Báo cáo: Thực hành xử lý số
lượt xem 141
download
OpenCV (Intel Open Source Computer Vision Library) là một thư viện mã nguồn mở của Intel viết cho xử lý ảnh. OpenCV gồm các hàm được xây dựng cho việc xử lý thị giác máy thời gian thực (real time computer vision). Các thuật toán xử lý ảnh thông thường lẫn cao cấp đều được tối ưu hóa bởi các nhà phát triển thư viện thành các hàm đơn giản và cho người dùng dễ dàng sử dụng. OpenCV hỗ trợ hai ngôn ngữ chính C/C++ và python....
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Báo cáo: Thực hành xử lý số
- ĐẠI HỌC ĐÀ NẴNG - ĐẠI HỌC BÁCH KHOA KHOA: CÔNG NGHỆ THÔNG TIN -----O0O------ BÁO CÁO THỰC HÀNH XỬ LÝ ẢNH SỐ Giáo viên hướng dẫn : Ts. Huỳnh Hữu Hưng Sinh viên thực hiện : Võ Tá Hải Lớp : 10T1LT.H2 Huế, tháng 03, năm 2012
- Báo cáo: Thực hành Xử Lý Ảnh Số GVHD: Ts. Huỳnh Hữu Hưng Mục Lục I. HƯỚNG DẪN CÀI ĐẶT OPENCV. ........................................................................ 3 1. Giới thiệu chung về thư viện OpenCV. .................................................................... 3 2. Hướng dẫn cài đặt OpenCV 2.1 với Visual Studio 2008.......................................... 3 3. Cấu hình Visual Studio 2008 liên kết với OpenCV.................................................. 8 4. Tạo một project sử dụng OpenCV. ......................................................................... 10 II. SỬ DỤNG MỘT SỐ HÀM CƠ BẢN CỦA OPENCV. ......................................... 12 1. Tải ảnh, hiển thị lại. ................................................................................................ 12 2. Chuyển ảnh sang ảnh Gray, hiển thị. ...................................................................... 12 3. Chuyển ảnh Gray sang ảnh nhị phân, hiển thị. ...................................................... 13 4. Tách các kênh màu cvSplitPan, hiển thị. ................................................................ 14 5. Phát hiện biên bằng các phương pháp đã học, hiển thị. .......................................... 15 6. Lọc ảnh(blur,gauss,median), hiển thị. ..................................................................... 16 7. Ăn mòn, làm dày, hiển thị. ...................................................................................... 17 8. Cắt ngưỡng, hiển thị. ............................................................................................... 18 Tìm hiểu hàm phát hiện khuôn mặt trong OpenCV............................................... 19 9. SVTH: Võ Tá Hải. Lớp: 10T1LT.H2 Trang: 2
- Báo cáo: Thực hành Xử Lý Ảnh Số GVHD: Ts. Huỳnh Hữu Hưng I. HƯỚNG DẪN CÀI ĐẶT OPENCV. 1. Giới thiệu chung về thư viện OpenCV. OpenCV (Intel Open Source Computer Vision Library) là một thư viện mã nguồn mở của Intel viết cho xử lý ảnh. OpenCV gồm các hàm được xây dựng cho việc xử lý thị giác máy thời gian thực (real time computer vision). Các thuật toán xử lý ảnh thông thường lẫn cao cấp đều được tối ưu hóa bởi các nhà phát triển thư viện thành các hàm đơn giản và cho người dùng dễ dàng sử dụng. OpenCV hỗ trợ hai ngôn ngữ chính C/C++ và python. 2. Hướng dẫn cài đặt OpenCV 2.1 với Visual Studio 2008. Download miễn phí phần mềm OpenCV trên Internet. Double click vào biểu tượng setup OpenCV 2.1. Cửa sổ setup sẽ hiển thị lên như sau: Hình 1. SVTH: Võ Tá Hải. Lớp: 10T1LT.H2 Trang: 3
- Báo cáo: Thực hành Xử Lý Ảnh Số GVHD: Ts. Huỳnh Hữu Hưng Nhấn Next, cửa sổ tiếp theo sẽ hiển thị: Hình 2. Đọc các điều khoản, đồng ý click vào I Agree, Cancel nếu không đồng ý và hủy bỏ cài đặt. Chọn Iagree, cửa sổ tiếp theo sẽ hiển thị. Hình 3. SVTH: Võ Tá Hải. Lớp: 10T1LT.H2 Trang: 4
- Báo cáo: Thực hành Xử Lý Ảnh Số GVHD: Ts. Huỳnh Hữu Hưng Ở đây chọn Add OpenCV to the system PATH for all users và tiếp tục click vào Next. Hình 4. Chọn đường dẫn cài đặt cho chương trình, mặc định sẽ là C:\OpenCV2.1. Nhần Next để tiếp tục. SVTH: Võ Tá Hải. Lớp: 10T1LT.H2 Trang: 5
- Báo cáo: Thực hành Xử Lý Ảnh Số GVHD: Ts. Huỳnh Hữu Hưng Hình 5. Tiếp tục Next Hình 6. Ở đây chọn full để chương trình cài đặt toàn bộ thư viện. Sau đó click vào Install để tiến hành cài đặt. SVTH: Võ Tá Hải. Lớp: 10T1LT.H2 Trang: 6
- Báo cáo: Thực hành Xử Lý Ảnh Số GVHD: Ts. Huỳnh Hữu Hưng Sau một khoản thời gian cài đặt: Hình 7. Click vào Finish để hoàn tất quá trình cài đặt. SVTH: Võ Tá Hải. Lớp: 10T1LT.H2 Trang: 7
- Báo cáo: Thực hành Xử Lý Ảnh Số GVHD: Ts. Huỳnh Hữu Hưng 3. Cấu hình Visual Studio 2008 liên kết với OpenCV. Mở Visual Studio 2008 lên. Click vào menu Tool, chọn Option, chọn Projects and Solution. Hình 8. Tại Show directories for chọn: Include files. Tạo 2 derectory mới dẫn đến thư mục đã cài OpenCV Hình 9. Tiếp theo cũng tại Show directories for chọn: Library files. SVTH: Võ Tá Hải. Lớp: 10T1LT.H2 Trang: 8
- Báo cáo: Thực hành Xử Lý Ảnh Số GVHD: Ts. Huỳnh Hữu Hưng Hình 10. Cũng tương tự đối với Source files. Hình 11. SVTH: Võ Tá Hải. Lớp: 10T1LT.H2 Trang: 9
- Báo cáo: Thực hành Xử Lý Ảnh Số GVHD: Ts. Huỳnh Hữu Hưng 4. Tạo một project sử dụng OpenCV. Chọn New Project, ở đây ta chọn Visual C++, Win32, Win32 Console Application. Hình 12. Nhấn chuột phải vào project chọn Properties/Configuration Properties/Linker/ Input. Chọn Configuration là Debug. Tại Additional Dependencies đánh vào: cv210d.lib cvaux210d.lib cxcore210d.lib cxts210d.lib cvhaartraining.lib highgui210d.lib ml210d.lib opencv_ffmpeg210d.lib. SVTH: Võ Tá Hải. Lớp: 10T1LT.H2 Trang: 10
- Báo cáo: Thực hành Xử Lý Ảnh Số GVHD: Ts. Huỳnh Hữu Hưng Hình 13. SVTH: Võ Tá Hải. Lớp: 10T1LT.H2 Trang: 11
