KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2012 – 2013 Môn thi: TOÁN CHUYÊN
lượt xem 11
download
Tài liệu tham khảo về KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2012 – 2013 Môn thi: TOÁN CHUYÊN. Đây là đề thi chính thức của Sở giáo dục và đào tạo trong kỳ thi tuyển sinh vào lớp 10 THPT. Thời gian làm bài là 120 phút không kể thời gian giao đề. Mời các bạn cùng tham khảo.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2012 – 2013 Môn thi: TOÁN CHUYÊN
- SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 BÌNH THUẬN TRƯỜNG THPT CHUYÊN TRẦN HƯNG ĐẠO Năm học : 2010 – 2011 ĐỀ CHÍNH THỨC Môn: Toán (hệ số 2) (Dành cho lớp chuyên Toán) Thời gian: 150 phút (không kể thời gian phát đề) ĐỀ: Bài 1: ( 2 điểm) 1/ Tìm tất cả các bộ ba số thực (x, y, z) sao cho x + y + z > 2 và x2 + y2 = 4 – 2xy; x2 + z2 = 9 – 2xz ; y2 + z2 = 16 – 2yz. n n 2 n3 2/ Chứng minh rằng với mọi số tự nhiên n thì S là một số tự 3 2 6 nhiên. Bài 2: ( 2 điểm) 1 b2 Cho hai số a, b thỏa: 2 a 2 4 . Xác định a và b để tích a.b nhỏ a2 4 nhất. Bài 3: ( 2 điểm) 1 1/ Cho a 0 . Chứng minh rằng a 2. a 2/ Với giá trị nào của n nguyên dương thì các số dương a1 , a2 ,...., an thỏa mãn 1 1 1 các đẳng thức a1 a2 ... an 2 và ... 2 a1 a2 an Bài 4: (3 điểm) Cho đường thẳng (d) cố định và điểm A cố định không thuộc (d). Hai điểm B, C thay đổi trên (d) sao cho tam giác ABC vuông tại A. Gọi H là hình chiếu vuông góc của A lên (d); E, F lần lượt là hình chiếu vuông góc của H lên AB và AC. 1/ Chứng minh tứ giác BEFC nội tiếp trong đường tròn (O). 2/ Gọi M, N là giao điểm của đường thẳng AH với (O). Chứng minh: a/ AM.AN = AE.AB b/ Hai điểm M và N cố định. Bài 5: (1 điểm) Tam giác ABC có độ dài các đường cao là số nguyên dương và bán kính đường tròn nội tiếp bằng 1. Chứng minh ABC là tam giác đều. -----------------HẾT------------------
- SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 BÌNH THUẬN TRƯỜNG THPT CHUYÊN TRẦN HƯNG ĐẠO Năm học : 2010 – 2011 ĐỀ CHÍNH THỨC Môn: Toán (hệ số 2) (Dành cho lớp chuyên Tin) Thời gian: 150 phút (không kể thời gian phát đề) ĐỀ: Bài 1: ( 2 điểm) 1/ Tìm tất cả các bộ ba số thực (x, y, z) sao cho x + y + z > 2 và x2 + y2 = 4 – 2xy; x2 + z2 = 9 – 2xz ; y2 + z2 = 16 – 2yz. n n 2 n3 2/ Chứng minh rằng với mọi số tự nhiên n thì số S là một số tự 3 2 6 nhiên. Bài 2: (2 điểm) 2 1 b2 Cho hai số a, b thỏa: 2 a 2 4 . Xác định a và b để tích a.b nhỏ nhất. a 4 Bài 3: ( 2 điểm) 1/ Chứng minh rằng với mọi n nguyên dương ta có: 1 1 1 (n 1) n n n 1 n n 1 1 1 1 1 2/ Tính S ... 2 1 1 2 3 2 2 3 4 3 3 4 10000 9999 9999 10000 Bài 4: (3 điểm) Cho đường thẳng (d) cố định và điểm A cố định không thuộc (d). Hai điểm B, C thay đổi trên (d) sao cho tam giác ABC vuông tại A. Gọi H là hình chiếu vuông góc của A lên (d); E, F lần lượt là hình chiếu vuông góc của H lên AB và AC. 1/ Chứng minh tứ giác BEFC nội tiếp trong đường tròn (O). 2/ Gọi M, N là giao điểm của đường thẳng AH với (O). Chứng minh: a/ AM.AN = AE.AB b/ Hai điểm M và N cố định. Bài 5: (1 điểm) Tính các góc của tam giác ABC biết rằng đường cao AH và trung tuyến AI chia góc BAC thành ba phần bằng nhau. -----------------HẾT------------------
- Thi tuyển sinh Trần Hưng Đạo – Đáp án ( Hệ số 2 ) Năm học 2010 – 2011 Chuyên Toán Bài Đáp án và hướng dẫn chấm Điểm 1/ (1,0 đ) Ta có (x + y)2 = 4 x + y = 2 0,25 Tương tự: x + z = 3 ; y + z = 4 234 0,25 Vì x + y + z > 2 nên chỉ có thể chọn x + y + z = hoặc x + y + z = 2 2 3 4 2 9 * Với x + y + z = và x + y =2; x + z = 3; y + z = 4 2 1 3 5 0,25 Tính được ( x ; y ; z ) 2 2 2 5 Bài 1 * Với x + y + z = và x + y = -2; x+ z = 3; y + z = 4 (2 đ) 2 3 1 9 Tính được ( x ; y ; z ) 2 2 2 0,25 2/ (1,0 đ) n n2 n3 2n 3n 2 n3 0,25 Ta có 3 2 6 6 2 n(n 3n 2) n(n 1)(n 2) 0,25 6 6 Vì tử số là tích của ba số tự nhiên liên tiếp nên luôn chia hết cho 6. 0,25 n n 2 n3 Vậy là một số tự nhiên 0,25 3 2 6 Dễ thấy a 0 . 2 1 b2 Từ giả thiết ta có : (a 2) (a 2 ab) 2 ab 0,5 a2 4 Bài 2 1 b Hay ( a ) 2 ( a ) 2 2 ab 0,5 ( 2 đ) a 2 1 b 0,5 Từ đó a.b nhỏ nhất khi : a và a a 2 Tìm được : (a= 1 ; b = -2) ; (a = -1 ; b =2) 0,5 1/ (0,5 đ) Ta có (a -1)2 0 a 2 1 2a 0,25 2 a 1 1 Hay 2 a 2 0,25 a a 2/ (1,5 đ) Cộng vế theo vế hai đẳng thức đã cho ta có: Bài 3 (2 đ) 1 1 1 0,25 (a1 ) (a2 ) ... (an ) 4 a1 a2 an Từ bất đẳng thức đã chứng minh câu 1/, suy ra: n 2 0,25 1 1 * Với n = 2: thì (a1 ) (a2 ) 4 0,25 a1 a2 Đẳng thức này chỉ xảy ra khi a1 = a2 =1 (Thỏa mãn các đẳng thức đã cho) 0,25
- 1 0,25 * Với n = 1 thì không tồn tại a1 sao cho a1 =2 và 2 a1 Vậy n = 2. 0,25 1/ (1đ)Chứng minh: AEF ACH và kề bù với BEF 0,5 Nên tứ giác BEFC nội tiếp trong (O) 0,5 2/ a/ (1đ)Tam giác AEN và AMB đồng dạng 0,5 AE AN 0,25 nên AM AB suy ra: AM.AN = AE.AB 0,25 b/ (0,75)Chứng minh: HN.HM = BH.HC = AH2. Trong tam giác vuông ABH có: AE.AB = AH2 AM.AN = (AH – MH)(AH + NH) = AH2 – HN.HM + AH(NH – MH) = AH2 Suy ra: AH = NH – MH = a ( không đổi do A, H cố định) 0,25 5 1 Bài 4 HN HM a HM a (3 đ) Ta có hệ: Suy ra 2 0,25 HN .HM a 2 HN 5 1 a 2 0,25 Nên M và N cố định Hình vẽ đến câu 2/ 0,25 Đặt BC = a, AC = b, AB = c và x, y, z lần lượt là độ dài các đường cao tương ứng với các cạnh a,b,c và bán kính đường tròn nội tiếp tâm O bằng 1 nên x, y, z > 2 Giả sử x y z 1 S ABC = S OBC + S OAC + S OAB == (a b c) 0,25 2 1 1 1 S ABC = ax = by = cz 2 2 2 a b c abc 1 1 1 Bài 5 Nên ax = by = cz = a+b+c = = nên = 1 1 1 1 1 1 1 x y z (1 đ) x y z x y z 3 z 3 z=3 0,25 z 1 1 1 1 1 2 Từ = 1 và z = 3 3(x+y) = 2xy x y z x y 3 (2x-3)(2y-3) = 9 0,25 Suy ra 2x – 3 = 3 và 2y – 3 = 3 hoặc 2x – 3 = 9 và 2y – 3 = 1 Ta có: x = 3 và y = 3 và z = 3 nên tam giác ABC đều. 0,25
- Thi tuyển sinh Trần Hưng Đạo – Đáp án ( Hệ số 2 ) Năm học 2010 – 2011 Chuyên Tin Bài Đáp án và hướng dẫn chấm Điểm 1/ (1,0 đ) Ta có (x + y)2 = 4 x + y = 2 0,25 Tương tự: x + z = 3 ; y + z = 4 234 0,25 Vì x + y + z > 2 nên chỉ có thể chọn x + y + z = hoặc x + y + z = 2 2 3 4 2 9 * Với x + y + z = và x + y =2; x + z = 3; y + z = 4 2 1 3 5 0,25 Tính được ( x ; y ; z ) 2 2 2 5 Bài 1 * Với x + y + z = và x + y = -2; x+ z = 3; y + z = 4 2 (2 đ) 3 1 9 Tính được ( x ; y ; z ) 2 2 2 0,25 2/ (1,0 đ) n n2 n3 2n 3n 2 n3 0,25 Ta có 3 2 6 6 2 n(n 3n 2) n(n 1)(n 2) 0,25 6 6 Vì tử số là tích của ba số tự nhiên liên tiếp nên luôn chia hết cho 6. 0,25 2 3 n n n Vậy là một số tự nhiên 0,25 3 2 6 Dễ thấy a 0 . 2 1 b2 Từ giả thiết ta có : (a 2) (a 2 ab) 2 ab 0,5 a2 4 Bài 2 1 b Hay ( a ) 2 ( a ) 2 2 ab 0,5 (2 đ) a 2 1 b 0,5 Từ đó a.b nhỏ nhất khi : a và a a 2 Tìm được : (a= 1 ; b = -2) ; (a = -1 ; b =2) 0,5 1/ (1,0 đ) 1 (n 1) n n n 1 0,5 (n 1) n n n 1 (n 1)2 n n 2 (n 1) (n 1) n n n 1 1 1 0,5 = Bài 3 n(n 1) n n 1 (2 đ) 2/ (1,0 đ) 1 1 1 1 1 1 0,5 S ( )( ) ... ( ) 1 2 2 3 9999 10000 1 99 = 1 0,5 100 100
- 1/(1đ)Chứng minh: AEF ACH và kề bù với BEF 0,5 Nên tứ giác BEFC nội tiếp trong (O) 0,5 2/ a/(1đ) Tam giác AEN và AMB đồng dạng 0,5 AE AN 0,25 nên AM AB suy ra: AM.AN = AE.AB 0,25 b/ (0,75)Chứng minh: HN.HM = BH.HC = AH2. Trong tam giác vuông ABH có: AE.AB = AH2 AM.AN = (AH – MH)(AH + NH) = AH2 – HN.HM + AH(NH – MH) = AH2 Suy ra: AH = NH – MH = a ( không đổi do A, H cố định) 0,25 5 1 HN HM a HM a Ta có hệ: Suy ra 2 0,25 2 Bài 4 HN .HM a HN 5 1 a (3 đ) 2 0,25 Nên M và N cố định Hình vẽ đến câu 2/ 0,25 Kẻ IK AC tại K ta có AHI = AKI 0,25 Suy ra : IH = IK = BH Suy ra: IC =2IK nên C 300 0,25 Tính được B 600 0,25 Bài 5 Nên  = 900 (1 đ) 0,25
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bộ Đề thi tuyển sinh lớp 10 môn Anh hay có đáp án
6 p | 7258 | 2167
-
Đề thi tuyển sinh lớp 10 môn tiếng Anh năm 2013 - Trường THPT chuyên Lương Văn Chánh
4 p | 993 | 241
-
Đề chính thức Kỳ thi tuyển sinh lớp 10 trung học phổ thông tỉnh Thái bình môn toán năm 2010 -2011
5 p | 806 | 168
-
Kỳ thi tuyển sinh lớp 10 THPT chuyên ngoại ngữ năm 2010 môn Toán
1 p | 427 | 116
-
Đề chính thức Kỳ thi tuyển sinh lớp 10 trung học phổ thông tỉnh Thanh Hóa môn toán năm 2010 -2011
4 p | 459 | 85
-
Đề chính thức Kỳ thi tuyển sinh lớp 10 trung học phổ thông thành phố Đà Nẵng môn toán năm 2009 -2010
1 p | 421 | 85
-
Đề chính thức Kỳ thi tuyển sinh lớp 10 trung học phổ thông trường cao đẳng thực hành Cao Nguyên môn toán năm 2009 - 2010
4 p | 591 | 76
-
Đề chính thức Kỳ thi tuyển sinh lớp 10 trung học phổ thông thành phố Huế môn toán năm 2009 - 2010
4 p | 374 | 75
-
Đề chính thức Kỳ thi tuyển sinh lớp 10 trung học phổ thông chuyên Lam Sơn môntoán năm 2009 -20010
3 p | 270 | 72
-
Đề chính thức Kỳ thi tuyển sinh lớp 10 trung học phổ thông tỉnh Bình Định môn toán năm 2009 - 2010
3 p | 474 | 61
-
Đề chính thức Kỳ thi tuyển sinh lớp 10 trung học phổ thông tỉnh ĐĂK LĂK môn toán năm 2009 - 2010
4 p | 517 | 59
-
Đề chính thức Kỳ thi tuyển sinh lớp 10 trung học phổ thông tỉnh Hải Phòng môn toán năm 2009 - 2010
4 p | 280 | 52
-
Kỳ thi tuyển sinh lớp 10 THPT chuyên năm học 2016 – 2017 môn Toán
5 p | 214 | 17
-
Kỳ thi tuyển sinh lớp 6 THCS Nguyễn Tri Phương
3 p | 183 | 17
-
Đề thi thử kỳ thi tuyển sinh lớp 10 THPT năm học 2014-2015 môn Toán - Trường THPT chuyên Sư phạm Hà Nội
1 p | 140 | 6
-
Đề thi thử kỳ thi tuyển sinh lớp 10 môn: Toán - Trường THPT chuyên sư phạm (Năm học 2014-2015)
1 p | 94 | 4
-
Kỳ thi tuyển sinh lớp 10 THPT chuyên năm học 2014 - 2015 môn Toán
20 p | 93 | 3
-
Đáp án và hướng dẫn chấm thi kỳ thi tuyển sinh lớp 10 trường THPT chuyên năm học 2015-2016 môn tiếng Anh - Sở GD&ĐT Nam Định
5 p | 92 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn