BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH

TRỊNH HOÀI VINH

ÁP DỤNG CHƯƠNG TRÌNH MCNP5 ĐỂ TÍNH TOÁN

HIỆU SUẤT CỦA DETECTOR HPGe GEM 15P4

Chuyên ngành: Vật lý nguyên tử, hạt nhân và năng lượng cao

Mã số: 60.44.05

LUẬN VĂN THẠC SĨ VẬT LÝ

Người hướng dẫn khoa học: TS. VÕ XUÂN ÂN

Thành phố Hồ Chí Minh – 2010

LỜI CẢM ƠN

Trong quá trình thực hiện và hoàn thành luận văn này, tác giả đã nhận được sự quan tâm và giúp

đỡ rất lớn từ Thầy cô, đồng nghiệp và gia đình. Tôi xin được bày tỏ lòng biết ơn chân thành của mình

đến:

Thầy TS. Võ Xuân Ân, người hướng dẫn khoa học, đã mang đến cho tôi những kiến thức và

phương pháp nghiên cứu khoa học, truyền đạt tinh thần học hỏi và giúp tôi vượt qua những vướng mắc

trong suốt quá trình thực hiện luận văn.

Thầy TS. Nguyễn Văn Hoa, Thầy PGS. TS. Lê Văn Hoàng, hai người Thầy đã gợi ý những

phương hướng nghiên cứu, đóng góp ý kiến và động viên tôi từ những ngày đầu thực hiện luận văn.

Thầy TS. Thái Khắc Định, người đã dành nhiều công sức cho dự án Phòng thí nghiệm Vật lý Hạt

nhân mà một trong những kết quả là hệ phổ kế gamma phông thấp đã được sử dụng trong nghiên cứu

này.

Quý Thầy cô trong Bộ môn Vật lý Hạt nhân và Khoa Vật lý, Trường Đại học Sư phạm TP HCM

đã đóng góp những ý kiến thảo luận quý báu và luôn tạo mọi điều kiện thuận lợi về cơ sở vật chất để

tôi có thể thực hiện các nghiên cứu phục vụ cho luận văn.

Cuối cùng, xin cảm ơn gia đình đã hỗ trợ tôi về mọi mặt.

BẢNG CÁC CHỮ VIẾT TẮT

Chữ viết tắt ACTL CYLTRAN

DE DETEFF

EGS Tiếng Việt Thư viện số liệu ACTL Chuong trình mô phỏng Monte Carlo CYLTRAN Thoát đôi Chương trình mô phỏng Monte Carlo DETEFF Chương trình mô phỏng Monte Carlo EGS

ENDF ENDL FWHM Tiếng Anh ACTivation Library CYLTRAN An electron/photon transport code Double Escape DETector EFFiciency Electron Gamma A Monte Carlo simulation code of the coupled transport of electrons and photon Evaluated Nuclear Data File Evaluated Nuclear Data Library Full Width at Half Maximum

Ge(Li) Germanium(Lithium)

GEANT Thư viện số liệu ENDF Thư viện số liệu ENDL Độ rộng đỉnh năng lượng toàn phần tại một nữa chiều cao cực đại Detector germanium khuếch tán lithium Chương trình mô phỏng Monte Carlo GEANT

GESPECOR

HPGe GEANT A toolkit for the simulation of the passage of particles through matter Germanium SPEctroscopy CORrection Factors High Purity Gemanium

MCNG Monte Carlo Neutron Gamma

MCNP Monte Carlo N – Particle

P/C PENELOPE

SE TP HCM Chương trình mô phỏng Monte Carlo GESPECOR Detector germanium siêu tinh khiết Chương trình Monte Carlo ghép cặp neutron - gamma Chương trình mô phỏng Monte Carlo MCNP Tỉ số đỉnh/Compton Chương trình mô phỏng Monte-Carlo PENELOPE Thoát đơn Thành phố Hồ Chí Minh Peak/Compton PENetration and Energy LOss of Positron and Electrons Single Escape -

MỞ ĐẦU

Với sự ra đời của detector germanium siêu tinh khiết (HPGe) và silicon (Si) trong suốt thập kỉ

1960, lĩnh vực đo phổ gamma đã được cách mạng hóa và trở thành công nghệ phát triển. Trong nhiều

lĩnh vực của khoa học hạt nhân ứng dụng, detector ghi bức xạ gamma được sử dụng để xác định hàm

lượng của các hạt nhân phóng xạ phát gamma trong mẫu môi trường. Những detector ghi bức xạ

gamma đã đóng vai trò quan trọng trong các phòng thí nghiệm phân tích phóng xạ trên khắp thế giới

nhờ vào kỹ thuật phân tích không phá mẫu và khả năng phân giải cao. Việc sử dụng các detector bán

dẫn siêu tinh khiết đã mang lại các kết quả chính xác hơn cho việc ghi nhận các bức xạ gamma ở các

năng lượng khác nhau. Ở Việt Nam, nhiều cơ sở như Viện Khoa học và Kỹ thuật hạt nhân Hà Nội,

Viện Nghiên cứu Hạt nhân Đà Lạt, Trung tâm Hạt nhân TP HCM, Bộ môn Vật lý hạt nhân – Trường

Đại học KHTN TP HCM đã trang bị các hệ phổ kế gamma loại này trong nghiên cứu và ứng dụng phân

tích mẫu môi trường hoạt độ thấp.

Muốn xác định cường độ chùm tia gamma, điều cần thiết là phải biết chính xác hiệu suất đỉnh

năng lượng toàn phần ở cấu hình đo tương ứng. Phương pháp truyền thống để chuẩn hiệu suất cho các

detector gamma bán dẫn là xác định trực tiếp đáp ứng của detector đối với các bức xạ gamma ở những

năng lượng khác nhau thông qua việc sử dụng các nguồn chuẩn đơn năng hoặc đa năng đã biết trước

hoạt độ. Hiệu suất có được ở những năng lượng này sau đó được ngoại suy cho toàn vùng năng lượng

quan tâm để thu được một đường cong hiệu suất. Đường cong hiệu suất này có thể được sử dụng để

tính toán hoạt độ các nhân phóng xạ trong mẫu đo nếu nó phát ra tia gamma có năng lượng nằm trong

khoảng mà đường cong hiệu suất bao quát. Mặc dù cách làm này thường gặp trong thực tế và có vẻ đơn

giản, nhưng để thu được những kết quả chính xác cần phải xem xét rất nhiều vấn đề phức tạp trong quy

trình thực hiện. Có thể kể đến ở đây là thời gian và chi phí khi tiến hành thực nghiệm; điều kiện của

phòng thí nghiệm về nguồn chuẩn phóng xạ; những vấn đề về kích thước, matrix của mẫu và hình học

đo; nhiễm bẩn phóng xạ; những sai số gặp phải khi xây dựng đường cong hiệu suất bằng việc làm khớp

dữ liệu thực nghiệm với đường cong lý thuyết cũng như sự cần thiết phải tiến hành rất nhiều hiệu chỉnh

cho những thông tin thu được từ phổ gamma của mẫu đo. Ngoài ra, phương pháp này cũng gặp một

hạn chế rất lớn khi phải làm khớp từng phần các dữ liệu đo đạc gián đoạn. Do hình dạng của hàm hiệu

suất phức tạp và nguồn chuẩn thường có sai số nên cần phải tiến hành rất nhiều đo đạc trải dài trên

vùng năng lượng quan tâm để có thể đảm bảo rằng sai số trong việc nội suy là nhỏ. Do đó, nhiều

phương pháp tính toán và sự hỗ trợ của những phương pháp cho việc chuẩn hiệu suất detector đã được

quan tâm nghiên cứu trong nhiều thập niên trở lại đây, đặc biệt là từ khi có sự phát triển mạnh mẽ của

công nghệ máy tính và những nhân tố liên quan. Trong đó, những cách tiếp cận cho thấy triển vọng đều

dựa trên phương pháp Monte Carlo.

