The geometry of space
-
In this thesis, we study some results of f-minimal surfaces in product spaces with the following purposes: State the relation between the f-minimal surfaces and the selfsimilar solutions of the mean curvature flow; state some properties of the f-minimal surfaces in the product spaces; construct some Bernstein type theorems, halfspace type theorems for f-minimal (f-maximal) surfaces in product spaces; state some results on the higher codimensional f-minimal surfaces.
28p closefriend09 16-11-2021 19 3 Download
-
We introduce the notion of cotype of a metric space, and prove that for Banach spaces it coincides with the classical notion of Rademacher cotype. This yields a concrete version of Ribe’s theorem, settling a long standing open problem in the nonlinear theory of Banach spaces. We apply our results to several problems in metric geometry. Namely, we use metric cotype in the study of uniform and coarse embeddings, settling in particular the problem of classifying when Lp coarsely or uniformly embeds into Lq . We also prove a nonlinear analog of the Maurey-Pisier theorem, and use it to...
53p dontetvui 17-01-2013 65 8 Download
-
We study the large scale geometry of the mapping class group, MCG(S). Our main result is that for any asymptotic cone of MCG(S), the maximal dimension of locally compact subsets coincides with the maximal rank of free abelian subgroups of MCG(S). An application is a proof of Brock-Farb’s Rank Conjecture which asserts that MCG(S) has quasi-flats of dimension N if and only if it has a rank N free abelian subgroup. (Hamenstadt has also given a proof of this conjecture, using different methods.
24p dontetvui 17-01-2013 69 7 Download
-
Given a permutation w ∈ Sn , we consider a determinantal ideal Iw whose generators are certain minors in the generic n × n matrix (filled with independent variables). Using ‘multidegrees’ as simple algebraic substitutes for torus-equivariant cohomology classes on vector spaces, our main theorems describe, for each ideal Iw : • variously graded multidegrees and Hilbert series in terms of ordinary and double Schubert and Grothendieck polynomials;
75p noel_noel 17-01-2013 38 4 Download
-
We introduce a class of metric spaces which we call “bolic”. They include hyperbolic spaces, simply connected complete manifolds of nonpositive curvature, euclidean buildings, etc. We prove the Novikov conjecture on higher signatures for any discrete group which admits a proper isometric action on a “bolic”, weakly geodesic metric space of bounded geometry. 1. Introduction This work has grown out of an attempt to give a purely KK-theoretic proof of a result of A. Connes and H. Moscovici ([CM], [CGM]) that hyperbolic groups satisfy the Novikov conjecture. ...
43p tuanloccuoi 04-01-2013 37 7 Download
-
Geometry is a branch of mathematics related research space. Using experience, or perhaps by intuition, it is recognized by the space fundamental characteristics, the geometric axioms called the system. Axiomatic system including the original concept is not defined and the axioms (also known as the proposition) does not prove a relationship defined between the concepts.
12p phalinh14 07-08-2011 47 3 Download