TWO-POINT BOUNDARY VALUE PROBLEMS FOR HIGHER-ORDER LINEAR DIFFERENTIAL EQUATIONS WITH STRONG SINGULARITIES

R. P. AGARWAL AND I. KIGURADZE

Received 4 April 2004; Revised 11 December 2004; Accepted 14 December 2004

For strongly singular higher-order linear differential equations together with two-point conjugate and right-focal boundary conditions, we provide easily verifiable best possible conditions which guarantee the existence of a unique solution.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Statement of the main results

m(cid:2)

1.1. Statement of the problems and the basic notation. Consider the differential equa- tion

i=1

(1.1) u(n) = pi(t)u(i−1) + q(t)

with the conjugate boundary conditions

(i = 1,...,m), u(i−1)(a) = 0 (1.2) ( j = 1,...,n − m) u( j−1)(b) = 0

or the right-focal boundary conditions

(i = 1,...,m), u(i−1)(a) = 0 (1.3) u( j−1)(b) = 0 ( j = m + 1,...,n).

Hindawi Publishing Corporation Boundary Value Problems Volume 2006, Article ID 83910, Pages 1–32 DOI 10.1155/BVP/2006/83910

Here n ≥ 2, m is the integer part of n/2, −∞ < a < b < +∞, pi ∈ Lloc(]a,b[) (i = 1,...,n), q ∈ Lloc(]a,b[), and by u(i−1)(a) (by u( j−1)(b)) is understood the right (the left) limit of the function u(i−1) (of the function u( j−1)) at the point a (at the point b). Problems (1.1), (1.2) and (1.1), (1.3) are said to be singular if some or all coefficients of (1.1) are non-integrable on [a,b], having singularities at the ends of this segment.

2 Linear BVPs with strong singularities

(cid:3)

b

The previous results on the unique solvability of the singular problems (1.1), (1.2) and (1.1), (1.3) deal, respectively, with the cases where

(cid:4) (−1)n−m p1(t)

(cid:5) +dt < +∞,

a

(cid:3)

b

(t − a)n−1(b − t)2m−1

(cid:6) (cid:6)dt < +∞ (i = 2,...,m),

(cid:6) (cid:6)pi(t)

a

(cid:3)

b

(cid:6) (cid:6)q(t)

(cid:6) (cid:6)dt < +∞,

a

(1.4) (t − a)n−i(b − t)2m−i

b

(cid:4)

(cid:5)

(t − a)n−m−1/2(b − t)m−1/2 (cid:3)

+dt < +∞,

a

(cid:3)

b

(t − a)n−1 (−1)n−m p1(t)

(cid:6) (cid:6)dt < +∞ (i = 2,...,m),

(cid:6) (cid:6)pi(t)

a

(cid:3)

b

(1.5) (t − a)n−i

(cid:6) (cid:6)q(t)

(cid:6) (cid:6)dt < +∞

a

(t − a)n−m−1/2

(see [1, 2, 4, 3, 5, 6, 9–18], and the references therein).

The aim of the present paper is to investigate problem (1.1), (1.2) (problem (1.1), (1.3)) in the case, where the functions pi (i = 1,...,n) and q have strong singularities at the points a and b (at the point a) and do not satisfy conditions (1.4) (conditions (1.5)).

Throughout the paper we use the following notation. [x]+ is the positive part of a number x, that is,

(1.6) . [x]+ = x + |x| 2

α,β(]a,b[)) is the space of integrable (square integrable) with the weight

(cid:7)

(cid:10)

(cid:3)

(cid:8) (cid:3)

(cid:9)1/2

b

b

=

=

Lloc(]a,b[) (Lloc(]a,b])) is the space of functions y :]a,b[→ R which are integrable on [a + ε,b − ε] (on [a + ε,b]) for arbitrarily small ε > 0. Lα,β(]a,b[) (L2 (t − a)α(b − t)β functions y :]a,b[→ R with the norm

(cid:6)y(cid:6)

(cid:6) (cid:6)y(t)

(cid:6) (cid:6)dt

(cid:6)y(cid:6)Lα,β

L2 α,β

a

a

(t − a)α(b − t)β (t − a)α(b − t)β y2(t)dt .

(1.7)

0,0(]a,b[).

α(]a,b])) is the space of functions y ∈ Lloc(]a,b[) (y ∈ Lloc(]a,b])) such α,0(]a,b[), where (cid:11)y(t) =

(cid:12) t c y(s)ds, c = (a + b)/2 ((cid:11)y ∈ L2

α,β(]a,b[), where (cid:11)y(t) =

α,β(]a,b[) ((cid:11)L2 (cid:11)L2 that (cid:11)y ∈ L2 (cid:12) b t y(s)ds).

L([a,b]) = L0,0(]a,b[), L2([a,b]) = L2

R. P. Agarwal and I. Kiguradze 3

α(]a,b]), and are defined by

α,β(]a,b[) and (cid:11)L2

α

α,β

(cid:6) · (cid:6)(cid:11)L2 the equalities

(cid:16)

(cid:13)(cid:14) (cid:3)

(cid:8) (cid:3)

(cid:15)1/2

(cid:9)2

t

t

= max

denote the norms in (cid:11)L2 and (cid:6) · (cid:6)(cid:11)L2

(cid:6)y(cid:6)(cid:11)L2

α,β

(cid:16)

a (cid:13)(cid:14) (cid:3)

s (cid:8) (cid:3)

(cid:15)1/2

(cid:9)2

b

s

(s − a)α y(τ)dτ ds : a ≤ t ≤ a + b 2

≤ t ≤ b

t

t

(cid:16)

(cid:13)(cid:14) (cid:3)

(cid:8) (cid:3)

(cid:15)1/2

(cid:9)2

t

t

= max

(1.8) : + max , (b − s)β y(τ)dτ ds a + b 2

(cid:6)y(cid:6)(cid:11)L2

α

a

s

loc (]a,b[) ( (cid:11)Cn−1 (cid:11)Cn−1 loc (]a,b])) is the space of functions y :]a,b[→ R (y :]a,b] → R) which are absolutely continuous together with y(cid:8),..., y(n−1) on [a + ε,b − ε] (on [a + ε,b]) for arbitrarily small ε > 0.

(cid:11)Cn−1,m(]a,b[) ( (cid:11)Cn−1,m(]a,b])) is the space of functions y ∈ (cid:11)Cn−1

loc (]a,b[) (y ∈ (cid:11)Cn−1

loc (]a,

(s − a)α y(τ)dτ ds : a ≤ t ≤ b .

(cid:3)

b

(cid:6) (cid:6)2

b])) such that

(cid:6) (cid:6)y(m)(s)

a

(1.9) ds < +∞.

(cid:18)

In what follows, when problem (1.1), (1.2) is discussed, we assume that in the case n = 2m the conditions

(cid:17) ]a,b[

(1.10) (i = 1,...,m) pi ∈ Lloc

(cid:3)

t

are fulfilled, and in the case n = 2m + 1 along with (1.10) the condition

(cid:6) (cid:6) (cid:6) (cid:6)(b − t)2m−1

(cid:6) (cid:6) (cid:6) (cid:6) < +∞, p1(s)ds

c

(1.11) c = a + b 2 limsup t→b

(cid:18)

is also satisfied. As for problem (1.1), (1.3), it is investigated under the assumptions

(cid:17) ]a,b]

(1.12) (i = 1,...,m). pi ∈ Lloc

(cid:3)

t

(cid:4)

(cid:5)

A solution of problem (1.1), (1.2) (of problem (1.1), (1.3)) is sought in the space (cid:11)Cn−1,m(]a,b[) (in the space (cid:11)Cn−1,m(]a,b])). By hi :]a,b[×]a,b[→ [0,+∞[ (i = 1,...,m) we understand the functions defined by the equalities

(cid:6) (cid:6) (cid:6) (cid:6), +ds

τ

(cid:6) (cid:6) (cid:6) (cid:6) (cid:3)

t

(cid:6) (cid:6) (cid:6) (s − a)n−2m pi(s)ds (cid:6) (i = 2,...,m).

τ

(s − a)n−2m (−1)n−m p1(s) (1.13) h1(t,τ) = (cid:6) (cid:6) (cid:6) (cid:6) hi(t,τ) =

4 Linear BVPs with strong singularities

m(cid:2)

1.2. Fredholm type theorems. Along with (1.1), we consider the homogeneous equation

i=1

u(n) = (1.10) pi(t)u(i−1).

(cid:18)

(cid:17) ]a,b[ (cid:18)

(cid:17)

From [10, Corollary 1.1] it follows that if

loc (]a,b[) (in the space (cid:11)Cn−1

(1.14) (i = 1,...,m), (cid:18) (i = 1,...,m) pi ∈ Ln−m,m (cid:17) pi ∈ Ln−m,0 ]a,b[

loc (]a,b[) (in the space (cid:11)Cn−1

loc (]a,b])).

loc (]a,b[) (of the space (cid:11)Cn−1

and the homogeneous problem (1.10), (1.2) (problem (1.10), (1.3)) has only a trivial solu- tion in the space (cid:11)Cn−1 loc (]a,b])), then for every q ∈ Ln−m,m(]a,b[) (q ∈ Ln−m,0(]a,b[)) problem (1.1), (1.2) (problem (1.1), (1.3)) is uniquely solvable in the space (cid:11)Cn−1

In the case where condition (1.14) is violated, the question on the presence of the Fredholm property for problem (1.1), (1.2) (for problem (1.1), (1.3)) in some subspace of the space (cid:11)Cn−1 loc (]a,b])) remained so far open. This ques- tion is answered in Theorem 1.3 (Theorem 1.5) formulated below which contains opti- mal in a certain sense conditions guaranteeing the presence of the Fredholm property for problem (1.1), (1.2) (for problem (1.1), (1.3)) in the space (cid:11)Cn−1,m(]a,b[) (in the space (cid:11)Cn−1,m(]a,b])).

2n−2m−2(]a,b])) and for its solution the following estimate

(cid:21)

(cid:19) (cid:19)

(cid:19) (cid:19)

Definition 1.1. We say that problem (1.1), (1.2) (problem (1.1), (1.3)) has the Fredholm property in the space (cid:11)Cn−1,m(]a,b[) (in the space (cid:11)Cn−1,m(]a,b])) if the unique solvability of the corresponding homogeneous problem (1.10), (1.2) (problem (1.10), (1.3)) in this space implies the unique solvability of problem (1.1), (1.2) (problem (1.1), (1.3)) in the space (cid:11)Cn−1,m(]a,b[) (in the space (cid:11)Cn−1,m(]a,b])) for every q ∈ (cid:11)L2 2n−2m−2,2m−2(]a,b[) (for every q ∈ (cid:11)L2

(cid:19) (cid:19)u(m)

(cid:20)(cid:19) (cid:19)u(m)

L2 ≤ r(cid:6)q(cid:6)(cid:11)L2

L2 ≤ r(cid:6)q(cid:6)(cid:11)L2

2n−2m−2,2m−2

2n−2m−2

(1.15)

is valid, where r is a positive constant independent of q.

(cid:18)

(cid:17)

(cid:17)

(cid:18)(cid:18)

Remark 1.2. If

(cid:17) ]a,b[

2n−2m,2m

2n−2m,0

(1.16) q ∈ L2 ]a,b[ q ∈ L2

(cid:18)

(cid:17)

(cid:18)(cid:18)

or

(cid:17) ]a,b[

(cid:17) ]a,b[

, (1.17) q ∈ Ln−m−1/2,m−1/2 q ∈ Ln−m−1/2,0

(cid:18)

(cid:17)

(cid:18)(cid:18)

then

(cid:17) ]a,b[

(cid:17) ]a,b]

2n−2m−2,2m−2

2n−2m−2

(1.18) q ∈ (cid:11)L2 q ∈ (cid:11)L2

R. P. Agarwal and I. Kiguradze 5

(cid:21)

(cid:19) (cid:19)

(cid:19) (cid:19)

and from estimate (1.15) there respectively follow the estimates

L2 ≤ r0(cid:6)q(cid:6)

L2 2n+2m,2m

L2 2n−2m,0

(cid:21)

(cid:19) (cid:19)

(cid:19) (cid:19)

(cid:19) (cid:19)u(m) (cid:19) (cid:19)u(m)

(cid:20)(cid:19) (cid:19)u(m) (cid:20)(cid:19) (cid:19)u(m)

L2 ≤ r0(cid:6)q(cid:6) L2 ≤ r0(cid:6)q(cid:6)Ln−m−1/2,m−1/2

L2 ≤ r0(cid:6)q(cid:6)Ln−m−1/2,0

, (1.19) ,

where r0 is a positive constant independent of q.

Theorem 1.3. Let there exist a0 ∈]a,b[, b0 ∈]a0,b[ and nonnegative numbers (cid:6)1i, (cid:6)2i (i = 1,...,m) such that

(t − a)2m−ihi(t,τ) ≤ (cid:6)1i (1.20) for a < t ≤ τ ≤ a0, for b0 ≤ τ ≤ t < b (i = 1,...,m), (b − t)2m−ihi(t,τ) ≤ (cid:6)2i m(cid:2) (cid:6)1i < (2n − 2m − 1)!!,

i=1 m(cid:2)

(1.21)

i=1

(cid:6)2i < (2n − 2m − 1)!!, (2m − i)2n−i+1 (2m − 2i + 1)!! (2m − i)2n−i+1 (2m − 2i + 1)!!

where (2n − 2i − 1)!! = 1.3 · · · (2n − 2i − 1). Then problem (1.1), (1.2) has the Fredholm property in the space (cid:11)Cn−1,m(]a,b[). Corollary 1.4. Let there exist nonnegative numbers λ1i, λ2i (i = 1,...,m) and functions p0i ∈ Ln−i,2m−i(]a,b[) (i = 1,...,m) such that the inequalities

(cid:6) (cid:6) ≤

(cid:6) (cid:6)pi(t)

λ21 (−1)n−m p1(t) ≤ λ11 (t − a)n + (1.22) (t − a)n−2m(b − t)2m + p01(t), λ2i (i = 2,...,m) (t − a)n−2m(b − t)2m−i+1 + p0i(t) λ1i (t − a)n−i+1 +

m(cid:2)

hold almost everywhere on ]a,b[, and

λ1i < (2n − 2m − 1)!!,

i=1 m(cid:2)

(1.23)

i=1

λ2i < (2n − 2m − 1)!!. 2n−i+1 (2m − 2i + 1)!! 2n−i+1 (2m − 2i + 1)!!

Then problem (1.1), (1.2) has the Fredholm property in the space (cid:11)Cn−1,m(]a,b[). Theorem 1.5. Let there exist a0 ∈]a,b[ and nonnegative numbers (cid:6)i (i = 1,...,m) such that

i=1

(1.24) for a < t ≤ τ ≤ a0 (i = 1,...,m), (t − a)2m−ihi(t,τ) ≤ (cid:6)i m(cid:2) (1.25) (cid:6)i < (2n − 2m − 1)!!. (2m − i)2n−i+1 (2m − 2i + 1)!!

Then problem (1.1), (1.3) has the Fredholm property in the space (cid:11)Cn−1,m(]a,b]).

6 Linear BVPs with strong singularities

Corollary 1.6. Let there exist nonnegative numbers λi (i = 1,...,m) and functions p0i ∈ Ln−i,0(]a,b[) (i = 1,...,m) such that the inequalities

(cid:6) (cid:6)pi(t)

(t − a)n + p01(t), (1.26) λi (−1)n−m p1(t) ≤ λ1 (cid:6) (cid:6) ≤ (i = 2,...,m) (t − a)n−i+1 + p0i(t)

m(cid:2)

hold almost everywhere on ]a,b[, and

i=1

(1.27) λi < (2n − 2m − 1)!!. 2n−i+1 (2m − 2i + 1)!!

Then problem (1.1), (1.3) has the Fredholm property in the space (cid:11)Cn−1,m(]a,b]).

loc (]a,b])).

In connection with the above-mentioned Corollary 1.1 from [10], there naturally arises the problem of finding the conditions under which the unique solvability of prob- lem (1.1), (1.2) (of problem (1.1), (1.3)) in the space (cid:11)Cn−1,m(]a,b[) (in the space (cid:11)Cn−1,m(]a,b])) guarantees the unique solvability of that problem in the space (cid:11)Cn−1 loc (]a,b[) (in the space (cid:11)Cn−1 The following theorem is valid.

(cid:18)

(cid:17) ]a,b[ (cid:18)

Theorem 1.7. If

(1.28) (i = 1,...,m), (cid:18) (i = 1,...,m) , pi ∈ Ln−i,2m−i (cid:17) (cid:17) pi ∈ Ln−i,0 ]a,b[

loc (]a,b])) as well.

and problem (1.1), (1.2) (problem (1.1), (1.3)) is uniquely solvable in the space (cid:11)Cn−1,m(]a, b[) (in the space (cid:11)Cn−1,m(]a,b])), then this problem is uniquely solvable in the space (cid:11)Cn−1 loc (]a, b[) (in the space (cid:11)Cn−1

loc (]a,b[) (in the space (cid:11)Cn−1

loc (]a,b])).

If condition (1.28) is violated, then, as it is clear from the example below, problem (1.1), (1.2) (problem (1.1), (1.3)) may be uniquely solvable in the space (cid:11)Cn−1,m(]a,b[) (in the space (cid:11)Cn−1,m(]a,b])) and this problem may have an infinite set of solutions in the space (cid:11)Cn−1

Example 1.8. Suppose

(1.29) gn(x) = x(x − 1) · · · (x − n + 1).

(cid:8)

(cid:9)

Then

(cid:9)

(cid:9)

(cid:9)

= 0

(1.30) (−1)n−mgn m − 1 2

(cid:8) m − 1 2

= 2−n(2m − 1)!!(2n − 2m − 1)!!, (cid:8) m − 1 2 (cid:9)

(1.31) < 0 for n = 2m + 1, gn g (cid:8) n g (cid:8) n for n = 2m, (cid:9)

(cid:8) m − 1 2 (−1)n−mgn

(cid:8) k − 1 2

(cid:8) m − 1 2

for k ∈ {0,...,n} and m − k is even. (1.32) > (−1)n−mgn

R. P. Agarwal and I. Kiguradze 7

If

(1.33) (i = 2,...,n), p1(t) = pi(t) = 0 λ (t − a)n ,

and q(t) = (gn(ν) − λ)tν−n, where λ (cid:9)= 0, ν > 0, then (1.1) and (1.10) have the forms

(cid:18) (t − a)ν−n,

(cid:17) gn(ν) − λ

(1.34) u(n) =

λ (t − a)n u + u(n) = (1.340) λ (t − a)n u.

First we consider the case where

(cid:9) .

(cid:8) m − 1 2

(1.35) λ = gn

Then from (1.31) and (1.32) it easily follows that the characteristic equation

(1.36) gn(x) = λ

has only real roots xi (i = 1,...,n) such that

for n = 2, x1 = x2 = 1 2

= xm = xm+1 > · · · > x2m for n = 2m,

(1.37)

for n = 2m + 1. x1 > · · · > xm−1 > m − 1 2 x1 > · · · > xm > m − 1 > xm+1 > · · · > x2m+1 2

Hence it is evident that for n = 2 (1.340) does not have a solution belonging to the space (cid:11)C1,1(]a,b[), and for n > 2 solutions of that equation from the space (cid:11)Cn−1,m(]a,b[) consti- tute an (n − m − 1)-dimensional subspace with the basis

(1.38) (t − a)x1,...,(t − a)xn−m−1.

n−m−1(cid:2)

Thus problem (1.340), (1.2) (problem (1.340), (1.3)) has only a trivial solution in the space (cid:11)Cn−1,m(]a,b[). We show that nevertheless problem (1.34), (1.2) (problem (1.34), (1.3)) does not have a solution in the space (cid:11)Cn−1,m(]a,b[). Indeed, if n = 2, then (1.34) has the unique solution u(t) = (t − a)ν in the space (cid:11)C1,1(]a,b[), and this solution does not satisfy conditions (1.2). If n > 2, then an arbitrary solution of (1.34) from (cid:11)Cn−1,m(]a,b[) has the form

i=1

(1.39) u(t) = ci(t − a)xi + (t − a)ν,

8 Linear BVPs with strong singularities

n−m−1(cid:2)

and this solution satisfies the boundary conditions (1.2) (the boundary conditions (1.3)) if and only if c1,...,cn−m−1 are solutions of the system of linear algebraic equations

(cid:17) xi

(cid:18) (b − a)xici = −gk(ν)(b − a)ν

(cid:7)

(cid:10)

(k = 0,...,n − m − 1) gk

i=1 n−m−1(cid:2)

(1.40)

(cid:17) xi

(cid:18) (b − a)xici = −gk(ν)(b − a)ν

i=1

, (k = m,...,n − 1) gk

where g0(x) ≡ 1, gk(x) = x(x − 1) · · · (x − k + 1) for x ≥ 1. However, this system does not have a solution for large ν.

m(cid:2)

Note that in the case under consideration the functions pi (i = 1,...,m) in view of con- ditions (1.30) and (1.32) satisfy inequalities (1.22) (inequalities (1.26)), where λ11 = |λ|, λ1i = λ21 = λ2i = 0 (i = 2,...,m) (λ1 = |λ|, λi = 0 (i = 2,...,m)), p0i(t) ≡ 0 (i = 1,...,m), and

(cid:7)

i=0 m(cid:2)

2n−i+1 (2m − 2i + 1)!! λ1i = (2n − 2m − 1)!! (cid:10) (1.41)

i=0

. λi = (2n − 2m − 1)!! 2n−i+1 (2m − 2i + 1)!!

(cid:9)

Therefore we showed that in Theorems 1.3, 1.5 and their corollaries none of strict in- equalities (1.21), (1.23), (1.25), and (1.27) can be replaced by nonstrict ones, and in this sense the above-given conditions on the presence of the Fredholm property for problems (1.1), (1.2) and (1.1), (1.3) are the best possible. Now we consider the case, where

(cid:8) m − 1 2

(1.42) . 0 < (−1)n−mλ < (−1)n−mgn

Then, in view of (1.30) and (1.33), the functions pi (i = 1,...,m) satisfy all the conditions of Corollaries 1.4 and 1.6, but condition (1.28) in Theorem 1.7 is violated. On the other hand, according to conditions (1.31) and (1.32), the characteristic equation (1.36) has simple real roots x1,...,xn such that

(1.43) > xn−m+1 > · · · > xn, x1 > · · · > xn−m > m − 1 2

at that

(1.44) xn−m+1 > m − 1.

So, the set of solutions of (1.340) from (cid:11)Cn−1,m(]a,b[) constitutes an (n − m)-dimensional subspace with the basis

(1.45) (t − a)x1,...,(t − a)xn−m,

R. P. Agarwal and I. Kiguradze 9

n−m+1(cid:2)

and consequently, both problem (1.340), (1.2) and problem (1.340), (1.3) in the men- tioned space have only trivial solutions. Hence in view of Corollaries 1.4 and 1.6 the unique solvability of problems (1.34), (1.2) and (1.34), (1.3) follows in (cid:11)Cn−1,m(]a,b[). Let us show that these problems in (cid:11)Cn−1 loc (]a,b]) have infinite sets of solutions. Indeed, for any ci ∈ R (i = 1,...,n − m + 1), the function

i=1

(1.46) u(t) = ci(t − a)xi + (t − a)ν

loc (]a,b]), satisfying the conditions

is a solution of (1.34) from (cid:11)Cn−1

(1.47) (i = 1,...,m). u(i−1)(a) = 0

n−m(cid:2)

This function satisfies the boundary conditions (1.2) (the boundary conditions (1.3)) if and only if c1,...,cn−m are solutions of the system of algebraic equations

i=1

− gk

(cid:17) xi (cid:17) xn−m+1

(cid:18) (b − a)xici = (cid:18) (b − a)xn−m+1cn−m+1 − gk(ν)(b − a)ν(k = 0,...,n − m − 1)

(cid:7)

gk

n−m(cid:2)

(cid:17) xi

(cid:18) (b − a)xici =

(1.48)

i=1

(cid:10)

(cid:17) xn−m+1

(cid:18) (b − a)xn−m+1cn−m+1 − gk(ν)(b − a)ν(k = n − m,...,m)

− gk

gk

loc (]a,b]).

for any cn−m+1 ∈ R. However, this system has a unique solution for an arbitrarily fixed cn−m+1. Thus problem (1.34), (1.2) (problem (1.34), (1.3)) has a one-parameter family of solutions in the space (cid:11)Cn−1

1.3. Existence and uniqueness theorems.

Theorem 1.9. Let there exist t0 ∈]a,b[ and nonnegative numbers (cid:6)1i, (cid:6)2i (i = 1,...,m) such that along with (1.21) the conditions

2n−2m−2,2m−2(]a,b[) problem (1.1), (1.2) is uniquely solvable in

(1.49) for a < t ≤ τ ≤ t0, for t0 ≤ τ ≤ t < b (t − a)2m−ihi(t,τ) ≤ (cid:6)1i (b − t)2m−ihi(t,τ) ≤ (cid:6)2i

hold. Then for every q ∈ (cid:11)L2 the space (cid:11)Cn−1,m(]a,b[).

