YOMEDIA
ADSENSE
A numerical scheme for solutions of stochastic advection diffusion equations
56
lượt xem 1
download
lượt xem 1
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
In this paper, finite difference schemes are proposed to approximate solutions of stochastic advection-diffusion equations. We used central-difference formula of third-order to approximate spatial derivatives. The stability, consistency and convergence of the scheme are analysed and established. A numerical result is also given to demonstrate the computational efficiency of the stochastic schemes.
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: A numerical scheme for solutions of stochastic advection diffusion equations
TRƯỜNG ĐẠI HỌC SƯ PHẠM TP HỒ CHÍ MINH<br />
<br />
TẠP CHÍ KHOA HỌC<br />
<br />
HO CHI MINH CITY UNIVERSITY OF EDUCATION<br />
<br />
JOURNAL OF SCIENCE<br />
<br />
KHOA HỌC TỰ NHIÊN VÀ CÔNG NGHỆ<br />
NATURAL SCIENCES AND TECHNOLOGY<br />
ISSN:<br />
1859-3100 Tập 14, Số 9 (2017): 15-23<br />
Vol. 14, No. 9 (2017): 15-23<br />
Email: tapchikhoahoc@hcmue.edu.vn; Website: http://tckh.hcmue.edu.vn<br />
<br />
A NUMERICAL SCHEME FOR SOLUTIONS OF STOCHASTIC<br />
ADVECTION-DIFFUSION EQUATIONS<br />
Nguyen Tien Dung*, Nguyen Anh Tra<br />
Ho Chi Minh City University of Technology<br />
Received: 31/3/2017; Revised: 03/5/2017; Accepted: 13/5/2017<br />
<br />
ABSTRACT<br />
In this paper, finite difference schemes are proposed to approximate solutions of stochastic<br />
advection-diffusion equations. We used central-difference formula of third-order to approximate<br />
spatial derivatives. The stability, consistency and convergence of the scheme are analysed and<br />
established. A numerical result is also given to demonstrate the computational efficiency of the<br />
stochastic schemes.<br />
Keywords: stochastic partial differential equation, finite difference method, convergence,<br />
stability.<br />
TÓM TẮT<br />
Một xấp xỉ nghiệm của phương trình khuếch tán bình lưu ngẫu nhiên<br />
Trong bài báo này, phương pháp sai phân hữu hạn được sử dụng để xấp xỉ nghiệm của<br />
phương trình khuếch tán bình lưu ngẫu nhiên. Chúng tôi áp dụng công thức sai phân trung tâm bậc<br />
ba để ước lượng các đạo hàm riêng. Sự ổn định và sự hội tụ của lược đồ sai phân được nghiên cứu<br />
và đánh giá. Một ví dụ tính toán số cũng được xem xét để minh họa tính đúng đắn và hiệu quả của<br />
phương pháp xấp xỉ được đề xuất.<br />
Từ khóa: phương trình đạo hàm riêng ngẫu nhiên, phương pháp sai phân hữu hạn, sự hội tụ,<br />
sự ổn định.<br />
<br />
1.<br />
<br />
Introduction<br />
Many applications in engineering and mathematical finance has developed with a<br />
heavy emphasis on stochastic partial differential equations (SPDEs). Apparently,<br />
appropriate algorithms that can approximate these equations have attracted many<br />
researchers since we can hardly find explicit formula of the corresponding solutions. In [2],<br />
[3], [4], [5], the authors studied the weak and the strong numerical schemes for SPDEs.<br />
In this paper, we would like to propose a finite difference scheme for the following<br />
advection-diffusion<br />
<br />
(1)<br />
u ( x, t ) u ( x, t ) u ( x, t ) u ( x , t )W (t )<br />
t<br />
<br />
*<br />
<br />
x<br />
<br />
xx<br />
<br />
Email: dungnt@hcmut.edu.vn<br />
<br />
15<br />
<br />
TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM<br />
<br />
1<br />
<br />
with respect to an<br />
<br />
Tập 14, Số 9 (2017): 15-23<br />
<br />
-valued Wiener process (W (t ), Ft ) defined on a probability space<br />
<br />
(, F , P) , adapted to the standard filtration ( Ft ) . The parameter is the viscosity<br />
coefficient and is the phase speed, and both are assumed to be positive. One may refers<br />
to [1] for applications of advection-diffusion equations in geophysics and [8] for its<br />
applications in consensus.<br />
It is known that Young and Grygory [13] established an approximation scheme for<br />
one dimension advection-diffusion equation in 1973.<br />
Later, [10], [11] proposed the idea of using three-point and five-point finite difference<br />
schemes to approximate the solution of stochastic diffusion equations without advection<br />
but unable to verify the corresponding stability and convergence. Similar approach using<br />
seven-point schemes is also implemented in [5] for the same equations. In 2011, [12]<br />
presented stochastic alternating direction explicit methods for advection-diffusion<br />
equations. In this paper, we would like to study the stability and convergence of a<br />
numerical scheme using three-point finite difference scheme for stochastic advection<br />
diffusion equations.<br />
This paper is organised as follows: The next section introduces some preliminaries<br />
regarding to stochastic advection diffusion equation. In section 3, a three-point central<br />
difference scheme is presented and the stability and the convergence of the proposed<br />
scheme are carried out. Finally, the computational performance of the stochastic difference<br />
method is demonstrated in section 4.<br />
2.<br />
Preliminaries<br />
In this paper, we study a finite difference scheme for a stochastic advection diffusion<br />
equation<br />
<br />
u ( x, t ) u ( x, t ) u ( x, t ) u ( x , t )W (t ), for all t [0, T ], x [0, l ]<br />
(2)<br />
t<br />
<br />
x<br />
<br />
xx<br />
<br />
with initial-boundary conditions<br />
u( x, 0) u0 ( x ), for all x [0, l ]<br />
<br />
u(0, t ) <br />
where W (t ) is a<br />
<br />
f 0 (t ) and u(l , t ) f l (t ), for all t [0, T ]<br />
1<br />
<br />
(3)<br />
<br />
-valued Brownian motion, and , and are constants. One may<br />
<br />
refers to [12] for further discussions on the solutions of equations (2)-(3), including the<br />
existence and uniqueness.<br />
For simplicity, we denote by L the following operator<br />
<br />
(4)<br />
Lu ut ( x , t ) u x ( x , t ) u xx ( x, t ) u ( x, t )W (t ).<br />
Then equation (2) becomes<br />
Lu ( x, t ) 0.<br />
<br />
16<br />
<br />
(5)<br />
<br />
TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM<br />
<br />
Nguyen Tien Dung et al.<br />
<br />
3.<br />
<br />
Three-point central difference scheme<br />
In this section, we will apply three-point central difference formula to estimate the<br />
solution of (2).<br />
T<br />
Let x and t be the space step and the time step respectively such that N <br />
t<br />
l<br />
and K <br />
are positive integers.<br />
x<br />
t<br />
t<br />
Let <br />
and <br />
. For all n 0,, N , we denote<br />
(x)2<br />
x<br />
<br />
ukn1<br />
<br />
<br />
<br />
(1 2 )u ( )u<br />
<br />
n<br />
u0 1<br />
n<br />
u K1<br />
<br />
<br />
<br />
<br />
f 0 ((n 1)t )<br />
fl ((n 1)t )<br />
<br />
0<br />
uk<br />
<br />
<br />
<br />
u (k x,0), k 0, , K .<br />
<br />
n<br />
k<br />
<br />
n<br />
k 1<br />
<br />
2<br />
ukn Wn , k 1, , K 1<br />
<br />
( <br />
<br />
n<br />
)uk 1<br />
2<br />
(6)<br />
<br />
where Wn Wn 1 Wn These equations give an approximation scheme for the solution of<br />
equations (2)-(3). For convenience, put xk k x and tn nt , and we introduce the<br />
following operator<br />
un un <br />
t<br />
Ln u n ukn1 ukn t k 1 k 1 2 ukn1 2ukn ukn1<br />
k<br />
x<br />
2 x <br />
n<br />
uk [W (tn 1 ) W (tn )]<br />
<br />
<br />
<br />
<br />
<br />
n<br />
n<br />
where un (u0 ,, uK ) and un [u( x0 , tn ),, u( xK , tn )] .<br />
<br />
We can then verify that (6) is equivalent to<br />
<br />
Ln un<br />
k<br />
u0<br />
<br />
0<br />
u0<br />
<br />
We refer to [5] for the following definitions, but first we introduce for sequences<br />
<br />
u (, uk , ) the sup-norm u sup | u k |2 .<br />
k<br />
<br />
Definition 3.1.<br />
A stochastic difference scheme Ln un 0 approximating the stochastic partial<br />
k<br />
differential equation Lv 0 is convergent in mean square at time t if, as x 0<br />
<br />
E uN vN<br />
<br />
2<br />
<br />
<br />
0<br />
<br />
where u N ( , u kN , ) and v N (, vkN , ) .<br />
<br />
17<br />
<br />
TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM<br />
<br />
Tập 14, Số 9 (2017): 15-23<br />
<br />
Definition 3.2.<br />
A stochastic difference scheme is said to be stable with respect to a norm in mean<br />
square if there exist positive constants x0 and t0 , and nonnegative constants K and <br />
such that<br />
<br />
E || u N ||2 KeT E || u0 ||2 ,<br />
for all 0 x x0 and 0 t t0 .<br />
In what follows, we will study the consistence, the stability and the convergence of<br />
scheme (6). For convenience, we use notation <br />
<br />
<br />
<br />
to denote the supremum norm.<br />
<br />
Theorem 3.3.<br />
<br />
1<br />
If<br />
, then scheme (6) with a fixed space step x is conditionally stable. In<br />
2<br />
2<br />
fact, there exists a constant C such that<br />
n<br />
0<br />
sup E | uk |2 C sup E | uk |2<br />
k<br />
<br />
for all n 0 .<br />
<br />
k<br />
<br />
Proof. Equation (6) implies that<br />
E | ukn1 |2 E |(1 2 )ukn ( <br />
<br />
If <br />
<br />
n<br />
)uk 1 ( )ukn1 |2 E( 2 )(t )E | ukn |2<br />
2<br />
2<br />
<br />
(7)<br />
<br />
<br />
, then (7) becomes<br />
2<br />
<br />
n<br />
n<br />
E | uk 1 |2 E 1 2 t sup E | uk |2<br />
<br />
<br />
k 0,, K<br />
<br />
Thus<br />
n<br />
sup E | u k 1 |2 (1 2 t ) sup E | ukn |2<br />
k 0,, K<br />
<br />
k 0,, K<br />
<br />
for all n 0 . Consequently,<br />
sup E | ukn |2<br />
<br />
0<br />
(1 2 t ) n sup E | uk |2<br />
<br />
k 0,, K<br />
<br />
k 0,, K<br />
<br />
e<br />
<br />
2T<br />
<br />
0<br />
sup E | uk |2<br />
<br />
(8)<br />
<br />
k 0,, K<br />
<br />
<br />
Theorem 3.4.<br />
<br />
1<br />
If<br />
then scheme (6) converges in norm to the solution of equations<br />
2<br />
2<br />
(2)-(3).<br />
Proof. First of all, (6) implies that<br />
<br />
18<br />
<br />
TẠP CHÍ KHOA HỌC - Trường ĐHSP TPHCM<br />
<br />
n<br />
uk 1 ukn <br />
<br />
Nguyen Tien Dung et al.<br />
<br />
n<br />
n<br />
t<br />
(ukn1 2ukn ukn1 ) t uk 1 uk 1<br />
x 2<br />
2 x<br />
<br />
(9)<br />
<br />
u (W (( n 1) t ) W ( nt )).<br />
n<br />
k<br />
<br />
n<br />
On the other hand, denote by vk the value of the solution of equation (2) at ( xk , tn ) .<br />
<br />
Assume that s [tn , tn1 ] . We have<br />
n<br />
vk 1 vkn1 t<br />
v x ( xk , s ) <br />
<br />
vt (x k 1 , t n k 1 (s) t) vt (x k 1 , t n k 1 (s) t)<br />
2 x<br />
2 x<br />
( x ) 2<br />
<br />
[vxxx ( xk k 1 ( s)x, s) vxxx ( xk k 1 ( s)x, s)]<br />
12<br />
<br />
(10)<br />
<br />
where 0 k 1 (r ),k 1 (r ) 1 . Similarly<br />
vxx ( xk , s) <br />
<br />
1<br />
t<br />
n 2 kn kn1 <br />
2 k 1<br />
( x ) 2 [ t (x k 1 , t n k 1 (s) t)<br />
( x )<br />
2 t (x k , t n k (s) t) t (x k 1 , t n k 1 (s) t)]<br />
<br />
<br />
x<br />
[vxxxx ( xk k 1 (s)x,s) vxxxx ( xk k 1 (s)x,s)]<br />
6<br />
<br />
(11)<br />
<br />
where 0 k 1 (s), k (s), k 1 (s) 1 . For the sake of simplicity, we denote<br />
<br />
k1 (s) v xxx ( xk k 1 (s) x, s)<br />
k1 (s) v xxx ( xk k 1 (s) x ,s)<br />
and<br />
<br />
k i (s) vt ( xk i , tn k i (s) t )<br />
for all i 1,0,1 . Integrating both sides of equation (2) from tn to tn 1 , and then<br />
substituting vx and vxx given by equations (10) and (11) into the resulting equation, we<br />
deduce<br />
<br />
19<br />
<br />
ADSENSE
CÓ THỂ BẠN MUỐN DOWNLOAD
Thêm tài liệu vào bộ sưu tập có sẵn:
Báo xấu
LAVA
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn