intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

A numerical scheme for solutions of stochastic advection diffusion equations

Chia sẻ: Huỳnh Huỳnh | Ngày: | Loại File: PDF | Số trang:9

56
lượt xem
1
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

In this paper, finite difference schemes are proposed to approximate solutions of stochastic advection-diffusion equations. We used central-difference formula of third-order to approximate spatial derivatives. The stability, consistency and convergence of the scheme are analysed and established. A numerical result is also given to demonstrate the computational efficiency of the stochastic schemes.

Chủ đề:
Lưu

Nội dung Text: A numerical scheme for solutions of stochastic advection diffusion equations

TRƯỜNG ĐẠI HỌC SƯ PHẠM TP HỒ CHÍ MINH<br /> <br /> TẠP CHÍ KHOA HỌC<br /> <br /> HO CHI MINH CITY UNIVERSITY OF EDUCATION<br /> <br /> JOURNAL OF SCIENCE<br /> <br /> KHOA HỌC TỰ NHIÊN VÀ CÔNG NGHỆ<br /> NATURAL SCIENCES AND TECHNOLOGY<br /> ISSN:<br /> 1859-3100 Tập 14, Số 9 (2017): 15-23<br /> Vol. 14, No. 9 (2017): 15-23<br /> Email: tapchikhoahoc@hcmue.edu.vn; Website: http://tckh.hcmue.edu.vn<br /> <br /> A NUMERICAL SCHEME FOR SOLUTIONS OF STOCHASTIC<br /> ADVECTION-DIFFUSION EQUATIONS<br /> Nguyen Tien Dung*, Nguyen Anh Tra<br /> Ho Chi Minh City University of Technology<br /> Received: 31/3/2017; Revised: 03/5/2017; Accepted: 13/5/2017<br /> <br /> ABSTRACT<br /> In this paper, finite difference schemes are proposed to approximate solutions of stochastic<br /> advection-diffusion equations. We used central-difference formula of third-order to approximate<br /> spatial derivatives. The stability, consistency and convergence of the scheme are analysed and<br /> established. A numerical result is also given to demonstrate the computational efficiency of the<br /> stochastic schemes.<br /> Keywords: stochastic partial differential equation, finite difference method, convergence,<br /> stability.<br /> TÓM TẮT<br /> Một xấp xỉ nghiệm của phương trình khuếch tán bình lưu ngẫu nhiên<br /> Trong bài báo này, phương pháp sai phân hữu hạn được sử dụng để xấp xỉ nghiệm của<br /> phương trình khuếch tán bình lưu ngẫu nhiên. Chúng tôi áp dụng công thức sai phân trung tâm bậc<br /> ba để ước lượng các đạo hàm riêng. Sự ổn định và sự hội tụ của lược đồ sai phân được nghiên cứu<br /> và đánh giá. Một ví dụ tính toán số cũng được xem xét để minh họa tính đúng đắn và hiệu quả của<br /> phương pháp xấp xỉ được đề xuất.<br /> Từ khóa: phương trình đạo hàm riêng ngẫu nhiên, phương pháp sai phân hữu hạn, sự hội tụ,<br /> sự ổn định.<br /> <br /> 1.<br /> <br /> Introduction<br /> Many applications in engineering and mathematical finance has developed with a<br /> heavy emphasis on stochastic partial differential equations (SPDEs). Apparently,<br /> appropriate algorithms that can approximate these equations have attracted many<br /> researchers since we can hardly find explicit formula of the corresponding solutions. In [2],<br /> [3], [4], [5], the authors studied the weak and the strong numerical schemes for SPDEs.<br /> In this paper, we would like to propose a finite difference scheme for the following<br /> advection-diffusion<br /> <br /> (1)<br /> u ( x, t )   u ( x, t )   u ( x, t )   u ( x , t )W (t )<br /> t<br /> <br /> *<br /> <br /> x<br /> <br /> xx<br /> <br /> Email: dungnt@hcmut.edu.vn<br /> <br /> 15<br /> <br /> TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM<br /> <br /> 1<br /> <br /> with respect to an<br /> <br /> Tập 14, Số 9 (2017): 15-23<br /> <br /> -valued Wiener process (W (t ), Ft ) defined on a probability space<br /> <br /> (, F , P) , adapted to the standard filtration ( Ft ) . The parameter  is the viscosity<br /> coefficient and  is the phase speed, and both are assumed to be positive. One may refers<br /> to [1] for applications of advection-diffusion equations in geophysics and [8] for its<br /> applications in consensus.<br /> It is known that Young and Grygory [13] established an approximation scheme for<br /> one dimension advection-diffusion equation in 1973.<br /> Later, [10], [11] proposed the idea of using three-point and five-point finite difference<br /> schemes to approximate the solution of stochastic diffusion equations without advection<br /> but unable to verify the corresponding stability and convergence. Similar approach using<br /> seven-point schemes is also implemented in [5] for the same equations. In 2011, [12]<br /> presented stochastic alternating direction explicit methods for advection-diffusion<br /> equations. In this paper, we would like to study the stability and convergence of a<br /> numerical scheme using three-point finite difference scheme for stochastic advection<br /> diffusion equations.<br /> This paper is organised as follows: The next section introduces some preliminaries<br /> regarding to stochastic advection diffusion equation. In section 3, a three-point central<br /> difference scheme is presented and the stability and the convergence of the proposed<br /> scheme are carried out. Finally, the computational performance of the stochastic difference<br /> method is demonstrated in section 4.<br /> 2.<br /> Preliminaries<br /> In this paper, we study a finite difference scheme for a stochastic advection diffusion<br /> equation<br /> <br /> u ( x, t )   u ( x, t )   u ( x, t )   u ( x , t )W (t ), for all t  [0, T ], x  [0, l ]<br /> (2)<br /> t<br /> <br /> x<br /> <br /> xx<br /> <br /> with initial-boundary conditions<br /> u( x, 0)  u0 ( x ), for all x  [0, l ]<br /> <br /> u(0, t ) <br /> where W (t ) is a<br /> <br /> f 0 (t ) and u(l , t )  f l (t ), for all t  [0, T ]<br /> 1<br /> <br /> (3)<br /> <br /> -valued Brownian motion, and  ,  and  are constants. One may<br /> <br /> refers to [12] for further discussions on the solutions of equations (2)-(3), including the<br /> existence and uniqueness.<br /> For simplicity, we denote by L the following operator<br /> <br /> (4)<br /> Lu  ut ( x , t )   u x ( x , t )   u xx ( x, t )   u ( x, t )W (t ).<br /> Then equation (2) becomes<br /> Lu ( x, t )  0.<br /> <br /> 16<br /> <br /> (5)<br /> <br /> TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM<br /> <br /> Nguyen Tien Dung et al.<br /> <br /> 3.<br /> <br /> Three-point central difference scheme<br /> In this section, we will apply three-point central difference formula to estimate the<br /> solution of (2).<br /> T<br /> Let x and  t be the space step and the time step respectively such that N <br /> t<br /> l<br /> and K <br /> are positive integers.<br /> x<br /> t<br /> t<br /> Let  <br /> and  <br /> . For all n  0,, N , we denote<br /> (x)2<br /> x<br /> <br /> ukn1<br /> <br /> <br /> <br /> (1  2 )u  (   )u<br /> <br /> n<br /> u0 1<br /> n<br /> u K1<br /> <br /> <br /> <br /> <br /> f 0 ((n  1)t )<br /> fl ((n  1)t )<br /> <br /> 0<br /> uk<br /> <br /> <br /> <br /> u (k x,0), k  0, , K .<br /> <br /> n<br /> k<br /> <br /> n<br /> k 1<br /> <br /> 2<br />  ukn Wn , k  1, , K  1<br /> <br />  ( <br /> <br />  n<br /> )uk 1<br /> 2<br /> (6)<br /> <br /> where Wn  Wn 1  Wn These equations give an approximation scheme for the solution of<br /> equations (2)-(3). For convenience, put xk  k x and tn  nt , and we introduce the<br /> following operator<br />  un  un <br /> t<br /> Ln u n  ukn1  ukn  t  k 1 k 1    2 ukn1  2ukn  ukn1<br /> k<br /> x<br />  2 x <br /> n<br />   uk [W (tn 1 )  W (tn )]<br /> <br /> <br /> <br /> <br /> <br /> n<br /> n<br /> where un  (u0 ,, uK ) and un  [u( x0 , tn ),, u( xK , tn )] .<br /> <br /> We can then verify that (6) is equivalent to<br /> <br /> Ln un<br /> k<br /> u0<br /> <br />  0<br />  u0<br /> <br /> We refer to [5] for the following definitions, but first we introduce for sequences<br /> <br /> u  (, uk , ) the sup-norm u  sup | u k |2 .<br /> k<br /> <br /> Definition 3.1.<br /> A stochastic difference scheme Ln un  0 approximating the stochastic partial<br /> k<br /> differential equation Lv  0 is convergent in mean square at time t if, as x  0<br /> <br /> E uN  vN<br /> <br /> 2<br /> <br /> <br /> 0<br /> <br /> where u N  ( , u kN , ) and v N  (, vkN , ) .<br /> <br /> 17<br /> <br /> TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM<br /> <br /> Tập 14, Số 9 (2017): 15-23<br /> <br /> Definition 3.2.<br /> A stochastic difference scheme is said to be stable with respect to a norm in mean<br /> square if there exist positive constants x0 and t0 , and nonnegative constants K and <br /> such that<br /> <br /> E || u N ||2  KeT E || u0 ||2 ,<br /> for all 0  x  x0 and 0  t  t0 .<br /> In what follows, we will study the consistence, the stability and the convergence of<br /> scheme (6). For convenience, we use notation <br /> <br /> <br /> <br /> to denote the supremum norm.<br /> <br /> Theorem 3.3.<br /> <br /> 1<br /> If<br />    , then scheme (6) with a fixed space step x is conditionally stable. In<br /> 2<br /> 2<br /> fact, there exists a constant C such that<br /> n<br /> 0<br /> sup E | uk |2  C sup E | uk |2<br /> k<br /> <br /> for all n  0 .<br /> <br /> k<br /> <br /> Proof. Equation (6) implies that<br /> E | ukn1 |2  E |(1  2 )ukn  ( <br /> <br /> If  <br /> <br />  n<br /> )uk 1  (   )ukn1 |2  E( 2 )(t )E | ukn |2<br /> 2<br /> 2<br /> <br /> (7)<br /> <br /> <br /> , then (7) becomes<br /> 2<br /> <br /> n<br /> n<br /> E | uk 1 |2  E 1   2 t  sup E | uk |2<br /> <br /> <br /> k 0,, K<br /> <br /> Thus<br /> n<br /> sup E | u k 1 |2  (1   2 t ) sup E | ukn |2<br /> k  0,, K<br /> <br /> k  0,, K<br /> <br /> for all n  0 . Consequently,<br /> sup E | ukn |2<br /> <br /> 0<br />  (1   2 t ) n sup E | uk |2<br /> <br /> k  0,, K<br /> <br /> k  0,, K<br /> <br /> e<br /> <br />  2T<br /> <br /> 0<br /> sup E | uk |2<br /> <br /> (8)<br /> <br /> k  0,, K<br /> <br /> <br /> Theorem 3.4.<br /> <br /> 1<br /> If<br />    then scheme (6) converges in norm   to the solution of equations<br /> 2<br /> 2<br /> (2)-(3).<br /> Proof. First of all, (6) implies that<br /> <br /> 18<br /> <br /> TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM<br /> <br /> n<br /> uk 1  ukn  <br /> <br /> Nguyen Tien Dung et al.<br /> <br /> n<br /> n<br /> t<br /> (ukn1  2ukn  ukn1 ) t uk 1  uk 1<br /> x 2<br /> 2 x<br /> <br /> (9)<br /> <br />  u (W (( n  1) t )  W ( nt )).<br /> n<br /> k<br /> <br /> n<br /> On the other hand, denote by vk the value of the solution of equation (2) at ( xk , tn ) .<br /> <br /> Assume that s [tn , tn1 ] . We have<br /> n<br /> vk 1  vkn1 t<br /> v x ( xk , s ) <br /> <br /> vt (x k 1 , t n   k 1 (s) t)  vt (x k 1 , t n   k 1 (s) t)<br /> 2 x<br /> 2 x<br /> ( x ) 2<br /> <br /> [vxxx ( xk   k 1 ( s)x, s)  vxxx ( xk   k 1 ( s)x, s)]<br /> 12<br /> <br /> (10)<br /> <br /> where 0  k 1 (r ),k 1 (r )  1 . Similarly<br /> vxx ( xk , s) <br /> <br /> 1<br /> t<br />  n  2 kn  kn1  <br /> 2  k 1<br />  ( x ) 2 [ t (x k 1 , t n   k 1 (s)  t)<br /> ( x )<br /> 2 t (x k , t n   k (s) t)  t (x k 1 , t n   k 1 (s) t)]<br /> <br /> <br /> x<br /> [vxxxx ( xk   k 1 (s)x,s)  vxxxx ( xk   k 1 (s)x,s)]<br /> 6<br /> <br /> (11)<br /> <br /> where 0   k 1 (s),  k (s),  k 1 (s)  1 . For the sake of simplicity, we denote<br /> <br />  k1 (s)  v xxx ( xk   k 1 (s) x, s)<br />  k1 (s)  v xxx ( xk   k 1 (s) x ,s)<br /> and<br /> <br /> k i (s)  vt ( xk i , tn   k i (s) t )<br /> for all i  1,0,1 . Integrating both sides of equation (2) from tn to tn 1 , and then<br /> substituting vx and vxx given by equations (10) and (11) into the resulting equation, we<br /> deduce<br /> <br /> 19<br /> <br />
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2