- Báo cáo: Thực hành Xử Lý Ảnh Số GVHD: Ts. Huỳnh Hữu Hưng II. SỬ DỤNG MỘT SỐ HÀM CƠ BẢN CỦA OPENCV. 1. Tải ảnh, hiển thị lại. //Tai anh len IplImage *im_rgb=cvLoadImage("../Images/tahai.jpg"); /*Hien thi anh goc*/ cvShowImage("Anh Goc ", im_rgb); Kết quả khi chạy chương trình: Hình 14. 2. Chuyển ảnh sang ảnh Gray, hiển thị. //Doi sang anh Gray IplImage *im_gray=cvCreateImage(cvGetSize(im_rgb),IPL_DEPTH_8U,1); cvCvtColor(im_rgb,im_gray,CV_RGB2GRAY); //Hien thi anh Gray cvShowImage("Anh Gray",im_gray); Kết quả khi chạy chương trình: SVTH: Võ Tá Hải. Lớp: 10T1LT.H2 Trang: 12
- Báo cáo: Thực hành Xử Lý Ảnh Số GVHD: Ts. Huỳnh Hữu Hưng Hình 15. 3. Chuyển ảnh Gray sang ảnh nhị phân, hiển thị. //Doi anh Gray sang anh Nhi Phan IplImage*im_binary=cvCreateImage(cvGetSize(im_gray),IPL_DEPTH_8U,1); cvThreshold(im_gray,im_binary,100,250,CV_THRESH_BINARY); //Hien thi anh Nhi Phan cvShowImage("Binary 8 bit",im_binary); Kết quả khi chạy chương trình: Hình 16. SVTH: Võ Tá Hải. Lớp: 10T1LT.H2 Trang: 13
- Báo cáo: Thực hành Xử Lý Ảnh Số GVHD: Ts. Huỳnh Hữu Hưng 4. Tách các kênh màu cvSplitPan, hiển thị. IplImage* imgRed = cvCreateImage(cvGetSize(im_rgb), IPL_DEPTH_8U, 1); IplImage* imgGreen = cvCreateImage(cvGetSize(im_rgb), IPL_DEPTH_8U, 1); IplImage* imgBlue = cvCreateImage(cvGetSize(im_rgb), IPL_DEPTH_8U, 1); // Tách Các kênh màu cvSplit(im_rgb, imgBlue, imgGreen, imgRed, 0); // Hien thi cvShowImage("Blue Channel",imgBlue); cvShowImage("Green Channel",imgGreen); cvShowImage("Red Channel",imgRed); Kết quả khi chạy chương trình: Hình 17. SVTH: Võ Tá Hải. Lớp: 10T1LT.H2 Trang: 14
- Báo cáo: Thực hành Xử Lý Ảnh Số GVHD: Ts. Huỳnh Hữu Hưng Hình 18. Hình 19. 5. Phát hiện biên bằng các phương pháp đã học, hiển thị. IplImage* out = cvCreateImage( cvSize(im_gray->width/2,im_gray->height/2), im_gray->depth, im_gray->nChannels); // Reduce the image by 2 cvPyrDown( im_gray, out ); // Perform canny edge detection cvCanny( out, out, 10, 100, 3 ); // Hien thi anh cvShowImage("Lay Bien", out); Kết quả khi chạy chương trình: SVTH: Võ Tá Hải. Lớp: 10T1LT.H2 Trang: 15
- Báo cáo: Thực hành Xử Lý Ảnh Số GVHD: Ts. Huỳnh Hữu Hưng Hình 20. 6. Lọc ảnh(blur,gauss,median), hiển thị. IplImage* Filter_BLUR = cvCreateImage( cvGetSize(im_rgb), IPL_DEPTH_8U, 3 ); IplImage* Filter_GAUSSIAN = cvCreateImage( cvGetSize(im_rgb), IPL_DEPTH_8U, 3 ); IplImage* Filter_MEDIAN = cvCreateImage( cvGetSize(im_rgb), IPL_DEPTH_8U, 3 ); cvSmooth( im_rgb, Filter_BLUR, CV_BLUR, 7, 7 ); cvSmooth( im_rgb, Filter_GAUSSIAN, CV_GAUSSIAN, 7, 7 ); cvSmooth( im_rgb, Filter_MEDIAN, CV_MEDIAN, 7, 7 ); //Hien thi anh cvShowImage("Filter BLUR",Filter_BLUR); cvShowImage("Filter GAUSSIAN",Filter_GAUSSIAN); cvShowImage("Filter MEDIAN",Filter_MEDIAN); Kết quả khi chạy chương trình: Hình 21. SVTH: Võ Tá Hải. Lớp: 10T1LT.H2 Trang: 16
- Báo cáo: Thực hành Xử Lý Ảnh Số GVHD: Ts. Huỳnh Hữu Hưng Hình 22. Hình 23. 7. Ăn mòn, làm dày, hiển thị. IplImage* AnMon=cvCreateImage(cvGetSize(im_rgb),IPL_DEPTH_8U,3); IplImage* LamDay=cvCreateImage(cvGetSize(im_rgb),IPL_DEPTH_8U,3); //An mon cvDilate( im_rgb, AnMon, NULL, 10); //Lam day cvErode( im_rgb, LamDay, NULL, 11); //Hien thi cvShowImage("An Mon",AnMon); cvShowImage("Lam Day",LamDay); Kết quả khi chạy chương trình: SVTH: Võ Tá Hải. Lớp: 10T1LT.H2 Trang: 17
- Báo cáo: Thực hành Xử Lý Ảnh Số GVHD: Ts. Huỳnh Hữu Hưng Hình 24. Hình 25. 8. Cắt ngưỡng, hiển thị. IplImage* CatNguong = cvCreateImage( cvGetSize(im_rgb), im_rgb->depth, 1 ); // Allocate image planes IplImage* r = cvCreateImage( cvGetSize(im_rgb), IPL_DEPTH_8U, 1 ); IplImage* g = cvCreateImage( cvGetSize(im_rgb), IPL_DEPTH_8U, 1 ); IplImage* b = cvCreateImage( cvGetSize(im_rgb), IPL_DEPTH_8U, 1 ); // Split image onto the color planes cvSplit( im_rgb, r, g, b, NULL ); IplImage* s = cvCreateImage( cvGetSize(im_rgb), IPL_DEPTH_8U, 1 ); SVTH: Võ Tá Hải. Lớp: 10T1LT.H2 Trang: 18
- Báo cáo: Thực hành Xử Lý Ảnh Số GVHD: Ts. Huỳnh Hữu Hưng // Add equally weighted rgb values cvAddWeighted( r, 1./3., g, 1./3., 0.0, s ); cvAddWeighted( s, 2./3., b, 1./3., 0.0, s ); // Truncate values over 100 cvThreshold( s, CatNguong, 100, 100, CV_THRESH_TRUNC ); //Hien thi cvShowImage("Cat nguong",CatNguong); Kết quả khi chạy chương trình: Hình 26. Tìm hiểu hàm phát hiện khuôn mặt trong OpenCV. 9. A. Phát hiện khuôn mặt trong hình ảnh. Trong OpenCV đã có sẵn file “haarcascade_frontalface_alt.xml”, chúng ta chỉ việc lấy nó ra và sử dụng. Khi lấy file này ra thì chúng ta phải chỉ đường dẫn cho thật chính xác. Ví dụ: tôi cài OpenCV 2.1 trên ổ C nên đường dẫn file “haarcascade_frontalface_alt.xml” sẽ là: "C:/OpenCV2.1/data/haarcascades/haarcascade_frontalface_alt.xml”. SVTH: Võ Tá Hải. Lớp: 10T1LT.H2 Trang: 19
- Báo cáo: Thực hành Xử Lý Ảnh Số GVHD: Ts. Huỳnh Hữu Hưng Sau đây là code chương trình: int main() { CvHaarClassifierCascade * pCascade = 0; //con trỏ nhận diện, nắm giữ data trong file XML CvMemStorage * pStorage = 0; //khởi tạo bộ nhớ đệm CvSeq * pFaceRectSeq; int i; //khởi tạo IplImage * pInpImg = cvLoadImage("../nd.jpg",CV_LOAD_IMAGE_COLOR); pStorage = cvCreateMemStorage(0); pCascade = (CvHaarClassifierCascade *)cvLoad(("C:/OpenCV2.1/data/haarcascades/haarcascade_frontalface_alt.xml"),0,0 ,0); if (!pInpImg || !pStorage || !pCascade ) { printf("Khoi tao that bai: %s \n", (!pInpImg)? "khong the load file hinh anh" : (!pCascade)? "khong the load file xml -- " "kiem tra dung duong dan":"sai duong dan"); exit(-1); } //nhận dạng mặt trong ảnh pFaceRectSeq = cvHaarDetectObjects( pInpImg, pCascade, pStorage, 1.1, 3, CV_HAAR_DO_CANNY_PRUNING, cvSize(0,0)); //tạo sửa sổ để hiển thị hình ảnh cvNamedWindow("Nhan dien khuon mat trong hinh anh",CV_WINDOW_AUTOSIZE); //vẽ hình chữ nhật xung quanh khuôn mặt for (i=0;itotal:0);i++) { CvRect * r = (CvRect*)cvGetSeqElem(pFaceRectSeq,i); CvPoint pt1 = {r->x,r->y}; CvPoint pt2 = {r->x + r->width,r->y + r->height}; cvRectangle(pInpImg,pt1,pt2,CV_RGB(255,0,0),3,4,0); } //hiển thị nhận diện cvShowImage("Nhan dien khuon mat trong hinh anh",pInpImg); cvWaitKey(0); cvDestroyAllWindows(); //giải phòng bộ nhớ cvReleaseImage(&pInpImg); if (pCascade) cvReleaseHaarClassifierCascade(&pCascade); if (pStorage) cvReleaseMemStorage(&pStorage); } SVTH: Võ Tá Hải. Lớp: 10T1LT.H2 Trang: 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Báo Cáo Thực Tập: CNC
45 p | 1884 | 578
-
Báo cáo thực tập "Một số giải pháp hoàn thiện công tác quản trị nhân sự"
40 p | 870 | 372
-
Báo cáo chuyên đề: Bể lọc nhanh trọng lực
29 p | 873 | 124
-
BÁO CÁO "THEO DÕI QUY TRÌNH CHẾ BIẾN TRÀ TẠI THỊ XÃ BẢO LỘC, TỈNH LÂM ĐỒNG"
24 p | 439 | 110
-
báo cáo: "tại sao nói luật hôn nhân và gia đình là cơ sở để phát triển và định hướng cho gia đình tương lai"
17 p | 315 | 96
-
Báo cáo thực tập tốt nghiệp: Vận hành và bảo dưỡng hệ thống xử lý nước thải nhà máy Bình Hưng Hòa công suấ 30.000m3/ngày.đêm
97 p | 663 | 92
-
Báo cáo: Phân tích tình hình tài chính tại Công ty cổ phần Dược Imexpharm – nhìn từ chỉ số ROE
6 p | 511 | 78
-
Báo cáo thực tập: Thực tập định hướng nghề nghiệp 2
22 p | 79 | 21
-
Báo cáo : Thuốc bảo vệ thực vật không được phép sử dụng ở Việt Nam và vấn đề tiêu huỷ chúng
8 p | 139 | 17
-
Luận văn Thạc sĩ Luật học: Pháp luật về xử lý tài sản bảo đảm trong hoạt động cho vay của các ngân hàng thương mại và thực tiễn áp dụng tại Ngân hàng thương mại cổ phần Công thương Việt Nam - Chi nhánh Đống Đa
115 p | 76 | 14
-
Đề tài nghiên cứu cấp Tổng cục năm 2005: Nghiên cứu và đề xuất giải pháp công nghệ tin học hóa công tác xử lý số liệu thống kê tháng, quý, năm do các cục thống kê thực hiện
157 p | 101 | 13
-
Luận án Tiến sĩ Luật học: Xử lý vi phạm hành chính trong lĩnh vực bảo vệ môi trường ở Việt Nam hiện nay
221 p | 37 | 12
-
Tiểu luận môn Kỹ thuật xử lý chất thải: Thành phần và tính chất của chất thải rắn
26 p | 94 | 11
-
Báo cáo " PHƯƠNG PHÁP XỬ LÝ THỐNG KÊ CỔ ĐIỂN CẢI TIẾN CHO HỆ SỐ PHÁT THẢI CHẤT THẢI NGUY HẠI TRUNG BÌNH "
13 p | 101 | 8
-
Báo cáo " Bàn thêm về xử lý vi phạm hành chính "
4 p | 96 | 7
-
Báo cáo " Về các biện pháp xử lý hành chính khác: Thực trạng và định hướng hoàn thiện "
8 p | 164 | 7
-
Luận văn Thạc sĩ Luật học: Pháp luật bảo vệ quyền và lợi ích của chủ nợ trong xử lý nợ xấu của Ngân hàng thương mại bằng biện pháp bảo lãnh ở Việt Nam
94 p | 38 | 4
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn