risk Acceptance Criteria ......................................................................................................... 522 29.3.1 General ............................................................................................................................. 522 29.3.2 Risk Matrices ................................................................................................................... 523 29.3.3 ALARP-Principle............................................................................................................. 524 29.3.4 Comparison Criteria ......................................................................................................... 525 29.4 Using Risk Assessment to Determine Performance Standard. ................................................ 525 29.4.1 General ............................................................................................................................. 525
ADSENSE
CÓ THỂ BẠN MUỐN DOWNLOAD
Thêm tài liệu vào bộ sưu tập có sẵn:
Báo xấu
LAVA
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn