intTypePromotion=1
ADSENSE

Ứng dụng trí tuệ nhân tạo trong kỹ thuật dầu khí: Bài toán áp dụng mạng nơ ron nhân tạo trong dự báo áp suất nứt vỉa

Chia sẻ: _ _ | Ngày: | Loại File: PDF | Số trang:3

20
lượt xem
1
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài viết này được thực hiện với mục đích tìm hiểu cơ sở lý thuyết của mạng nơron nhân tạo, từ đó ứng dụng vào thực tiễn xây dựng mô hình dự đoán áp suất vở vỉa cho các giếng khoan dựa trên các dữ liệu về địa cơ học hoặc các tài liệu địa vật lý giếng khoan.

Chủ đề:
Lưu

Nội dung Text: Ứng dụng trí tuệ nhân tạo trong kỹ thuật dầu khí: Bài toán áp dụng mạng nơ ron nhân tạo trong dự báo áp suất nứt vỉa

  1. Giải thưởng Sinh viên nghiên cứu khoa học Euréka lần 20 năm 2018 Kỷ yếu khoa học ỨNG DỤNG TRÍ TUỆ NHÂN TẠO TRONG KỸ THUẬT DẦU KHÍ: BÀI TÓA N ÁP DỤNG MẠNG NƠ-RON NHÂN TẠO TRONG DỰ BÁO ÁP SUẤT NỨT VỈA Đặng Hữu Minh* Trường Đại học Dầu khí Việt Nam *Tác giả liên lạc: minhdh03@pvu.edu.vn TÓM TẮT Dự đóa n áp suất vỡ vỉa là một công việc quan trong khi lên kế hoạch thiết kế giếng khoan. Thực tế có sai số trong các công thức, mối tương quan để dự đóa n áp suất vỡ vỉa có thể gây ra một số vấn đề nghiêm trọng, trong đó có thể kể đến như mất tuần hoàn dung dịch khoan hoặc xảy ra hiện tượng “Kick” dẫn đến phun trào. Các kết quả chính xác của áp suất vở vĩa cho phép việc kiểm sóa t, vận hành, kích thích giếng hoạt động hiệu quả. Áp suất vỡ vỉa sẽ phụ thuộc vào các thông số chính như ứng suất lớp phủ, ứng suất thành hệ, áp suất lỗ rỗng, độ sâu, hệ số Poisson, mô đun khối, mô đun Young,… Bất kỳ phương pháp dự đóa n áp suất vỡ vỉa nào cũng xây dựng các mối tương quan từ những thông số trên. Từ khóa: Áp suất vỡ vỉa, mạng nơ-ron nhân tạo. ARTIFICIAL INTELLIGENT APPLIED IN PETROLEUM ENGINEERING: A CASE STUDY OF FRACTURE PRESSURE PREDICTION USING ARTIFICIAL NEURAL NETWORK MODEL Dang Huu Minh* Petro Viet Nam University *Corresponding Author: minhdh03@pvu.edu.vn ABSTRACT Prediction formation fracture pressure is an essential task in designing safer drilling operations and economical well planning. The errors in formulas, correlations which using to predict formation fracture pressure can lead several serious problems such as lost circulation and kick, even blowout. Accurate formation fracture pressure prediction plays an important role in controls, operations and stimulations. Fracture pressure depends on several factors including magnitude of overburden stress, formation stress, formation pore pressure, depth, Poisson’s ratio, bulk modulus, Young modulus, etc. Any prediction methods should incorporate most of the above factors for a realistic prediction of the fracture pressure. Keywords: Formation fracture pressure, artificial neural network. TỔNG QUAN trực tiếp thường rất lớn và gặp nhiều Áp suất vỡ vỉa là một thông số quan khó khăn, vì vậy nghiên cứu các trọng trong giai đoạn tiền thiết kế hệ phương pháp gián tiếp hay mối tương thống khoan, khai thác và kích thích quan thực nghiệm để xác định áp suất vỉa, cũng như được biết tới là một vỡ vỉa luôn là một đề tài thu hút nhiều thông số tiên quyết tới công tác tối ưu nhà nghiên cứu. các hoạt động khoan. Chi phí để xác Những thông số như áp suất lỗ rỗng, độ định áp suất vỡ vỉa bằng phương pháp rỗng thành hệ, tỷ trọng đá, tính chất 513
  2. Giải thưởng Sinh viên nghiên cứu khoa học Euréka lần 20 năm 2018 Kỷ yếu khoa học thạch học của đất đá… theo độ sâu làm các dữ liệu đầu vào để xây dựng được sử dụng như các dữ liệu đầu vào mô hình dự đóa n áp suất vỡ vỉa bằng cho bài tóa n dự đóa n áp suất vỡ vỉa. mạng nơ-ron nhân tạo. Tổng số 39351 Đồng thời công thức dự đóa n được sử điểm dữ liệu được chọn từ ba giếng dụng riêng cho đặc tính vùng dựa trên khoan 2X, 3X và 4X đã được khoan tại cơ sở dữ liệu có sẵn được sử dụng. Bài mỏ X với mục đích xây dựng mô hình báo này được thực hiện với mục đích và dự đóa n áp suất vỡ vỉa cho giếng tìm hiểu cơ sở lý thuyết của mạng nơ- 5X. Trong đó 2/3 dữ liệu được chọn từ ron nhân tạo, từ đó ứng dụng vào thực tập hợp dữ liệu tổng để thành lập tập tiễn xây dựng mô hình dự đóa n áp suất dữ liệu đào tạo (training). Một nửa vở vỉa cho các giếng khoan dựa trên những điểm dữ liệu còn lại được chọn các dữ liệu về địa cơ học hoặc các tài để thiết lập tập dữ liệu phê chuẩn liệu địa vật lý giếng khoan. (validation) và phần còn lại là của tập dữ liệu kiểm tra (testing). Những điểm THÔNG SỐ ĐẦU VÀO VÀ dữ liệu cho mỗi tập hợp được chọn từ PHƯƠNG PHÁP NGHIÊN CỨU tập hợp tổng được phân bố sao cho vẫn Các thông số đầu vào giữ được sự đồng nhất giống với tập dữ Khi phân tích các mô hình lý thuyết dự liệu tổng. đóa n áp suất vỡ vỉa thành hệ, tác giả Như vậy trong mô hình nơ-ron nhân nhận thấy áp suất vỡ vỉa phụ thuộc vào tạo này, tác giả sẽ sử dụng các thông số ứng suất địa tĩnh (PO), áp suất lỗ rỗng độ sâu, hệ số Poisson, ứng suất lớp phủ (Pp), tỷ số Poisson (µ), tuổi thành hệ, và áp suất lỗ rỗng làm dữ liệu đầu vào độ sâu và tỉ trọng đất đá. Tùy vào dữ để dự đóa n áp suất vỡ vỉa. liệu của các giếng khác nhau để chọn Phương pháp nghiên cứu những thông số đầu vào cho phù hợp. Sau khi dữ liệu được tập hợp, bước tiếp Tuy nhiên cần lưu ý rằng một số thông theo trong đào tạo một mạng là tạo ra số đầu vào lại có tương quan với nhau một đối tượng mạng. Qua quá trình như: tỷ số Poisson phụ thuộc vào tỉ nghiên cứu và thử nghiệm, tác giả sử trọng riêng, tỷ số thành phần ứng suất dụng mạng lan truyền ngược (feed- hữu hiệu và tuổi thành hệ. Do đó mối forward backpropagation) như đã giới nội liên hệ giữa khối lượng riêng của thiệu trong phần cơ sở lý thuyết với 3 thành hệ với gradient áp suất lỗ rỗng và lớp ẩn, 1 lớp đầu vào và 1 lớp đầu ra. chiều sâu đã gián tiếp bao gồm trong Tiếp theo là chọn số lượng nơ-ron đó và đã thể hiện được sự ảnh hưởng trong mỗi lớp. Số lượng nơ-ron nhỏ sẽ của nó tới áp suất nứt vỉa. Chính vì vậy, đào tạo mạng nhanh hơn nhưng không việc lựa chọn thông số đặc trưng để cho kết quả chính xác. Trong khi đó, đưa vào mô hình cần được cân nhắc kĩ, tăng số lượng neural có thể tăng thời thay vì đưa hết các thông số ảnh hưởng gian xử lý. Tác giả sử dụng cấu trúc trực tiếp tới áp suất nứt vỉa. mạng với 15 nơ-ron trong lớp ẩn thứ Các thông số cơ học, áp suất đều bị ảnh nhất, 10 nơ-ron trong lớp ẩn thứ hai và hưởng và hoàn toàn tính tóa n được 12 nơ-ron trong lớp ẩn thứ ba (mạng 7- thông qua các dữ liệu địa vật lý giếng 15-10-12-1). Xin lưu ý lựa chọn số khoan. Vì vậy, khi không có các dữ lượng nơ-ron không có nguyên tắc rõ liệu về áp suất lỗ rỗng, áp suất địa tĩnh ràng nhưng chỉ cần đảm bảo đáp ứng và hệ số Poisson, tác giả đã sử dụng các hệ thống sẵn có của người sử dụng, độ thông số địa vật lý giếng khoan như chính xác cuối cùng chấp nhận được. DT, RHOB, NPHI, LLD, LLS và GR Kết quả của dữ liệu được đào tạo bởi 514
  3. Giải thưởng Sinh viên nghiên cứu khoa học Euréka lần 20 năm 2018 Kỷ yếu khoa học mô hình mạng nơ-ron nhân tạo trong còn nhiều câu hỏi được đặt ra về sự nghiên cứu này chỉ ra đây là một mối chính xác của chúng. Bài báo này đã quan hệ chính xác: kết quả đào tạo, kết tổng hợp xu thế và tình hình ứng dụng quả xác nhận, kiểm tra và kết quả tổng của trí tuệ nhân tạo trong ngành công cộng đều cho các giá trị R lớn hơn nghiệp dầu khí nói chung, lĩnh vực kỹ 0,999. thuật dầu khí nói riêng. Nằm trong chuỗi nghiên cứu phát triển ứng dụng KẾT QUẢ VÀ THẢO LUẬN trí tuệ nhân tạo trong mảng khoan khai Sau khi có mô hình dự báo với độ tin thác dầu khí, công nghệ mỏ, nhóm tác cậy cao, tác giả tiến hành dự báo áp giả bước đầu đã thực hiện dự báo áp suất vỡ vỉa cho giếng 5X (nằm lận cận suất nứt vỉa cho một giếng X thuộc bể với các giếng 2X, 3X, và 4X) từ độ sâu Nam Côn Sơn, Việt Nam với số điểm 1920 m đến 3265 m. Kết quả dự báo dữ liệu là 368. Phương pháp mạng nơ- được trình bày trong hình 4 cùng với ron nhân tạo đã được lấy ví dụ để thực các phương pháp dự báo truyền thống hiện công việc này. được sử dụng hiện nay và phương pháp Từ kết quả nghiên cứu có thể thấy xác định áp suất vỡ vỉa trực tiếp thông phương pháp ANN có những ưu điểm qua thí nghiệm “Leak off test”. sau: Thông qua kết quả so sánh được trình Sử dụng nhiều điểm dữ liệu khác nhau, bày trong hình 3.10 có thể thấy rằng phù hợp với vùng nghiên cứu rộng, dữ kết quả dự đóa n áp suất vỡ vỉa bằng liệu đa dạng. mạng nơ-ron nhân tạo đối với giếng Thông số đầu vào cho mô hình dễ dàng 5X, bể Cửu Long cho kết quả tốt hơn có được. so với phương pháp dự báo hiện nay Đơn giản và dễ sử dụng trong quá trình đang sử dụng (theo tiêu chuẩn so với trước khi khoan thí nghiệm LOT). Độ chính xác cao hơn so với các phương pháp dự báo truyền thống KẾT LUẬN Kết quả dự đóa n áp suất vỡ vỉa cho mỏ Các mô hình dự đóa n ứng dụng trong X đủ độ tin cậy để sử dụng cho những kĩ thuật dầu khí đang có sự phát triển ứng dụng cần thiết trong quá trình thiết tương đối tốt. Tuy nhiên, hiện tại phần kế giếng lân cận trong vùng mỏ X và lớn những thông số quan trọng như áp cần kiểm nghiệm thêm nhiều giếng suất vỉa, áp suất vỡ vỉa lấy làm ví dụ khác trong cùng một vùng trước khi đóng vai trò quan trọng khi lập kế nhân rộng tính ứng dụng của phương hoạch khoan, nhưng trong thực tế vẫn pháp này. TÀI LIỆU THAM KHẢO ANIFOWOSE, F. A., EWENLA, A. O. AND ELUDIORA, S. I. (2011). Prediction of Oil and Gas Reservoir Properties using Support Vector Machines. International Petroleum Technology Conference. R GHOLAMI, AR SHAHRAKI, M JAMALI PAGHALEH (2012). Prediction of hydrocarbon reservoirs permeability using support vector machine. Mathematical Problems in Engineering. S. R. SHADIZADEH, F. KARIMI, M. ZOVEIDAVIANPOOR (2010). Drilling Stuck Pipe. Prediction in Iranian Oil Fields: An Artificial Neural Network Approach. Iranian Journal of Chemical Engineering, p.29-41. 515
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2