Nguyên lí điểm bất động Banach
-
Bài viết Sự tồn tại nghiệm của bao hàm thức vi phân với phần phi tuyến tăng trưởng trên tuyến tính trình bày về sự tồn tại nghiệm của hệ sau với phần phi tuyến có thể tăng trưởng trên tuyến tính.
3p vipettigrew 15-03-2023 7 2 Download
-
Định lí điểm bất động Banach (hay nguyên lí co Banach) đã được Banach chứng minh vào năm 1922. Từ đó đã có nhiều người tổng quát hóa kết quả này theo nhiều hướng khác nhau. Năm 1989, Bakhtin [2] đã giới thiệu khái niệm không gian b metric và chứng minh Định lí điểm bất động đối với ánh xạ co trong không gian b metric, là tổng quát hóa của nguyên lí co Banach trong không gian metric.
36p capheviahe26 02-02-2021 27 3 Download
-
Nguyên lí điểm bất động (hay nguyên lí ánh xạ co) đã được Banach chứng minh vào năm 1922. Từ đó đã có nhiều tác giả mở rộng kết quả này cho nhiều loại ánh xạ khác nhau trên các không gian khác nhau. Hướng thứ nhất là mở rộng khái niệm không gian metric. Đầu tiên phải kể đến khái niệm không gian bmetric được đưa ra bởi Bakhtin. Tác giả đã chứng minh Định lí điểm bất động đối với ánh xạ co trong không gian bmetric, là tổng quát hóa của nguyên lí co Banach trong không gian metric.
41p capheviahe26 02-02-2021 35 3 Download
-
Nguyên lí về ánh xạ co đã được phát biểu và chứng minh trong công trình của Banach năm 1922 là một trong những định lý quan trọng nhất của giải tích hàm cổ điển. Về sau các nhà toán học đã mở rộng nguyên lý này cho nhiều loại ánh xạ trên các không gian khác nhau, đặc biệt là các không gian kiểu metric. Bởi vậy nguyên lý ánh xạ co Banach được xem là khởi nguồn cho các nghiên cứu về lý thuyết điểm bất động trong các không gian kiểu metric. Ý nghĩa của nó nằm ở chỗ nó có thể được áp dụng rộng rãi trong nhiều lĩnh vực của toán học.
47p capheviahe26 02-02-2021 22 4 Download
-
Trong bài báo này, tác giả nghiên cứu dáng điệu tiệm cận của toán tử giải thức sinh ra bởi một toán tử dạng lattice và nghiên cứu sự tồn tại cũng như tính duy nhất nghiệm của phương trình vi tích phân phân thứ dạng lattice bằng cách sử dụng nguyên lí điểm bất động Banach.
3p sabiendo 06-02-2020 45 2 Download