Corollary 1.10. Let there exist t0 ∈]a,b[ and nonnegative numbers λ1i, λ2i (i = 1,...,m) such that conditions (1.23) are fulfilled, the inequalities

(cid:6) (cid:6)pi(t)

(cid:6) (cid:6) ≤ λ1i

(1.50) (t − a)n−i+1 (i = 2,...,m) (−1)n−m(t − a)n p1(t) ≤ λ11,

10 Linear BVPs with strong singularities

hold almost everywhere on ]a,t0[, and the inequalities

(cid:6) (cid:6) ≤ λ2i

2n−2m−2,2m−2(]a,b[) problem (1.1),

(1.51) (i = 2,...,m) (t − a)n−2m(b − t)2m−i+1 (−1)n−m(t − a)n−2m(b − t)2m p1(t) ≤ λ21, (cid:6) (cid:6)pi(t)

hold almost everywhere on ]t0,b[. Then for every q ∈ (cid:11)L2 (1.2) is uniquely solvable in the space (cid:11)Cn−1,m(]a,b[). Theorem 1.11. Let there exist nonnegative numbers (cid:6)i (i = 1,...,m) such that along with (1.25) the conditions

2n−2m−2(]a,b]) problem (1.1), (1.3) is uniquely solvable in the

(1.52) for a < t ≤ τ ≤ b (i = 1,...,m) (t − a)2m−ihi(t,τ) ≤ (cid:6)i

hold. Then for every q ∈ (cid:11)L2 space (cid:11)Cn−1,m(]a,b]). Corollary 1.12. Let there exist nonnegative numbers λi (i = 1,...,m) such that condition (1.27) holds, and the inequalities

(cid:6) (cid:6)pi(t)

(cid:6) (cid:6) ≤ λ1i

2n−2m−2(]a,b]) problem (1.1),

(1.53) (t − a)n−i+1 (i = 2,...,m) (−1)n−m(t − a)n p1(t) ≤ λ1,

are fulfilled almost everywhere on ]a,b[. Then for every q ∈ (cid:11)L2 (1.3) is uniquely solvable in the space (cid:11)Cn−1,m(]a,b]).

Remark 1.13. The above-given conditions on the unique solvability of problems (1.1), (1.2) and (1.1), (1.3) are optimal since, as Example 1.8 shows, in Theorems 1.9, 1.11 and Corollaries 1.10, 1.12 none of strict inequalities (1.21), (1.23), (1.25), and (1.27) can be replaced by nonstrict ones.

loc (]a,b[) (in the space (cid:11)Cn−1

loc (]a,b])).

Remark 1.14. If along with the conditions of Theorem 1.9 (of Theorem 1.11) condi- tions (1.28) are satisfied as well, then for every q ∈ (cid:11)L2 2n−2m−2,m−2(]a,b[) (for every q ∈ (cid:11)L2 2n−2m−2(]a,b])) problem (1.1), (1.2) (problem (1.1), (1.3)) is uniquely solvable in the space (cid:11)Cn−1

Remark 1.15. Corollaries 1.10 and 1.12 are more general than the results of paper [7] concerning unique solvability of problems (1.1), (1.2) and (1.1), (1.3).

2. Auxiliary statements

(cid:3)

t1

(cid:18) α+2

2.1. Lemmas on integral inequalities. Throughout this section, we assume that −∞ < t0 < t1 < +∞, and for any function u :]t0,t1[→ R, by u(t0) and u(t1) we understand the right and the left limits of that function at the points t0 and t1. Lemma 2.1. Let u ∈ (cid:11)Cloc(]t0,t1]) and

(cid:17) t − t0

t0

(2.1) u(cid:8)2(t)dt < +∞,

R. P. Agarwal and I. Kiguradze 11

(cid:18)

= 0

where α (cid:9)= −1. If, moreover, either

(cid:17) t1

(2.2) u α > −1,

(cid:18)

= 0,

or

(cid:17) t0

(2.3) u α < −1,

(cid:3)

(cid:3)

t1

t1

(cid:17)

then

(cid:18) αu2(t)dt ≤

(cid:18) α+2u(cid:8)2(t)dt.

(cid:17) t − t0

t0

t0

(2.4) t − t0 4 (1 + α)2

(cid:3)

(cid:23)

t1

(cid:22)(cid:17)

(cid:18)

(cid:18)1+αu2

(cid:18)1+αu2(s)

(cid:17) t − t0

(cid:17) t1

s

Proof. According to the formula of integration by parts, we have

t1

(cid:18) αu2(t)dt = 1 1 + α − 2

(cid:17) s − t0 (cid:18)1+αu(t)u(cid:8)(t)dt

(cid:17) t − t0

s

t1 − t0 (cid:3) (2.5) for t0 < s < t1. 1 + α

(cid:8)

(cid:21)

(cid:9)(cid:20)(cid:17)

(cid:18)1+α/2

(cid:18) α/2

− 2

− 2

(cid:18)1+αu(t)u(cid:8)(t) =

However,

(cid:17) t − t0

(cid:17) t − t0 (cid:18) α+2

(cid:17) t − t0

u(cid:8)(t) u(t) 1 + α (2.6) u(cid:8)2(t) + t − t0 (cid:18) αu2(t). 1 2 1 + α (cid:17) 2 t − t0 (1 + α)2

(cid:3)

(cid:23)

t1

(cid:22)(cid:17)

(cid:18)

(cid:18)1+αu2

(cid:18)1+αu2(s)

(cid:17) t − t0

(cid:17) t1

(cid:17) s − t0

(cid:18) αu2(t)dt ≤ 2 1 + α

s

Thus identity (2.5) implies

t1

(cid:18) α+2u(cid:8)2(t)dt

(cid:17) t − t0

s

t1 − t0 (cid:3) (2.7) + for t0 < s < t1. 4 (1 + α)2

(cid:3)

t1

(cid:6) (cid:6)u(cid:8)(t)

(cid:6) (cid:6)dt < +∞,

t0

(cid:3)

(cid:3)

s

s

(cid:18)−α/2−1(cid:17)

(cid:18)1+α/2

(cid:6) (cid:6) ≤

(cid:6) (cid:6)u(s)

(cid:6) (cid:6)u(cid:8)(t)

(cid:6) (cid:6)dt =

(cid:6) (cid:6)dt

t0

t0 (cid:8) (cid:3)

If conditions (2.2) are fulfilled, then in view of (2.1), (2.7) results in (2.4). It remains to consider the case when conditions (2.3) hold. Then due to (2.1) we have

(cid:17) t − t0 (cid:9)1/2(cid:8) (cid:3)

(cid:6) (cid:6)u(cid:8)(t) (cid:9)1/2

s

s

(cid:18)−α−2

(cid:17) t − t0

(cid:17) t − t0

t0

t0 (cid:8) (cid:3)

(cid:9)1/2

s

(cid:18)−(α+1)/2

≤ |1 + α|−1/2

(2.8) dt

(cid:17) s − t0

(cid:17) t − t0

t0

t − t0 (cid:18)2+αu(cid:8)2(t)dt (cid:18)2+αu(cid:8)2(t)dt for t0 < s < t1

(cid:18) α+1

and, consequently,

(cid:17) s − t0

(2.9) u2(s) = 0. lim s→t0

12 Linear BVPs with strong singularities

(cid:3)

t1

(cid:18)1+αu2(s)

(cid:17) t − t0

(cid:17) s − t0

s

On the other hand, from (2.7) we have

t1

(cid:18) αu2(t)dt ≤ 2 |1 + α| (cid:3) (cid:18) (cid:17) α+2 t − t0

s

(2.10) + u(cid:8)2(t)dt for t0 < s < t1. 4 (1 + α)2

(cid:2)

(cid:3)

t1

(cid:18)(α+1)/2

If in this inequality we pass to the limit as s → t0, then we get inequality (2.4). Lemma 2.2. Let u ∈ (cid:11)Cloc(]t0,t1]) and

(cid:6) (cid:6)u(cid:8)(t)

(cid:6) (cid:6)dt < +∞,

(cid:17) t − t0

t0

(2.11)

(cid:3)

(cid:8) (cid:3)

(cid:9)2

t1

t1

(cid:18)(α+1)/2

where α (cid:9)= −1. If, moreover, either conditions (2.2) or conditions (2.3) hold, then

(cid:18) αu2(t)dt ≤ 1

(cid:6) (cid:6)u(cid:8)(t)

(cid:6) (cid:6)dt

(cid:17) t − t0

(cid:17) t − t0

|1 + α|

t0

t0

(2.12) .

(cid:3)

(cid:3)

t1

t1

(cid:18)1+α

(cid:6) (cid:6)

(cid:6) (cid:6)dt

(cid:17) t − t0

(cid:17) t − t0

(cid:18) αu2(t)dt ≤ 2 1 + α

s

s (cid:3) t1

t1

(cid:18)1+α

(cid:6) (cid:6)

= 2

(cid:6) (cid:6)u(t) (cid:6) (cid:3) (cid:6) (cid:6) (cid:6)

(cid:6) (cid:6) (cid:6) (cid:6)dt

Proof. If conditions (2.2) hold, then from identity (2.5) we find

(cid:17) t − t0

(cid:3)

t (cid:8) (cid:3)

(cid:9)

s t1

t1

(cid:18)(1+α)/2

(cid:18)(1+α)/2

(cid:6) (cid:6)

≤ 2

(cid:6) (cid:6)u(cid:8)(t) (cid:6) (cid:6)u(cid:8)(t) (cid:6) (cid:6)u(cid:8)(t)

(cid:6) (cid:6)u(cid:8)(τ)

(cid:6) (cid:6)dτ

u(cid:8)(τ)dτ 1 + α

(cid:17) t − t0

t

s (cid:8) (cid:3)

(cid:17) τ − t0 (cid:9)2

t1

(cid:17)

(cid:18)(1+α)/2

= 1

(cid:6) (cid:6)u(cid:8)(τ)

(cid:6) (cid:6)dτ

dt 1 + α

s

τ − t0 for t0 < t < t1. 1 + α (2.13)

(cid:3)

(cid:3)

s

s

(cid:17)

(cid:18)−(1+α)/2

(cid:18)(1+α)/2

(cid:6) (cid:6) ≤

(cid:6) (cid:6)u(s)

(cid:6) (cid:6)u(cid:8)(t)

(cid:6) (cid:6)dt ≤

(cid:6) (cid:6)u(cid:8)(t)

(cid:6) (cid:6)dt

Consequently, inequality (2.12) is valid. Now we consider the case where conditions (2.3) hold. Then, taking into account (2.11), we obtain

(cid:17) t − t0

t0

t0

s − t0 for t0 < s < t1.

(2.14)

t1

R. P. Agarwal and I. Kiguradze 13

(cid:18) αu2(t)dt ≤ 1

(cid:17) t − t0

s

(cid:17) s − t0 (cid:3)

(cid:8) (cid:3)

(cid:9)

t

t1

(cid:18)(1+α)/2

(cid:18)(1+α)/2

(cid:6) (cid:6)

Hence it is obvious that u satisfies equality (2.9). On the other hand, (2.5) yields (cid:3) (cid:18)1+αu2(s)

(cid:6) (cid:6)u(cid:8)(t)

(cid:6) (cid:6)u(cid:8)(τ)

(cid:6) (cid:6)dτ

(cid:17) τ − t0

s

t0

≤ 1

(cid:17) t − t0 (cid:18)1+αu2(s)

|1 + α| 2 |1 + α| (cid:17) s − t0 (cid:8) (cid:3)

(cid:9)2

t1

(cid:18)(1+α)/2

+ dt

(cid:6) (cid:6)u(cid:8)(τ)

(cid:6) (cid:6)dτ

(cid:17) τ − t0

|1 + α| 1 |1 + α|

t0

+ for t0 < s < t1.

(2.15)

(cid:2)

If in this inequality we pass to the limit as s → t0, then we obtain inequality (2.12).

(cid:17)(cid:5)

(cid:4)(cid:18)(cid:18)

(cid:17)(cid:5)

(cid:4)(cid:18)

(cid:17)

Lemma 2.3. Let α > −1 and

α+2,0

(2.16) . y ∈ L2 t0,t1 t0,t1 y ∈ L(1+α)/2,0

α(]t0,t1]) and

(cid:20)

≤ 2

Then y ∈ (cid:11)L2

(cid:6)y(cid:6)

≤ (1 + α)−1/2(cid:6)y(cid:6)

(cid:21) .

(cid:6)y(cid:6)(cid:11)L2

(cid:6)y(cid:6)(cid:11)L2

L2 α+2,0

L2 (1+α)/2,0

α

α

(2.17) 1 + α

(cid:3)

(cid:3)

(cid:8) (cid:3)

(cid:9)2

s

s

s

(cid:18) α

Proof. By Lemma 2.1 (Lemma 2.2) and conditions (2.16), we have

(cid:18) α+2 y2(t)dt

(cid:17) t − t0

(cid:17) t − t0

t

t0

(cid:10)

(cid:7) (cid:3)

(cid:8) (cid:3)

dt ≤

s

s

(cid:18) α

(cid:18)(1+α)/2

(cid:6) (cid:6)y(t)

(cid:6) (cid:6)dt

t0 (cid:17) t − t0

(cid:17) t − t0

t

t0

t0

y(τ)dτ (cid:9)2 for t0 ≤ s ≤ t1 (cid:9)2 4 (1 + α)2 (cid:8) (cid:3) s , y(τ)dτ for t0 ≤ s ≤ t1 dt ≤ 1 1 + α (2.18)

(cid:2)

which guarantees the validity of inequality (2.17).

The following lemma easily follows from Lemma 2.3.

(cid:17)(cid:5)

(cid:17)

(cid:17)(cid:5)

(cid:4)(cid:18)(cid:18) .

α+2,β+2

Lemma 2.4. Let α > −1, β > −1, and (cid:4)(cid:18) (2.19) y ∈ L2 t0,t1 t0,t1 y ∈ L(1+α)/2,(1+β)/2

α,β(]t0,t1[) and

(cid:20)

(cid:21)

Then y ∈ (cid:11)L2

≤ γ(cid:6)y(cid:6)

≤ γ(cid:6)y(cid:6)L(1+α)/2,(1+β)/2

(cid:6)y(cid:6)(cid:11)L2

(cid:6)y(cid:6)(cid:11)L2

L2 α+2,β+2

α,β

α,β

, (2.20)

(cid:8)

(cid:8)

(cid:9)1+β/2

(cid:9)1+α/2

where

(cid:7)

(cid:10)

(cid:9)(1+β)/2

(cid:9)(1+α)/2

+ 2 1 + β γ = 2 1 + α (cid:8) 2 t1 − t0 (cid:8) (2.21) γ = (1 + α)−1/2 + (1 + β)−1/2 . 2 t1 − t0 2 t1 − t0 2 t1 − t0

14 Linear BVPs with strong singularities

loc (]t0,t1[),

(cid:3)

t1

(cid:18)

(cid:6) (cid:6)2

= 0

Lemma 2.5. Let u ∈ (cid:11)Cm−1

(cid:6) (cid:6)u(m)(t)

(cid:17) t0

t0

(2.22) u(i−1) (i = 1,...,m), dt < +∞.

(cid:7)

(cid:3)

(cid:10)2 (cid:3)

t1

t1

(cid:6) (cid:6)2

Then

(cid:6) (cid:6)u(m)(t)

(cid:18)2m dt ≤

t0

t0

(2.23) dt. 2m (2m − 1)!! u2(t) (cid:17) t − t0

(cid:3)

(cid:3)

(cid:6) (cid:6)2

t1

t1

Proof. By virtue of Lemma 2.1 and conditions (2.22), we have

(cid:6) (cid:6)2 (cid:18)2m−2i+2 dt ≤

(cid:18)2m−2i dt < +∞ (i = 1,...,m).

t0

t0

(cid:6) (cid:6)u(i−1)(t) (cid:17) t − t0

(cid:6) (cid:6)u(i)(t) (cid:17) t − t0

(2.24) 4 (2m − 2i + 1)2

(cid:2)

The inequality (2.23) is now immediate.

(cid:14)(cid:7)

(cid:3)

(cid:15) (cid:3)

(cid:10)2

t1

t1

(cid:6) (cid:6)2

Remark 2.6. Inequality (2.23) cannot be replaced by the inequality

− ε

(cid:6) (cid:6)u(m)(t)

(cid:18)2m dt ≤

t0

t0

(2.25) dt 2m (2m − 1)!! u2(t) (cid:17) t − t0

(cid:7)

(cid:10)2

m(cid:24)

no matter how small ε > 0. Indeed, choose δ ∈]0,1[ so small that

− ε.

i=1

22m (2.26) (2i − 1 − δ)−2 > 2m (2m − 1)!!

Then the function u(t) = (t − a)m−(1−δ)/2 satisfies conditions (2.22) but inequality (2.25) is violated.

From Lemma 2.5, by the change of variable, we obtain the following lemma.

loc (]t0,t1[),

(cid:3)

t1

(cid:18)

(cid:6) (cid:6)2

= 0

Lemma 2.5(cid:8). Let u ∈ (cid:11)Cm−1

(cid:6) (cid:6)u(m)(t)

(cid:17) t1

t0

(2.27) u(i−1) (i = 1,...,m), dt < +∞.

(cid:7)

(cid:3)

(cid:10)2 (cid:3)

t1

t1

Then

(cid:6) (cid:6)u(m)(t)

(cid:6) (cid:6)2dt.

(cid:18)2m dt ≤

t0

t0

loc (]t0,t1[) be a function satisfying conditions (2.22), and p ∈

(2.28) 2m (2m − 1)!! u2(t) (cid:17) t − t1

(cid:3)

t1

(cid:17)

(cid:18)2m− j

(cid:6) (cid:6) (cid:6) (cid:6)

Lemma 2.7. Let u ∈ (cid:11)Cm−1 Lloc(]t0,t1]) be such that

(cid:6) (cid:6) (cid:6) (cid:6) ≤ (cid:6)0

t

(2.29) p(τ)dτ t − t0 for t0 < t ≤ t1,

(cid:14)

(cid:3)

t1

(cid:17)

(cid:15) (cid:18)

R. P. Agarwal and I. Kiguradze 15

(cid:6) (cid:6) (cid:6) p(s)u(s)u( j−1)(s)ds (cid:6) ≤ (cid:6)0

t

where j ∈ {1,...,m} and (cid:6)0 > 0. Then (cid:6) (cid:6) (cid:6) (cid:6) ρ(t) + ρ t1 for t0 < t ≤ t1, (2m − j)22m− j+1 (2m − 1)!!(2m − 2 j + 1)!! (2.30)

(cid:3)

t

where

(cid:6) (cid:6)u(m)(s)

(cid:6) (cid:6)2ds.

t0

(2.31) ρ(t) =

(cid:3)

(cid:3)

(cid:3)

(cid:8) (cid:3)

(cid:9)

1(cid:2)

t1

t1

t1

t1

Proof. In view of the formula of integration by parts, we have

t

t

t

s

k=0

p(s)u(s)u( j−1)(s)ds = u(t)u( j−1)(t) p(τ)dτ + p(τ)dτ u(k)(s)u( j−k)(s)ds.

(2.32)

(cid:3)

t

(cid:6) (cid:6) =

(cid:6) (cid:6) (cid:6) (cid:6)

(cid:6) (cid:6) (cid:6) (t − s)m−iu(m)(s)ds (cid:6)

(cid:6) (cid:6)u(i−1)(t)

t0

On the other hand, by conditions (2.22), the Schwartz inequality, and Lemma 2.5, it fol- lows that

(cid:3)

t1

(cid:18)

(cid:17) t1

≤ (cid:6) (cid:6)u(i−1)(s) (s − a)2m−2i+2 ds ≤

t0

ρ1/2(t) for t0 < t ≤ t1 (i = 1,...,m), (2.33) 1 (m − i)! (cid:17) (cid:18) m−i+1/2 t − t0 (cid:6) (cid:6)2 (i = 1,...,m). ρ1/2 2m−i+1 (2m − 2i + 1)!!

(cid:3)

t1

(cid:6) (cid:6) (cid:6) (cid:6)

t

(cid:6) (cid:6) (cid:6) p(s)u(s)u( j−1)(s)ds (cid:6) (cid:3)

1(cid:2)

t1

(cid:18)2m− j

(cid:6) (cid:6)u(k)(s)u( j−k)(s)

(cid:6) (cid:6)ds

≤ (cid:6)0ρ(t) + (cid:6)0

(cid:17) s − t0

t (cid:7) (cid:3)

(cid:10)1/2(cid:7) (cid:3)

(cid:10)1/2

If along with this we take into account inequality (2.29), we obtain

(cid:6) (cid:6)2

(cid:6) (cid:6)2

k=0 1(cid:2)

t1

t1

≤ (cid:6)0ρ(t) + (cid:6)0

(cid:6) (cid:6)u(k)(s) ds (s − a)2m−2k

(cid:6) (cid:6)u( j−k)(s) ds (s − a)2m+2k−2 j

t

t

(cid:18) 1(cid:2)

≤ (cid:6)0ρ(t) + (cid:6)0ρ

k=0 (cid:17) t1

(2.34)

k=0

for t0 < t ≤ t1. 22m− j (2m − 2k − 1)!!(2m − 2 j + 2k − 1)!!

(cid:2)

Therefore, estimate (2.30) is valid.

loc (]t0,t1[) be a function satisfying conditions (2.27), and p ∈

The following lemma can be proved similarly to Lemma 2.7.

(cid:3)

t

(cid:18)2m− j

(cid:6) (cid:6) (cid:6) (cid:6)

Lemma 2.6(cid:8). Let u ∈ (cid:11)Cm−1 Lloc([t0,t1[) be such that

(cid:17) t1 − t

(cid:6) (cid:6) (cid:6) (cid:6) ≤ (cid:6)0

t0

(2.35) p(τ)dτ for t0 ≤ t < t1,

16 Linear BVPs with strong singularities

(cid:14)

(cid:3)

t

(cid:15) (cid:18)

(cid:6) (cid:6) (cid:6) (cid:6)

where j ∈ {1,...,m} and (cid:6)0 > 0. Then

(cid:6) (cid:6) (cid:6) p(s)u(s)u( j−1)(s)ds (cid:6) ≤ (cid:6)0

(cid:17) t0

t0

ρ(t) + ρ for t0 ≤ t < t1, (2m − j)22m− j+1 (2m − 1)!!(2m − 2 j + 1)!! (2.36)

(cid:3)

t1

(cid:6) (cid:6)2

where

(cid:6) (cid:6)u(m)(s)

t

(2.37) ρ(t) = ds.

2.2. A lemma on the properties of functions from the space (cid:11)Cn−1,m(]a,b[). In this sec- tion, as above, we assume that m is the integral part of the number n/2.

n−m(cid:2)

n−m(cid:2)

Lemma 2.8. Let

i=1

k=i

(2.38) w(t) = cik(t)u(n−k)(t)u(i−1)(t),

(cid:6) (cid:6)

where u ∈ (cid:11)Cn−1,m(]a,b[), and each cik : [a,b] → R is an (n − k − i + 1)-times continuously differentiable function. If, moreover,

(cid:6) (cid:6)cii(t) (t − a)n−2m < +∞ (i = 1,...,n − m),

(2.39) u(i−1)(a) = 0 (i = 1,...,m), limsup t→a

(cid:6) (cid:6) = 0,

then

(cid:6) (cid:6)w(t)

(2.40) liminf t→a

and if

(2.41) u(i−1)(b) = 0 (i = 1,...,n − m),

then

(cid:6) (cid:6)w(t)

(cid:6) (cid:6) = 0.

(2.42) liminf t→b

The proof of this lemma is given in [12].

2.3. Lemmas on the sequences of solutions of auxiliary problems. Suppose

(2.43) (k = 1,2,...), a < t0k < t1k < b t0k = a, t1k = b. lim k→+∞ lim k→+∞

m(cid:2)

For the differential equation

i=1

(2.44) u(n) = pi(t)u(i−1) + qk(t)

R. P. Agarwal and I. Kiguradze 17

(cid:18)

(cid:18)

= 0

we consider the auxiliary boundary conditions

(cid:18)

= 0 = 0

(2.45) (i = 1,...,n − m),

(cid:17) u(i−1) t1k u(i−1)(b) = 0

(cid:17) t0k (cid:17) t0k

(2.46) (i = 1,...,m), (i = 1,...,m), (i = 1,...,n − m), u(i−1) u(i−1)

(cid:18)

(cid:18)

for every natural k. Throughout this section, when problems (1.1), (1.2) and (2.44), (2.45) are discussed, we assume that

(cid:17) ]a,b[

(cid:17) ]a,b[

2n−2m−2,2m−2

, (2.47) (i = 1,...,m), pi ∈ Lloc q,qk ∈ (cid:11)L2

(cid:3)

(cid:25)

(cid:26)

t

(cid:6) (cid:6) (cid:6) (cid:6)

def= sup

and in the case n = 2m + 1 in addition we assume the conditions

(cid:6) (cid:6) (cid:6) (cid:6) : t0 ≤ t < b pi(s)ds

t1

(2.48) (b − t)2m−i < +∞ (i = 1,...,m), ρi

(cid:18)

(cid:18)

where t1 = (a + b)/2. As for problems (1.1), (1.3) and (2.44), (2.46), they are considered in the case, where

(cid:17) ]a,b]

(cid:17) ]a,b[

2n−2m−2,0

loc (]a,

(2.49) (i = 1,...,m), . pi ∈ Lloc q,qk ∈ (cid:11)L2

t1k

Lemma 2.9. Let for every natural k, problem (2.44), (2.45) have a solution uk ∈ (cid:11)Cn−1 b[), and there exist a nonnegative constant r0 such that (cid:3)

(cid:6) (cid:6)u(m)

(cid:6) (cid:6)2dt ≤ r2

0

k

t0k

(2.50) (t) (k = 1,2,...).

(cid:19) (cid:19)

= 0,

Let, moreover,

(cid:19) (cid:19)qk − q

(cid:11)L2 2n−2m−2,2m−2

(2.51) lim k→+∞

(cid:19) (cid:19)

and the homogeneous problem (1.10), (1.2) have only a trivial solution in the space (cid:11)Cn−1,m(]a,b[). Then problem (1.1), (1.2) has a unique solution u such that

(cid:19) (cid:19)u(m)

L2 ≤ r0,

(2.52)

(2.53) (t) = u(i−1)(t) (i = 1,...,n) uniformly in ]a,b[. u(i−1) k lim k→+∞

m(cid:2)

(That is, uniformly on [a + δ,b − δ] for an arbitrarily small δ > 0). Proof. For an arbitrary (m − 1)-times continuously differentiable function v :]a,b[→ R, we set

i=1

(2.54) Λ(v)(t) = pi(t)v(i−1)(t).

Suppose t1,...,tn are the numbers such that

(2.55) (a + b)/2 = t1 < · · · < tn < b,

18 Linear BVPs with strong singularities

(cid:18)

(cid:17)

(cid:18)

= 1,

= 0

and gi(t) (i = 1,...,n) are the polynomials of (n − 1)th degree, satisfying the conditions

(cid:17) ti

(2.56) (i (cid:9)= j; i, j = 1,...,n). gi gi t j

(cid:3)

(cid:8)

(cid:9)

n(cid:2)

t j

(cid:18)

(cid:17) Λ

(cid:18) ds

Then for every natural k, the representation

(cid:17) t j

n−1(cid:17) (cid:18) (cid:17) t j − s

(cid:18) (s) + qk(s)

t1

j=1

(cid:3)

t

(cid:17) (cid:17) Λ

uk(t) = uk uk g j(t) 1 (n − 1)! (2.57)

(cid:18) ds

(cid:18) (s) + qk(s)

t1

+ (t − s)n−1 uk 1 (n − 1)!

(cid:3)

t

(cid:17)

is valid.

(cid:18) ds

t1

(cid:3)

(cid:6) (cid:6) (cid:6) (cid:6) (cid:8) (cid:3)

(cid:9)

s

t

(cid:17)

For an arbitrary δ ∈]0,(b − a)/2[, we have (cid:6) (cid:6) (cid:6) (cid:6) (t − s)n−i

(cid:6) (cid:6) (cid:6) (cid:6)

(cid:18) dτ

t1

t1

(cid:3)

= (n − i) (cid:3)

t1

t1

(cid:17)

≤ n

(cid:6) (cid:6) (cid:6) (cid:6)ds

(cid:18) dτ

a+δ

s

(cid:3)

qk(s) − q(s) (cid:6) (cid:6) (cid:6) (cid:6) ds (t − s)n−i−1

(cid:8) (cid:3)

(cid:10)1/2

2

(cid:9)1/2

t1

t1

t1

(cid:17)

qk(τ) − q(τ) (cid:6) (cid:6) (cid:6) (s − a)m−i(s − a)n−m−1 (cid:6) (cid:7) (cid:3)

(cid:6) (cid:6) (cid:6) (cid:6)

≤ n

(cid:18) dτ

a+δ

s

(cid:19) (cid:19)

a+δ (cid:6) 1/2(cid:19) (cid:6) (cid:6)

≤ n

qk(τ) − q(τ) (cid:6) (cid:6) (cid:6) (cid:6) (s − a)2n−2m−2 ds qk(τ) − q(τ)

(cid:6) (cid:17) (cid:6) (cid:6) t1 − a

(cid:19)qk − q

(cid:11)L2 2n−2m−2,2m−2

(cid:3)

t

(cid:17)

(cid:19) (cid:19)

(cid:6) (cid:6) (cid:6)

(cid:6) (cid:6) (cid:6)

(cid:6) (cid:6) (cid:6) (cid:6)

(s − a)2m−2ids (cid:18)2m−2i+1 − δ2m−2i+1

(cid:6) (cid:6) (cid:6) (cid:6) ≤n

(cid:18) ds

(cid:17) b − t1

(cid:11)L2 2n−2m−2,2m−2

t1

(t − s)n−i qk(s) − q(s)

for a + δ ≤ t ≤ t1 (i = 1,...,n − 1), 1/2(cid:19) (cid:18)2n−2m−2i+1 − δ2n−2m−2i+1 (cid:19)qk −q for t1 ≤ t ≤ b − δ (i = 1,...,n − 1). (2.58)

(cid:3)

t

(cid:17)

Hence, by condition (2.51), we find

(cid:18) ds = 0

t1

(2.59) (t − s)n−i (i = 1,...,n) uniformly in ]a,b[. qk(s) − q(s) lim k→+∞

t

(cid:18)(cid:17)

(cid:18) ,

Analogously we can show that if t0 ∈]a,b[, then (cid:3)

(cid:18) ds = 0 uniformly on I

(cid:17) s − t0

(cid:17) t0

t0

(2.60) qk(s) − q(s) lim k→+∞

(cid:3)

t

where I(t0) = [t0,(a + b)/2] for t0 < (a + b)/2 and I(t0) = [(a + b)/2,t0] for t0 > (a + b)/2. In view of inequalities (2.50), the identities

k

t jk

(2.61) (t) = (t − s)m−iu(m) (s)ds ( j = 0,1; i = 1,...,m; k = 1,2,...) u(i−1) k 1 (m − i)!

R. P. Agarwal and I. Kiguradze 19

(cid:4)

(cid:5) m−i+1/2

(cid:6) (cid:6)u(i−1)

yield

(cid:6) (cid:6) ≤ ri

k

(t) (t − a)(b − t) for t1k ≤ t ≤ t2k (i = 1,...,m; k = 1,2,...), (2.62)

(cid:8)

(cid:9)m−i+1/2

where

(cid:6)=1 such that (u(i−1)

k(cid:6)

(2.63) (i = 1,...,m). (2m − 2i + 1)−1/2 ri = r0 (m − i)! 2 b − a

By virtue of the Arzela-Ascoli lemma and conditions (2.50), (2.62), the sequence (uk)+∞ k=1 contains a subsequence (uk(cid:6) )+∞ )+∞ (cid:6)=1 (i = 1,...,m) are uniformly converg- ing on ]a,b[. Suppose

(2.64) uk(cid:6) (t) = u(t). lim (cid:6)→+∞

Then u :]a,b[→ R is (m − 1)-times continuously differentiable and

(2.65) (t) = u(i−1)(t) (i = 1,...,m) uniformly on ]a,b[. u(i−1) k(cid:6) lim (cid:6)→+∞

(cid:3)

(cid:8)

(cid:9)

n(cid:2)

t j

(cid:18)

If along with this we take into account conditions (2.43) and (2.59), then from (2.57) and (2.62) we find

(cid:18) ds

(cid:17) t j

n−1(cid:17) (cid:18) (cid:17) t j − s

t1

j=1

(cid:3)

t

u Λ(u)(s) + q(s) u(t) = g j(t) 1 (n − 1)! (2.66)

(cid:17) Λ(u)(s) + q(s)

(cid:18) ds

t1

(cid:5) m−i+1/2

+ (t − s)n−1 for a < t < b,

(cid:6) (cid:6)u(i−1)(t)

(2.67) (t − a)(b − t) for a < t < b (i = 1,...,m), 1 (n − 1)! (cid:6) (cid:4) (cid:6) ≤ ri

loc (]a,b[), and

u ∈ (cid:11)Cn−1

(2.68) (t) = u(i−1)(t) (i = 1,...,n − 1) uniformly in ]a,b[. u(i−1) k(cid:6) lim (cid:6)→+∞

(cid:3)

t

(cid:18)

(cid:18)(cid:17)

On the other hand, for any t0 ∈]a,b[ and a natural (cid:6), we have

(cid:18) ds.

(cid:17) t − t0

(cid:17) t0

(cid:17) s − t0

(cid:17) Λ uk(cid:6)

(cid:18) (s) + qk(cid:6) (s)

(cid:18) u(n−1) k(cid:6)

k(cid:6)

k(cid:6)

t0

+ (2.69) (t) = u(n−2) (t) − u(n−2)

Hence, due to (2.60) and (2.68), we get

(2.70) (t) = u(n−1)(t) uniformly in ]a,b[. u(n−1) k(cid:6) lim (cid:6)→+∞

20 Linear BVPs with strong singularities

By (2.68) and (2.70), (2.50) results in (2.52). Therefore, u ∈ (cid:11)Cn−1,m([a,b[). On the other hand, from (2.66) it is obvious that u is a solution of (1.1). In the case, where n = 2m, from (2.67) equalities (1.2) follow, that is, u is a solution of problem (1.1), (1.2).

)+∞ k=1. For this, without loss of generality we assume that Let us show that u is a solution of that problem in the case n = 2m + 1 as well. In view of (2.67), it suffices to prove that u(m)(b) = 0. First we find an estimate for the sequence (u(m+1) k

(2.71) (k = 1,2,...). t1 < t1k

(cid:3)

(cid:3)

t

t

(cid:6) (cid:6) (cid:6) (cid:6)

(cid:6) (cid:6) (cid:6) (cid:6)

(cid:6) (cid:6) (cid:6) (cid:6) +

(cid:6) (cid:6)u(m+1)

By (2.51), (2.57), and (2.62), we have

(cid:17) (t − s)m−1Λ

(cid:18) (s)ds

(cid:6) (cid:6) ≤ ρ0 +

(cid:6) (cid:6) (cid:6) (t − s)m−1qk(s)ds (cid:6)

k

t1

t1 for t1 ≤ t ≤ t1k (k = 1,2,...),

(t) uk 1 (m − 1)! 1 (m − 1)!

(cid:19) (cid:19)

(2.72)

≤ ρ0

(cid:19) (cid:19)qk

(cid:11)L2 2n−2m−2,2m−2

(2.73) (k = 1,2,...),

(cid:3)

(cid:3)

m(cid:2)

t

t

(cid:6) (cid:6) (cid:6) (cid:6)

(cid:6) (cid:6) (cid:6) (cid:6) ≤

(cid:6) (cid:6) (cid:6) (cid:6)

where ρ0 is a positive constant independent on k. On the other hand, it is evident that

(cid:17) (t − s)m−1Λ

(cid:18) (s)ds

(cid:6) (cid:6) (cid:6) (cid:6).

k

t1

t1

i=1

(cid:3)

t

(2.74) (s)ds uk (t − s)m−1 pi(s)u(i−1)

(cid:6) (cid:6) (cid:6) (cid:6)

k

t1

(cid:3)

(cid:9)

(cid:23)(cid:8) (cid:3)

t

s

=

(cid:6) (cid:6) (cid:6) (cid:6)

(cid:6) (cid:6) (cid:6) (cid:6)

If m > 1, then in view of (2.48) we find (cid:6) (cid:6) (cid:6) (cid:6) (s)ds

k

t1 (cid:3) t

(cid:6) (cid:6)

t1 (cid:6) (cid:6)u(i−1)

≤ ρi

k

k (s) (cid:14)(cid:7) (cid:3)

(s) ds (t − s)m−1 pi(s)u(i−1) (cid:22) (t − s)m−1u(i) (cid:22) (b − s)i−m−1 pi(τ)dτ (cid:23) ds

t1 (cid:8) (cid:3)

(cid:10)1/2

(cid:10)1/2(cid:15)

k (s) − (m − 1)(t − s)m−2u(i−1) (cid:6) (cid:6)u(i) (cid:9)1/2

t

t

t

k

(s) (cid:7) (cid:3)

≤ ρi

(cid:6) (cid:6) + (m − 1)(b − s)i−m−2 (cid:6) (cid:6) (cid:6)u(i) (cid:6)2ds k (s) (b − s)2m−2i

(cid:6) (cid:6) (cid:6)u(i−1) (cid:6)2ds (s) (b − s)2m−2i+2

t1

t1

t1

(b − s)−2ds + (m − 1)

for t1 ≤ t ≤ t1k (i = 1,...,m). (2.75)

(cid:3)

(cid:3)

t

t1k

However, by Lemma 2.5(cid:8) and conditions (2.50),

≤ 22m−2 jr2 0

(cid:6) (cid:6)2ds (cid:18)2m−2 j

(cid:6) (cid:6) (cid:6)u (cid:6)2ds ( j) k (s) (b − s)2m−2 j

t1

t1

(cid:6) (cid:6)u ( j) k (s) (cid:17) t1k − s

(2.76) for t1 ≤ t ≤ t1k ( j = 0,...,m).

(cid:3)

t

(cid:6) (cid:6) (cid:6) (cid:6)

Thus

(cid:17) (t − s)m−1Λ

(cid:18) (s)ds

(cid:6) (cid:6) (cid:6) (cid:6) ≤ ρ(b − t)−1/2

t1

(2.77) uk for t1 ≤ t ≤ t1k,

R. P. Agarwal and I. Kiguradze 21

m(cid:2)

where

i=1

(cid:3)

t

(cid:6) (cid:6) (cid:6) (cid:6)

(2.78) ρ = m2mr0 ρi.

t1

t

=

uk

t1

(cid:3)

(cid:3)

(cid:8) (cid:3)

(cid:9)

t

t

s

=

t1

t1

And if m = 1, then due to (2.48) and (2.50) we obtain (cid:6) (cid:6) (cid:18) (cid:6) (s)ds (cid:6) (cid:6) (cid:6) (cid:6) p1(s)uk(s)ds (cid:6)

t

t1k

(cid:6) (cid:6)u(cid:8)

p1(τ)dτ − (cid:3) p1(τ)dτ (cid:3)

(cid:9) (cid:6) (cid:6)ds

≤ ρ1

k(s)

k(s)

t

(cid:15)

t1 (cid:6) (cid:6)ds + (cid:8) (cid:3)

(cid:8) (cid:3)

(cid:6) (cid:6) (cid:6) u(cid:8) k(s)ds (cid:6) (cid:6) (cid:6)u(cid:8) (cid:9)1/2

(cid:9)1/2

t

t1k

(cid:17)

(cid:18)1/2

(cid:6) (cid:6)2

(cid:6) (cid:6)2

(cid:17) (t − s)m−1Λ (cid:6) (cid:3) (cid:6) (cid:6) (cid:6) (cid:6) (cid:6) (cid:6) (cid:6)uk(t) (cid:8) (b − t)−1 (cid:14) (b − t)−1

t1 (cid:6) (cid:6)u(cid:8)

(b − s)−1

(cid:6) (cid:6)u(cid:8)

≤ ρ1

k(s)

k(s)

t1

≤ 2ρ1r0(b − t)−1/2

t for t1 ≤ t ≤ t1k,

ds + (b − t)−1/2 ds t1k − t

(2.79)

that is, again estimate (2.77) is valid.

(cid:3)

(cid:8) (cid:3)

(cid:9)

t

t

s

(cid:6) (cid:6) (cid:6) (cid:6)

(cid:6) (cid:6) (cid:6) (cid:6)

For m > 1, due to condition (2.73) we have (cid:3)

(cid:6) (cid:6) (cid:6) (t − s)m−1qk(s)ds (cid:6) = (m − 1)

t1

t1

(cid:6) (cid:6) (cid:6) (cid:6) (cid:3)

(cid:8) (cid:3)

t

(cid:6) (cid:6)dτ

(t − s)m−2 qk(τ)dτ ds (cid:9)

≤ (m − 1)

t1 (cid:6) s (cid:6)qk(τ)

t1

t1

(cid:19) (cid:19)

(cid:11)L2 2n−2m−2,2m−2 for t1 ≤ t < b.

ds (2.80)

(cid:3)

b

τ

(b − s)m−2 (cid:19) (cid:19)qk ≤ (m − 1)(b − t)−1/2 ≤ (m − 1)ρ0(b − t)−1/2

≤ ρ0(b − t)1/2

0,0

t

t1

(2.81) for t1 ≤ t < b. And for m = 1, we have (cid:6) (cid:6) (cid:3) (cid:6) (cid:6) (cid:6) (cid:6) (cid:6)dτ ≤ (b − t)1/2(cid:6)q(cid:6)(cid:11)L2 qk(s)ds (cid:6)

(cid:3)

t

Evidently,

t1k

(2.82) (t) = (τ)dτ, u(m) k u(m+1) k

k

(t1k) = 0. If m > 1, then from (2.82), on account of inequalities (2.72), (2.77),

t1k

(cid:4)

(cid:5)

(cid:6) (cid:6) ≤

since u(m) and (2.80), we get (cid:3)

(cid:6) (cid:6)u(m)

(cid:18) (b − s)−1/2

(cid:17) ρ + ρ0

k

t

(2.83) (t) ds ≤ ρ∗(b − t)1/2 ρ0 + for t1 ≤ t ≤ t1k,

22 Linear BVPs with strong singularities

(cid:3)

(cid:3)

(cid:28)

(cid:27)

s

t1k

(cid:6) (cid:6) ≤

(cid:6) (cid:6) (cid:6) (cid:6)

(cid:6) (cid:6)u(m)

where ρ∗ = ρ0(b − t1)1/2 + 2(ρ + ρ0). If m = 1, then by virtue of inequalities (2.72), (2.77), and (2.81), from (2.82) we find

k

t

(cid:22) ρ0

(cid:6) (cid:6) (cid:6) ρ0 + ρ(b − s)−1/2 + (cid:6) t1 (cid:23) (cid:18)1/2 + 2ρ + ρ0 (b − t)1/2

(cid:17) b − t1

(t) ds qk(τ)dτ (2.84) for t1 ≤ t ≤ t1k,

that is, again estimate (2.83) is valid. By virtue of (2.43), (2.68) and (2.70), (2.83) implies

(cid:6) (cid:6)u(m)(t)

(cid:6) (cid:6) ≤ ρ∗(b − t)1/2

(2.85) for t1 ≤ t < b,

and consequently, u(m)(b) = 0. Thus we proved that u is a solution of problem (1.1), (1.2) also in the case n = 2m + 1. In the space (cid:11)Cn−1,m(]a,b[) problem (1.1), (1.2) does not have another solution since in that space the homogeneous problem (1.10), (1.2) has only a trivial solution.

(cid:6)=1 such that

(cid:13)

(cid:16)

n(cid:2)

To complete the proof of the lemma, it remains to show that condition (2.53) is sat- isfied. Assume the contrary. Then there exist δ ∈]0,(b − a)/2[, ε > 0, and an increasing sequence of natural numbers (k(cid:6))+∞

(cid:6) (cid:6) : a + δ ≤ t ≤ b − δ

(cid:6) (cid:6)u(i−1) k(cid:6)

i=1

k(cid:6)

(2.86) max (t) − u(i−1)(t) > ε ((cid:6) = 1,2,...).

By virtue of the Arzela-Ascoli lemma and condition (2.50), the sequences (u(i−1) )+∞ (cid:6)=1 (i = 1,...,m), without loss of generality, can be assumed to be uniformly converging on ]a,b[. Then, in view of what we have shown above, conditions (2.68) and (2.70) hold. But this contradicts condition (2.86). The obtained contradiction proves the validity of (cid:2) the lemma.

Analogously we can prove the following lemma.

(cid:19) (cid:19)

= 0,

Lemma 2.10. Let for every natural k, problem (2.44), (2.46) have a solution uk ∈ (cid:11)Cn−1 loc (]a, b]), and there exist a nonnegative constant r0 such that inequalities (2.50) are fulfilled. Let, moreover,

(cid:19) (cid:19)qk − q

(cid:11)L2 2n−2m−2,0

(2.87) lim k→+∞

and the homogeneous problem (1.10), (1.3) in the space (cid:11)Cn−1,m(]a,b]) have only a trivial solution. Then problem (1.1), (1.3) in the space (cid:11)Cn−1,m(]a,b]) has a unique solution u, sat- isfying estimate (2.52) and

(2.88) (t) = u(i−1)(t) (i = 1,...,n) uniformly in ]a,b]. u(i−1) k lim k→+∞

R. P. Agarwal and I. Kiguradze 23

2n−2m−2,2m−2(]a,b[), an arbitrary solution u ∈ Cn−1

2.4. Lemmas on a priori estimates.

(cid:18)

(cid:18)

Lemma 2.11. Let conditions (1.20) and (1.21) be fulfilled, where hi (i = 1,...,m) are func- tions given by equalities (1.13), a0 ∈]a,b[, b0 ∈]a0,b[, and (cid:6)1i, (cid:6)2i (i = 1,...,m) are non- negative numbers. Then there exists a positive constant r0 such that for any t0 ∈]a,a0[, t1 ∈]b0,b[, and q ∈ (cid:11)L2 loc (]a,b[) of (1.1), satisfying the conditions

=0 =0

(cid:17) t0 (cid:17) t1

(2.89) (i = 1,...,m), ( j = 1,...,n − m), u(i−1) u( j−1)

(cid:10)

(cid:3)

(cid:3)

m(cid:2)

t1

b0

(cid:6) (cid:6)u(m)(t)

satisfies also the condition

(cid:6) (cid:6)2dt ≤ r0

(cid:7)(cid:6) (cid:6) (cid:6) (cid:6) (cid:6)

(cid:6) (cid:6) (cid:6) (cid:6) (cid:6) + (cid:6)q(cid:6)2 (cid:11)L2 2n−2m−2,2m−2

t0

a0

i=1

. (2.90) (t − a)n−2m pi(t)u(i−1)(t)u(t)dt

To prove Lemma 2.11, we need the following lemma.

loc (]a,b[), then for any s and t ∈]a,b[ the equality

(cid:3)

(cid:3)

t

t

(cid:6) (cid:6)2

Lemma 2.12. If u ∈ Cn−1

(cid:6) (cid:6)u(m)(τ)

s

s

(2.91) (−1)n−m dτ (τ − a)n−2mu(n)(τ)u(τ)dτ = wn(t) − wn(s) + μn

m(cid:2)

is valid, where

j=1

m(cid:2)

(cid:4)

(cid:6) (cid:6)2

, (−1)m+ j−1u(2m− j)(t)u(t), μ2m = 1, μ2m+1 = 2m + 1 w2m(t) = 2

(cid:6) (cid:6)u(m)(t)

(cid:5) u( j−1)(t) − t − a 2

j=1

(−1)m+ j (t − a)u(2m+1− j)(t) − ju(2m− j)(t) . w2m+1(t) =

(2.92)

This lemma is a particular case of Lemma 4.1 in [8].

m(cid:2)

Proof of Lemma 2.11. By virtue of inequalities (1.21), there exists γ ∈]0,1[ such that

i=1

(2.93) ( j = 1,2). (cid:6) ji < μn − γ (2m − i)22m−i+1 (2m − 2i + 1)!!(2m − 1)!!

Put

(2.94) r0 = 22m+2(1 + b − a)2γ−2.

24 Linear BVPs with strong singularities

(cid:3)

t1

(cid:6) (cid:6)2

(cid:6) (cid:6)u(m)

Assume now that for some t0 ∈]a,a0[, t1 ∈]b0,b[, and q ∈ (cid:11)L2 2n−2m−2,2m−2(]a,b[) problem (1.1), (2.89) has a solution u. Multiplying (1.1) by (−1)n−m(t − a)n−2mu(t) and then inte- grating from t0 to t1, by Lemma 2.12 we obtain

(cid:17) t0

(cid:18)(cid:6) (cid:6)2 + μn

(cid:6) (cid:6)u(m)(t) (cid:3)

t0 m(cid:2)

t1

= (−1)n−2m

dt t0 − a 2

t0

i=1 (cid:3)

t1

(2.95) (t − a)n−2m pi(t)u(i−1)(t)u(t)dt

t0

+ (−1)n−2m (t − a)n−2mq(t)u(t)dt.

(cid:3)

(cid:3)

a0

a0

(cid:4)

(cid:5)

According to Lemmas 2.7, 2.6(cid:8), and conditions (1.20), we have

+u2(t)dt

t0

t0

a0

(cid:6) (cid:6)2

(cid:6) (cid:6)u(m)(t)

(−1)n−m (t − a)n−2m (t − a)n−2m p1(t)u2(t)u(t)dt ≤ (−1)n−m p1(t) (cid:3)

(cid:5)2 (cid:6)11

t0

(cid:3)

a0

(cid:6) (cid:6) (cid:6) (cid:6)

dt,

t0

≤ (2m − 1)22m (cid:4) (2m − 1)!! (cid:6) (cid:6) (cid:6) (cid:6) (cid:3)

a0

(cid:6) (cid:6)2

(cid:6) (cid:6)u(m)(t)

(t − a)n−2m pi(t)u(i−1)(t)u(t)dt

t0

(cid:3)

t1

t1

(cid:5)

dt (i = 2,...,m), (2m − i)22m−i+1 (2m − 1)!!(2m − 2i + 1)!! (cid:6)1i (cid:3)

(cid:4) (−1)n−m p1(t)

+u2(t)dt

b0

b0

(cid:3)

t1

(cid:6) (cid:6)2

(cid:6) (cid:6)u(m)(t)

(−1)n−m (t − a)n−2m (t − a)n−2m p1(t)u2(t)dt ≤

(cid:5)2 (cid:6)21

b0

(cid:3)

t1

(cid:6) (cid:6) (cid:6) (cid:6)

dt,

b0

≤ (2m − 1)22m (cid:4) (2m − 1)!! (cid:6) (cid:6) (cid:6) (cid:6) (cid:3)

t1

(cid:6) (cid:6)u(m)(t)

(cid:6) (cid:6)2dt

(t − a)n−2m pi(t)u(i−1)(t)u(t)dt

b0

(i = 2,...,m). (cid:6)2i (2m − i)22m−i+1 (2m − 1)!!(2m − 2i + 1)!! (2.96)

(cid:3)

m(cid:2)

t1

If along with this we take into account inequalities (2.93), we find

t0

(cid:3)

i=1 m(cid:2)

b0

(t − a)n−2m pi(t)u(i−1)(t)u(t)dt

(cid:6) (cid:6) (cid:6) (cid:6) (cid:6)

a0

(cid:3)

(cid:9)

a0

t1

(cid:8) (cid:3) (cid:18)

(cid:6) (cid:6)2

(cid:6) (cid:6)2

(cid:6) (cid:6)u(m)(t)

(t − a)n−2m pi(t)u(i−1)(t)u(t)dt (−1)n−2m (cid:6) (cid:6) (cid:6) (cid:6) (cid:6) (2.97)

t0

b0

(cid:3)

i=1 (cid:17) μn − γ (cid:3)

m(cid:2)

t1

b0

(cid:18)

(cid:6) (cid:6)2

(cid:6) (cid:6)u(m)(t)

dt + dt

(cid:17) μn − γ

(cid:6) (cid:6)u(m)(t) (cid:6) (cid:6) (cid:6) (cid:6) (cid:6) +

t0

a0

i=1

dt. (t − a)n−2m pi(t)u(i−1)(t)u(t)dt + (cid:6) (cid:6) (cid:6) (cid:6) (cid:6)

R. P. Agarwal and I. Kiguradze 25

(cid:3)

t1

(cid:6) (cid:6) (cid:6) (cid:6)

(cid:6) (cid:6) (cid:6) (cid:6)

On the other hand, if we put c = (a + b)/2, then again on the basis of Lemmas 2.7 and 2.6(cid:8) we get

t0

(cid:3)

(cid:3)

c

t1

(cid:6) (cid:6) (cid:6) (cid:6)

(cid:6) (cid:6) (cid:6) (cid:6)

(cid:6) (cid:6) (cid:6) (cid:6) +

(t − a)n−2mq(t)u(t)dt

c

(cid:3)

(cid:9)

(cid:8) (cid:3)

c

t0 c

(cid:5)

=

(cid:6) (cid:6) (cid:6) (cid:6) (cid:6) (cid:6) (cid:6) (cid:6)

(cid:6) (cid:6) (cid:6) (cid:6)

(cid:4) (n − 2m)u(t) + (t − a)n−2mu(cid:8)(t)

(t − a)n−2mq(t)u(t)dt (t − a)n−2mq(t)u(t)dt

t (cid:8) (cid:3)

t

t1

(cid:5)

(cid:6) (cid:6) (cid:6) (cid:6)

t0 (cid:6) (cid:3) (cid:6) (cid:6) (cid:6)

(cid:4) (n − 2m)u(t) + (t − a)n−2mu(cid:8)(t)

q(s)ds dt (cid:9)

c

(cid:15)

(cid:8) (cid:3)

(cid:8) (cid:3)

(cid:9)1/2

c

c

t0

t0

(cid:7) (cid:3)

dt + (cid:14) q(s)ds (cid:9)1/2 u + (n − 2m)

c (cid:8)2(t)dt (t − a)2m−2 (cid:10)1/2

(cid:9)2

c

c

×

u2(t)dt (t − a)2m (cid:8) (cid:3)

t

t0

(cid:14)

(cid:15)

(cid:8) (cid:3)

(cid:8) (cid:3)

(cid:9)1/2

(cid:9)1/2

t1

t1

(t − a)2n−2m−2 q(s)ds dt

(cid:8)2(t)dt (b − t)2m−2

c

c

(cid:7) (cid:3)

(cid:8) (cid:3)

(cid:10)1/2

u + + (b − a) (n − 2m)

t

t1

×

c

c

(cid:14)(cid:8) (cid:3)

(cid:8) (cid:3)

(cid:9)1/2

(cid:9)1/2

c

t1

(cid:6) (cid:6)2

(cid:6) (cid:6)2

u2(t)dt (b − t)2m (cid:9)2 (b − t)2m−2 q(s)ds dt

≤ 2m+1(1 + b − a)

(cid:6) (cid:6)u(m)(t)

(cid:6) (cid:6)u(m)(t)

(cid:15) (cid:6)q(cid:6)(cid:11)L2

2n−2m−2,2m−2

c

t0

(cid:3)

t1

(cid:6) (cid:6)2

(cid:6) (cid:6)u(m)(t)

+ dt dt

≤ γ 2

t0

. dt + 22m+1(1 + b − a)2γ−1(cid:6)q(cid:6)2 (cid:11)L2 2n−2m−2,2m−2

(2.98)

In view of inequalities (2.97), (2.98) and notation (2.94), equality (2.95) results in esti- (cid:2) mate (2.90).

The proof of the following lemma is analogous to that of Lemma 2.11.

loc (]a,b]) of (1.1), satisfying the conditions

(cid:18)

= 0

Lemma 2.13. Let conditions (1.12), (1.24), and (1.25) hold, where hi (i = 1,...,m) are func- tions given by equalities (1.13), a0 ∈]a,b[, and (cid:6)i (i = 1,...,m) are nonnegative numbers. Then there exists a positive constant r0 such that for any t0 ∈]a,a0[ and q ∈ (cid:11)L2 2n−2m−2(]a,b]), an arbitrary solution u ∈ Cn−1

(cid:17) t0

(2.99) (i = 1,...,m), u( j−1)(b) = 0 ( j = m + 1,...,n), u(i−1)

(cid:10)

(cid:3)

(cid:3)

m(cid:2)

b

b

(cid:6) (cid:6)2

also satisfies the condition

(cid:6) (cid:6)u(m)(t)

(cid:7)(cid:6) (cid:6) (cid:6) (cid:6) (cid:6)

(cid:6) (cid:6) (cid:6) (cid:6) (cid:6) + (cid:6)q(cid:6)2 (cid:11)L2 2n−2m−2

t0

a0

i=1

(2.100) . dt ≤ r0 (t − a)n−2m pi(t)u(i−1)(t)u(t)dt

26 Linear BVPs with strong singularities

loc (]a,b[) and its solution admits the estimate

(cid:8) (cid:3)

(cid:9)1/2

t1

(cid:6) (cid:6)2

Lemma 2.14. Let conditions (1.10), (1.20), and (1.21) hold, and in the case, where n is odd, in addition condition (1.11) be fulfilled, where hi (i = 1,...,m) are functions given by equalities (1.13), a0 ∈]a,b[, b0 ∈]a0,b[, and (cid:6)1i, (cid:6)2i (i = 1,...,m) are nonnegative numbers. Let, moreover, the homogeneous problem (1.10), (1.2) in the space (cid:11)Cn−1,m(]a,b[) have only a trivial solution. Then there exist δ ∈]0,(b − a)/2[ and r > 0 such that for any t0 ∈]a,a + δ], t1 ∈ [b − δ,b[, and q ∈ (cid:11)L2 2n−2m−2,2m−2(]a,b[) problem (1.1), (2.89) is uniquely solvable in the space (cid:11)Cn−1

(cid:6) (cid:6)u(m)(t)

≤ r(cid:6)q(cid:6)(cid:11)L2

2n−2m−2,2m−2

t0

(2.101) dt .

(cid:28)

(cid:27)

(cid:27)

Proof. First note that for arbitrarily fixed t0 ∈]a,a + δ[, t1 ∈]b − δ,b[, and q ∈ L([t0,t1]) problem (1.1), (2.89) is regular and has the Fredholm property in the space (cid:11)Cn−1([t0,t1]). Assume now that the lemma is not true. Then by virtue of the above-analysis, for an arbitrary natural k there exist

(cid:28) b − b − a 2k

2n−2m−2,2m−2(]a,b[) such that problem (2.44), (2.45) has a solution

, , (2.102) a,a + ,b t0k ∈ t1k ∈ b − a 2k

loc (]a,b[) satisfying the inequality

(cid:8) (cid:3)

(cid:9)1/2

t1k

(cid:19) (cid:19)

and a function qk ∈ (cid:11)L2 uk ∈ (cid:11)Cn−1

(cid:6) (cid:6)u(m)

(cid:6) (cid:6)2dt

(cid:19) (cid:19)qk

k

(cid:11)L2 2n−2m−2,2m−2

t0k

(2.103) (t) > k .

(cid:8) (cid:3)

(cid:8) (cid:3)

(cid:9)−1/2

(cid:9)−1/2

t1k

t1k

(cid:6) (cid:6)2

(cid:6) (cid:6)2

(cid:6) (cid:6)u(m)

Suppose

(cid:6) (cid:6)u(m)

k

k

t0k

t0k

(t) dt (t) dt vk(t) = uk(t), q0k(t) = qk(t).

(2.104)

m(cid:2)

Then vk is a solution of the problem

(cid:18)

(cid:18)

= 0

= 0

v(n) = pi(t)v(i−1) + q0k(t), (2.105)

i=1 (i = 1,...,m),

(cid:17) t0k

(cid:17) t1k

v(i−1) v(i−1) (i = 1,...,n − m).

(cid:3)

t1k

(cid:6) (cid:6)2

(cid:19) (cid:19)

Moreover,

(cid:6) (cid:6)v(m)

(cid:19) (cid:19)q0k

k

(cid:11)L2 2n−2m−2,2m−2

t0k

(2.106) (t) dt = 1, < (k = 1,2,...). 1 k

R. P. Agarwal and I. Kiguradze 27

On the other hand, by Lemmas 2.9 and 2.11, we have

k

(cid:6) (cid:6) (cid:6) (cid:6) + k−2 (cid:6)

(cid:7)(cid:6) (cid:6) (cid:6) (cid:6) (cid:6)

a0

i=1

(t) = 0 uniformly in ]a,b[ v(i−1) k (i = 1,...,n), (cid:10) lim k→+∞ (cid:3) m(cid:2) b0 (2.107) (k = 1,2,...), 1 ≤ r0 (t − a)n−2m pi(t)v(i−1) (t)vk(t)dt

where r0 is a positive constant independent of k. Thus if we pass to the limit in the last inequality as k → +∞, then we obtain the contradiction 1 ≤ 0, which proves the lemma. (cid:2)

2n−2m−2(]a,b]) problem (1.1), (2.99) is uniquely solvable in the space (cid:11)Cn−1

Analogously we can prove the following lemma if we apply Lemmas 2.10 and 2.13 instead of Lemmas 2.9 and 2.11.

(cid:8) (cid:3)

(cid:9)1/2

b

(cid:6) (cid:6)2

Lemma 2.15. Let conditions (1.12), (1.24), and (1.25) hold, where hi (i = 1,...,m) are func- tions given by equalities (1.13), a0 ∈]a,b[, and (cid:6)i (i = 1,...,m) are nonnegative numbers. Let, moreover, the homogeneous problem (1.10), (1.3) in the space (cid:11)Cn−1,m(]a,b]) have only a trivial solution. Then there exist δ ∈]0,b − a[ and r > 0 such that for any t0 ∈]a,a + δ] and q ∈ (cid:11)L2 loc (]a,b]) and its solution admits the estimate

(cid:6) (cid:6)u(m)(t)

≤ r(cid:6)q(cid:6)(cid:11)L2

2n−2m−2

t0

(2.108) dt .

3. Proof of the main results

Proof of Theorem 1.3 (Theorem 1.5). Suppose problem (1.10), (1.2) (problem (1.10), (1.3)) has only a trivial solution, and r and δ are the numbers appearing in Lemma 2.14 (in Lemma 2.15). Set

(3.1) , (k = 1,2,...). t0k = a + δ k t1k = b − δ k

loc (]a,b[) (in the space (cid:11)Cn−1

(cid:10)

(cid:7)(cid:8) (cid:3)

(cid:8) (cid:3)

(cid:9)1/2

(cid:9)1/2

b

t1k

(cid:6) (cid:6)2

(cid:6) (cid:6)2

(cid:6) (cid:6)u(m)

By Lemma 2.14 (Lemma 2.15) for every natural k problem (1.1), (2.45) (problem (1.1), (2.46)) in the space (cid:11)Cn−1 loc (]a,b])) has a unique solution uk and

(cid:6) (cid:6)u(m)

k

k

≤ r(cid:6)q(cid:6)(cid:11)L2

≤ r(cid:6)q(cid:6)(cid:11)L2

2n−2m−2,2m−2

2n−2m−2

t0k

t0k

(t) dt (t) dt .

(3.2)

Hence by Lemma 2.9 (by Lemma 2.10) it follows that problem (1.1), (1.2) (problem (1.1), (1.3)) in the space (cid:11)Cn−1,m(]a,b[) (in the space (cid:11)Cn−1,m(]a,b])) is uniquely solvable and its solution admits estimate (1.15). Therefore problem (1.1), (1.2) (problem (1.1), (1.3)) has (cid:2) the Fredholm property since the constant r does not depend on q.

28 Linear BVPs with strong singularities

Proof of Corollary 1.4. By conditions (1.23), there exist positive constants (cid:6)1i, (cid:6)2i (i = 1,..., m), satisfying inequalities (1.21), such that

(3.3) (i = 1,...,m). λ1i < (2m − i)(cid:6)1i, λ2i < (2m − i)(cid:6)2i

(cid:3)

(cid:3)

a0

a0

Choose a0 ∈]a,b[ and b0 ∈]a0,b[ so that

a

a

(cid:3)

b

b

(i = 1,...,m), + λ2i (s − a)n−i p0i(s)ds < (cid:6)1i λ1i 2m − i (3.4)

b0

b0

(i = 1,...,m). + λ1i (b − s)2m−i p0i(s)ds < (cid:6)2i λ2i 2m − i (s − a)2m−ids (b − s)2m−i+1 + (cid:3) (b − s)2m−ids (s − a)n−i+1 +

loc (]a,b[) is a solution of prob-

Then, according to (1.13), inequalities (1.22) yield inequalities (1.20). Therefore all the conditions of Theorem 1.3 are fulfilled which guarantee the validity of Corollary 1.4. (cid:2)

(cid:3)

b

(cid:6) (cid:6)2

Analogously, Corollary 1.6 follows from Theorem 1.5 since conditions (1.26) and (1.27) guarantee conditions (1.24) and (1.25) for some a0 ∈]a,b[ and (cid:6)i > 0 (i = 1,...,m). Proof of Theorem 1.7. It is sufficient to show that if u ∈ (cid:11)Cn−1 lem (1.10), (1.2) (problem (1.10), (1.3)), then

(cid:6) (cid:6)u(m)(t)

a

(3.5) dt < +∞.

(cid:18)

j−m−1

n(cid:2)

(cid:18)

For an arbitrary t0 ∈]a,b[ we have

(cid:17) t0

(cid:17) t − t0 ( j − m − 1)!

j=m+1

(cid:7)

(cid:10)

u(m)(t) = u( j−1)

(cid:3)

m(cid:2)

t

(3.6)

t0

i=1

+ (t − s)n−m−1 ds. pi(s)u(i−1)(s) 1 (n − m − 1)!

m(cid:2)

(cid:6) (cid:6),

Hence, according to conditions (1.2) and (1.28) (conditions (1.3) and (1.28)), it is obvi- ous that u(m) ∈ L([a,b]). Put

(cid:18)

(cid:3)

(t − a)n−i p(t) =

j−m−1

n(cid:2)

t

(cid:18)

=

(cid:18)(cid:6) (cid:6),

(cid:6) (cid:6)u(m)(s)

(cid:6) (cid:6)ds,

(3.7)

(cid:6) (cid:6)u( j−1)

i=1 (cid:17) t0

(cid:17) t0

(cid:6) (cid:6)pi(t) (cid:17) t0 − a ( j − m − 1)!

a

j=m+1

w v(t) =

(cid:3)

t0

and choose t0 ∈]a,b[ such that

a

(3.8) p(s)ds < . 1 2

(cid:3)

t

(cid:6) (cid:6) =

(cid:6) (cid:6) (cid:6) (cid:6)

(cid:6) (cid:6)u(i−1)(t)

R. P. Agarwal and I. Kiguradze 29

a

t0

(cid:18)

(i = 1,...,m), Then in view of (1.2), ((1.3)), and (3.5) we find (cid:6) (cid:6) (cid:6) (t − s)m−iu(m)(s)ds (cid:6) ≤ (t − a)m−iv(t) (cid:3)

(cid:6) (cid:6) ≤ w (cid:3)

(cid:17) + t0 (cid:8) (cid:3)

t

t0

a

τ

(cid:3)

(cid:3)

t

t0

(cid:18) (t − a) + (t − a)

= w

for a < t ≤ t0, ds (cid:9) (3.9) dτ ds v(t) ≤ w 1 (m − i)! (cid:6) (cid:6)u(m)(t) (cid:18) (cid:17) (t − a) + t0

(cid:17) t0

t (cid:3) t0

(cid:18) (t − a) + (t − a)

≤ w

p(s)v(s)ds ds +

(cid:17) t0

a 1 2

t

ds + v(t) for a < t < t0, p(s)v(s) s − a t p(s)v(s) s − a p(s)v(s) s − a p(s)v(s) s − a

(cid:3)

t0

(cid:18)

and, consequently,

≤ w

(cid:17) t0

t

+ 2 (3.10) p(s) ds for a < t < t0. v(t) t − a v(s) s − a

(cid:3)

(cid:9)

t0

(cid:18)

(cid:18)

The last inequality, by the Gronwall-Bellman lemma, results in

(cid:8) 2

≤ w

≤ w

(cid:17) t0

(cid:17) t0

t

exp exp(1) (3.11) p(s)ds for a < t ≤ t0. v(t) t − a

(cid:18)

(cid:6) (cid:6) ≤

Due to this inequality, from (3.9) we get

(cid:6) (cid:6)u(m)(t)

(cid:17) (cid:18) 1 + exp(1) w

(cid:17) t0

(3.12) for a < t ≤ t0.

Analogously we can show that u(m) is bounded in the neighborhood of the point b. There- (cid:2) fore condition (3.5) is satisfied.

(cid:3)

(cid:3)

(cid:3)

b

b

t

(cid:6) (cid:6)2

(cid:6) (cid:6)2

(cid:6) (cid:6)2

Proof of Theorem 1.9. By Theorem 1.3, from inequalities (1.21) and (1.49) it follows that problem (1.1), (1.2) has the Fredholm property. Thus to prove Theorem 1.9, it suffices to show that the homogeneous problem (1.10), (1.2) in the space (cid:11)Cn−1,m(]a,b[) has only a trivial solution. Suppose u ∈ (cid:11)Cn−1,m(]a,b[) is a solution of problem (1.10), (1.2). Put

(cid:6) (cid:6)u(m)(τ)

(cid:6) (cid:6)u(m)(τ)

(cid:6) (cid:6)u(m)(τ)

t

a

a

(3.13) dτ, dτ, ρ = dτ. ρ1(t) = ρ2(t) =

(cid:3)

t

(cid:6) (cid:6)2

(cid:6) (cid:6)u(m)(τ)

Multiplying (1.10) by (−1)n−m(t − a)n−2mu(t) and then integrating from s to t, by Lemma 2.12 we obtain

s (cid:3)

m(cid:2)

t

= (−1)n−m

s

i=1

dτ wn(t) − wn(s) + μn (3.14) for a < s ≤ t < b, (τ − a)n−2m pi(τ)u(i−1)(τ)u(τ)dτ

30 Linear BVPs with strong singularities

(cid:6) (cid:6) = 0.

(cid:6) (cid:6)wn(t)

(cid:6) (cid:6)wn(s)

where μn and wn are the number and the function, respectively, given by equalities (2.92). Moreover, it follows from Lemma 2.8, (cid:6) (cid:6) = 0, (3.15) liminf s→a liminf t→b

(cid:3)

t

By virtue of Lemmas 2.7, 2.6(cid:8), and conditions (1.49), we have

s

(cid:15) (cid:18)

(cid:17) t0

(τ − a)n−2m pi(τ)u(i−1)(τ)u(τ)dτ (−1)n−m (cid:14)

(cid:17) t0

ρ1 (2m − i)22m−i+1 (2m − 1)!!(2m − 2i + 1)!! ρ1(s) + (cid:14) (cid:6)1i (cid:15) (cid:18) + ρ2(t) + ρ2 for a

(cid:3)

t

(cid:6) (cid:6)2

s

Due to (1.21), the number γ ∈]0,1[ can be chosen so that inequalities (2.93) would be satisfied. According to (2.93) and (3.16), (3.14) implies

m(cid:2)

(cid:6) (cid:6)u(m)(τ) (cid:7) m(cid:2)

(cid:18)(cid:17)

(cid:18)

(cid:18)(cid:18)

(cid:17) t0

wn(t) − wn(s) + μn (cid:7) (cid:10) dτ (cid:10)

(cid:17) t0

(cid:17) μn − γ

(cid:10)

(cid:7)

(cid:10)

(cid:7)

i=1 m(cid:2)

i=1 m(cid:2)

=

(cid:18) ρ.

ρ1 + ρ2 ρ1(s) + ρ2(t) + (cid:6)1i (cid:6)2i (3.17)

(cid:17) μn − γ

i=1

i=1

ρ1(s) + ρ2(t) + (cid:6)1i (cid:6)2i

Hence, by equalities (3.15), we find

(cid:18) ρ,

(cid:17) μn − γ

(3.18) μnρ ≤

(cid:6) (cid:6) ≤

and consequently, ρ = 0. However,

(cid:6) (cid:6)u(t)

(3.19) for a < t < b, (t − a)m−1/2 ρ (m − 1)!

(cid:2)

and therefore, u(t) ≡ 0.

The proof of Theorem 1.11 is analogous to that of Theorem 1.9. The only difference is that instead of Theorem 1.3, inequalities (1.21) and (1.49) Theorem 1.5, inequalities (1.25) and (1.52) are applied.

(cid:8)

(cid:9)

To convince ourselves of the validity of Corollary 1.10 (Corollary 1.12), it suffices to note that inequalities (1.23), (1.50), and (1.51) (inequalities (1.27) and (1.53)) guarantee inequalities (1.21), (1.49) (inequalities (1.25), (1.52)), where

(3.20) , (i = 1,...,m). (cid:6)i = λi (cid:6)1i = λ1i 2m − i (cid:6)2i = λ2i 2m − i 2m − i

R. P. Agarwal and I. Kiguradze 31

(cid:20)

(cid:21)

Remark 3.1. From Lemmas 2.3 and 2.4 it follows that if either condition (1.16) or condi- tion (1.17) is fulfilled, then condition (1.18) holds as well, and the inequalities

≤ γ(cid:6)q(cid:6)

≤ γ(cid:6)q(cid:6)

L2 2n−2m,2m

L2 2n−2m,0

2n−2m−2,2m−2

2n−2m−2

(cid:6)q(cid:6)(cid:11)L2 (cid:20)

(cid:21)

≤ γ(cid:6)q(cid:6)Ln−m−1/2,m−1/2

≤ γ(cid:6)q(cid:6)Ln−m−1/2,0

(cid:6)q(cid:6)(cid:11)L2 (cid:6)q(cid:6)(cid:11)L2

(cid:6)q(cid:6)(cid:11)L2

2n−2m−2,2m−2

2n−2m−2

, (3.21)

are valid, respectively, where γ is a positive constant independent of q. Thus in those cases estimate (1.15) yields estimates (1.19), where r0 = γr. Therefore Remark 1.2 is valid.

Acknowledgment

This work was supported by GRDF Grant no. 3318.

[1] R. P. Agarwal, Focal boundary value problems for differential and difference equations, Mathemat-

ics and Its Applications, vol. 436, Kluwer Academic Publishers, Dordrecht, 1998.

[2] R. P. Agarwal and D. O’Regan, Singular differential and integral equations with applications,

Kluwer Academic Publishers, Dordrecht, 2003.

[3] I. T. Kiguradze, On a singular boundary value problem, Journal of Mathematical Analysis and

Applications. 30 (1970), no. 3, 475–489.

, On a singular multi-point boundary value problem, Annali di Matematica Pura ed Ap-

[4]

plicata. Series IV. 86 (1970), 367–399.

[5] I. Kiguradze, Some singular boundary value problems for ordinary differential equations, Tbilisi

University Press, Tbilisi, 1975.

[6]

, Some optimal conditions for the solvability of two-point singular boundary value problems, Functional Differential Equations 10 (2003), no. 1-2, 259–281, Functional differential equations and applications (Beer-Sheva, 2002).

[7]

, On two-point boundary value problems for higher order singular ordinary differential equations, Georgian Academy of Sciences. A. Razmadze Mathematical Institute. Memoirs on Differential Equations and Mathematical Physics 31 (2004), 101–107.

[8] I. T. Kiguradze and T. A. Chanturia, Asymptotic properties of solutions of nonautonomous or- dinary differential equations, Mathematics and Its Applications (Soviet Series), vol. 89, Kluwer Academic Publishers, Dordrecht, 1993, Translated from the 1985 Russian original.

[9] I. Kiguradze and B. P ˚uˇza, Conti-Opial type existence and uniqueness theorems for nonlinear sin- gular boundary value problems, Functional Differential Equations 9 (2002), no. 3-4, 405–422, Dedicated to L. F. Rakhmatullina and N. V. Azbelev on the occasion of their seventieth and eightieth birthdays.

[10] I. Kiguradze, B. P ˚uˇza, and I. P. Stavroulakis, On singular boundary value problems for functional differential equations of higher order, Georgian Mathematical Journal 8 (2001), no. 4, 791–814. [11] I. T. Kiguradze and B. L. Shekhter, Singular boundary value problems for second-order ordinary differential equations, Current problems in mathematics. Newest results, Vol. 30 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987, pp. 105–201, 204, Translated in J. Soviet Math. 43 (1988), no. 2, 2340–2417.

[12] I. Kiguradze and G. Tskhovrebadze, On two-point boundary value problems for systems of higher- order ordinary differential equations with singularities, Georgian Mathematical Journal 1 (1994), no. 1, 31–45.

References

[13] V. E. Ma˘ıorov, On the existence of solutions of higher-order singular differential equations, Rossi˘ıskaya Akademiya Nauk. Matematicheskie Zametki 51 (1992), no. 3, 75–84 (Russian), translation in Math. Notes 51 (1992), no. 3-4, 274–281.

[14] B. P ˚uˇza, On a singular two-point boundary value problem for the nonlinear mth-order differential equation with deviating arguments, Georgian Mathematical Journal 4 (1997), no. 6, 557–566.

[15] B. P ˚uˇza and A. Rabbimov, On a weighted boundary value problem for a system of singular functional-differential equations, Georgian Academy of Sciences. A. Razmadze Mathematical In- stitute. Memoirs on Differential Equations and Mathematical Physics 21 (2000), 125–130. [16] G. D. Tskhovrebadze, On a multipoint boundary value problem for linear ordinary differential equations with singularities, Universitatis Masarykianae Brunensis. Facultas Scientiarum Natu- ralium. Archivum Mathematicum 30 (1994), no. 3, 171–206.

[17] G. Tskhovrebadze, On the modified boundary value problem of de la Vall´ee–Poussin for nonlinear ordinary differential equations, Georgian Mathematical Journal 1 (1994), no. 4, 429–458. [18] P. J. Y. Wong and R. P. Agarwal, Singular differential equations with (n, p) boundary conditions,

Mathematical and Computer Modelling 28 (1998), no. 1, 37–44.

R. P. Agarwal: Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA E-mail address: agarwal@fit.edu

I. Kiguradze: A. Razmadze Mathematical Institute, Georgian Academy of Sciences, 1 M. Aleksidze Street, Tbilisi 0193, Georgia E-mail address: kig@rmi.acnet.ge

32 Linear BVPs with strong singularities