Kể từ những tính toán đầu tiên của Zerby và Moran [44] vào năm 1958 cho đến nay đã có hàng

ngàn công trình sử dụng phương pháp Monte Carlo để chuẩn hiệu suất cho detector gamma [14], [15],

[16], [17], [23], [38]. Trong 10 – 15 năm trở lại đây, các tính toán Monte Carlo với chương trình

MCNP đã cho thấy hiệu lực trong việc xác định hiệu suất của detector. Ưu điểm chính của mô phỏng

này là nó có thể cho kết quả chính xác đáp ứng hiệu suất của detector mà không cần nhiều đo đạc thực

nghiệm. Không chỉ khẳng định hiệu lực của phương pháp Monte Carlo trong việc tính toán hiệu suất,

các nghiên cứu còn cho thấy nhiều ưu điểm khác của nó. Một khi đã mô hình hóa chính xác detector,

Monte Carlo có thể mô phỏng phổ gamma của các nhân phóng xạ ở nhiều matrix và cấu hình khác

nhau [5]; tính toán các hệ số hiệu chỉnh các hiệu ứng trùng phùng, matrix và mật độ cho một loại mẫu

bất kỳ [1], [22], [28], [41]; khảo sát các yếu tố liên quan đến đáp ứng của detector đối với bức xạ

gamma tới [3], [7]; thiết kế hệ phổ kế triệt nền compton [40]. Ngoài ra đây còn là một công cụ lý thuyết

mạnh để đánh giá và theo dõi sự thay đổi của hệ phổ kế gamm theo thời gian [4], [6], [36]. Chính nhờ

ưu điểm này mà phương pháp Monte Carlo đã được ứng dụng rộng rãi, đặc biệt các chương trình mô

phỏng dựng sẵn như MCNP5 đã góp phần thúc đẩy việc sử dụng phương pháp mô phỏng trong lĩnh

vực nghiên cứu vật lý hạt nhân.

Từ những phân tích trên tôi đã chọn đề tài: “Áp dụng chương trình MCNP5 để tính toán hiệu suất

của detector GEM 15P4”.

Mục tiêu của luận văn là: (1) xây dựng bộ số liệu đầu vào về kích thước hình học và cấu trúc vật

liệu của buồng chì và detector cũng như cấu trúc nguồn phóng xạ hướng tới mô hình hóa chi tiết hệ phổ kế; (2) mô phỏng phổ gamma của nguồn 60Co, đánh giá phổ gamma, so sánh với các giá trị thực

nghiệm; (3) trên cơ sở xác định độ tin cậy của chương trình mô phỏng, thiết lập đường cong hiệu suất

theo năng lượng đồng thời khảo sát sự thay đổi của hiệu suất theo khoảng cách giữa nguồn và detector;

(4) tiến tới xây dựng một công thức giải tích cho hiệu suất là hàm của năng lượng và khoảng cách đối

với cấu hình đo đồng trục của nguồn điểm.

Đối tượng nghiên cứu của luận văn này là detector GEM 15P4 loại p được sản xuất bởi EG&G

Ortec (Oak Ridge, Tennessee) đặt tại phòng thí nghiệm Vật lý hạt nhân, Trường Đại học Sư phạm TP

HCM. Nguồn phóng xạ dạng điểm model RSS-8EU do hãng Spectrum Techniques LLC sản suất.

Phương pháp nghiên cứu của luận văn là kết hợp đo đạc thực nghiệm và mô phỏng Monte Carlo

với chương trình MCNP phiên bản 5 được xây dựng bởi Phòng thí nghiệm quốc gia Los Alamos, Hoa

kỳ. Chương trình được sử dụng dưới sự cho phép của Cục An toàn Bức xạ và Hạt nhân. Hiệu lực của

mô hình tính toán được kiểm tra bởi thực nghiệm tương ứng.

Với nội dung đó, luận văn sẽ được trình bày thành bốn phần như sau:

+ Chương 1: TỔNG QUAN, giới thiệu một cách khái quát các vấn đề về tương tác của photon với

vật chất, về detector và phương pháp mô phỏng Monte Carlo với chương trình MCNP5, những nghiên

cứu trong và ngoài nước liên quan đến đề tài.

+ Chương 2: MÔ HÌNH HÓA HỆ PHỔ KẾ GAMMA DETECTOR HPGe, trình bày các bước

thực hiện bài toán mô phỏng, xây dựng input, tính toán lại bề dày lớp germanium bất hoạt, kiểm tra độ tin cậy của chương trình mô phỏng, mô phỏng phổ gamma của nguồn 60Co.

+ Chương 3: MÔ PHỎNG ĐƯỜNG CONG HIỆU SUẤT ĐỈNH NĂNG LƯỢNG TOÀN PHẦN,

thiết lập đường cong hiệu suất theo năng lượng và khoảng cách, xây dựng công thức giải tích cho hiệu

suất là hàm của năng lượng và khoảng cách nguồn – detector.

+ Chương 4: KẾT LUẬN VÀ KIẾN NGHỊ, tổng kết và đánh giá các kết quả đạt được, đưa ra kiến

nghị về những hướng nghiên cứu khác liên quan đến nội dung luận văn.

CHƯƠNG 1

TỔNG QUAN

1.1. DETECTOR GHI BỨC XẠ GAMMA

1.1.1. Tương tác của photon với vật chất

Mặc dù các tia gamma có thể tương tác với vật chất theo nhiều cơ chế khác nhau, nhưng trong ghi

đo bức xạ ba quá trình đóng vai trò quan trọng nhất là: hấp thụ quang điện, tán xạ Compton và tạo cặp

[25]. Thông qua ba quá trình này photon sẽ truyền một phần hoặc hoàn toàn năng lượng của mình cho

các electron và nó bị tán xạ dưới một góc nào đó hoặc biến mất hoàn toàn một cách đột ngột. Điều này

hoàn toàn khác biệt với tương tác của các hạt mang điện, trong đó các hạt mang điện bị làm chậm dần

dần qua các tương tác đồng thời liên tục với nhiều nguyên tử.

1.1.1.1. Hấp thụ quang điện (Photoelectric absorption)

Trong quá trình hấp thụ quang điện, photon chịu một tương tác với nguyên tử và hoàn toàn biến

mất, khi đó một electron quang điện bị bứt ra khỏi lớp vỏ liên kết của nó. Tương tác loại này xảy ra với

các electron nguyên tử và không thể xảy ra với electron tự do. Đối với các photon với năng lượng đủ

cao thì những electron quang điện thường có nguồn gốc từ lớp vỏ liên kết chặt chẽ nhất, tức lớp K của

E

E

  h

nguyên tử. Electron quang điện sinh ra sẽ mang năng lượng được tính bởi công thức

B

e

(1.1)

BE là năng lượng liên kết của electron quang điện. Với tia gamma năng lượng lớn hơn vài

Trong đó:

trăm keV, các electron quang điện sẽ mang đi phần lớn năng lượng photon chịu tương tác.

Cùng với các electron quang điện, tương tác này cũng tạo ra một nguyên tử bị ion hóa với một lỗ

trống ở lớp vỏ liên kết mà electron bị bức ra. Lỗ trống này nhanh chóng được lấp đầy thông qua việc

bắt một electron tự do trong môi trường vật chất và/hoặc sự sắp xếp lại các electron từ các lớp vỏ khác.

Do đó, một hoặc nhiều photon tia X có thể được tạo ra. Mặc dù trong hầu hết các trường hợp, những tia

X này lại bị hấp thụ ở các lớp vỏ liên kết yếu hơn gần đó thông qua hấp thụ quang điện, nhưng chúng

cũng có khả năng thoát khỏi detector bức xạ và ảnh hưởng đến đáp ứng của detector. Trong một số

trường hợp tia X đặc trưng sẽ tương tác với các electron của chính nguyên tử đó và một electron Auger

được phát ra.

Để làm ví dụ cho những tương tác phức tạp này, ta xét các photon tới với năng lượng trên 30 keV

chịu hấp thụ quang điện trong khí xenon. Khoảng 86% tương tác xảy ra thông qua sự hấp thụ ở lớp K

trong nguyên tử xenon. Trong số này, 87,5% tạo ra các tia X đặc trưng lớp K và 12,5% khử kích thích

bằng việc phát các electron Auger. 14% photon tới còn lại sẽ tham gia tương tác quang điện ở các lớp L

hoặc M. Kết quả của những tương tác này là các tia X đặc trưng với năng lượng thấp hơn nhiều hoặc

các electron Auger với quãng chạy rất ngắn, ở gần đúng bậc một, bị hấp thụ lại ở gần nơi xảy ra tương

tác đầu tiên.

Hấp thụ quang điện là quá trình ưu tiên trong tương tác của các tia gamma (hoặc tia X) ở năng

lượng khá thấp và đối với vật liệu hấp thụ có bậc số nguyên tử Z cao. Không một biểu thức giải tích

nào có thể tính toán được xác suất hấp thụ quang điện cho một nguyên tử theo năng lượng E và Z,

n

nhưng có thể sử dụng công thức gần đúng sau

const

Z 5,3 E 

(1.2)

Trong đó: n thay đổi từ 4 đến 5 trong vùng năng lượng gamma quan tâm. Sự phụ thuộc của xác suất

hấp thụ vào Z là lý do đầu tiên của việc sử dụng vật liệu có Z cao (chẳng hạn chì) trong che chắn tia

gamma. Cũng với lý do tương tự mà rất nhiều hệ phổ kế gamma sử dụng detector với các thành phần

vật liệu có Z cao.

Hình 1.1: Sự phụ thuộc năng lượng của các quá trình tương tác gamma khác nhau trong NaI

(Theo The Atomic Nuclear, R. D. Evans, 1955)

Đồ thị biểu diễn sự phụ thuộc của tiết diện hấp thụ quang điện cho NaI theo năng lượng (một vật

liệu ghi tia gamma phổ biến) được cho trong hình 1.1. Ở vùng năng lượng thấp, có những mép hấp thụ

xuất hiện ở năng lượng tương ứng với năng lượng liên kết của các electron ở các lớp khác nhau. Những

mép với năng lượng cao nhất sẽ ứng với các electron lớp K. Ở phía trên ngay sát mép này, năng lượng

photon chỉ đủ để chịu một hấp thụ quang điện trong đó một electron lớp K bị bức ra khỏi nguyên tử. Ở

phía dưới ngay sát mép này, không có đủ năng lượng để quá trình này xảy ra nên xác suất tương tác

giảm nhanh đột ngột. Tương tự, các mép hấp thụ ở năng lượng thấp hơn ứng với electron các lớp L, M,

… trong nguyên tử.

Kết quả của hấp thụ quang điện là giải phóng các electron quang điện (mang hầu hết năng lượng

của gamma) cùng với một hoặc một số electron năng lượng thấp hơn ứng với sự hấp thụ năng lượng

liên kết của electron quang điện. Nếu không có sự thất thoát ra khỏi detector thì tổng động năng của

các electron được tạo ra phải bằng với năng lượng ban đầu của photon. Vì thế hấp thụ quang điện là

một quá trình lý tưởng cho việc đo đạc năng lượng của gamma. Với chùm gamma đơn năng và những

điều kiện lý tưởng, tổng động năng của các electron bằng với năng lượng gamma tới và phân bố vi

phân của động năng electron sau một chuỗi các sự kiện hấp thụ quang điện sẽ có dạng một hàm delta

đơn giản như hình bên dưới. Một đỉnh đơn xuất hiện tại năng lượng ứng với năng lượng của gamma

tới.

Hình 1.2: Đỉnh năng lượng toàn phần trong phổ độ cao xung vi phân

1.1.1.2. Tán xạ Compton (Compton scattering)

Quá trình tán xạ Compton xảy ra giữa photon tới và một electron trong môi trường hấp thụ. Đối

với năng lượng gamma của các nguồn đồng vị phóng xạ thì đây là cơ chế tương tác chiếm ưu thế.

Trong tán xạ Compton, photon tới bị đổi hướng dưới một góc  so với hướng ban đầu và truyền

một phần năng lượng của nó cho electron (giả sử ban đầu đứng yên), electron sau đó gọi là electron

giật lùi. Bởi vì photon có thể bị tán xạ dưới một góc bất kỳ nên năng lượng truyền cho electron có thể

thay đổi từ 0 tới một giá trị cực đại nào đó.

Có thể rút ra công thức liên hệ giữa năng lượng truyền cho electron và góc tán xạ bằng việc sử

dụng đồng thời định luật bảo toàn năng lượng và xung lượng. Sử dụng các ký hiệu trong sơ đồ bên

dưới

 h

'  h

Hình 1.3: Mô hình tán xạ Compton

1

1(

cos

 )

h  2 cm 0

2

ta có thể chứng minh rằng (1.3)

0cm là năng lượng nghỉ của electron. Ở góc tán xạ nhỏ, photon chỉ truyền một phần nhỏ năng

trong đó

2

lượng cho electron. Động năng của electron giật lùi được tính theo công thức

E

h

h



1)( 2

e

 1)(

 ) cos  )

cos 

cmh  / ( 0 cmh /  (1  0

  

 '  h  

(1.4)

Ở đây có thể xét hai trường hợp giới hạn là

0 , khi đó các phương trình trên cho thấy

' h h 

0eE

và . Electron giật lùi có + Góc tán xạ

động năng rất nhỏ và gamma tán xạ mang đi hầu hết năng lượng của gamma ban đầu.

+ Góc tán xạ   , gamma bị tán xạ ngược trở lại và electron giật lùi theo hướng gamma ban

đầu. Đây là trường hợp mà electron nhận được một năng lượng lớn nhất.

Thông thường gamma có thể bị tán xạ ở bất kỳ góc nào khi tương tác xảy ra trong detector. Do đó

electron cũng có thể nhận một năng lượng bất kỳ từ không đến giá trị cực đại ứng với  và phân bố

năng lượng electron có dạng tổng quát như hình bên dưới.

Hình 1.4: Nền Compton trong phổ độ cao xung vi phân

Khoảng giữa mép Compton và năng lượng gamma tới được xác định bởi công thức

E

E

h 

 ( ) 

c

2

e

 21

h  /  cmh 0

h 

2/2

(1.5)

0cm

2/2

,0

256

MeV

thì khoảng cách năng lượng này gần như là một hằng số Ở giới hạn

 cmEc 0

(1.6)

2

2

2

Phân bố góc của các tia gamma tán xạ được dự đoán bởi công thức Klein – Nishina

2 Zr 0

2  2

1  1(

1

cos

cos 2

1(

cos

cos

)]

)  1( 

d   d

) 

1( cos  1)[  

  

  

  1  

    1  

  

2

cmh

/

(1.7)

0

Trong đó: và 0r là bán kính electron cổ điển. Phân bố mô tả trong hình 1.5 cho thấy xu

hướng tán xạ ở góc nhỏ khi năng lượng gamma cao.

Hình 1.5: Số photon tán xạ Compton vào một đơn vị góc khối ở góc tán xạ θ

Các phân tích ở trên dựa trên giả thiết cho rằng, tán xạ Compton xảy ra với các electron tự do.

Trong vật liệu detector thực, năng lượng liên kết của electron trước khi tham gia quá trình tán xạ sẽ ảnh

hưởng đáng kể lên hình dạng của nền Compton liên tục. Những ảnh hưởng này sẽ đặc biệt đáng lưu ý

đối với gamma năng lượng thấp. Ở một góc cố định, xung lượng xác định của các electron quỹ đạo

cũng tạo ra một phân bố hẹp về năng lượng (mở rộng Doppler) của các gamma tán xạ, và năng lượng

gamma tán xạ không đơn trị như dự đoán của phương trình.

1.1.1.3. Tạo cặp (Pair production)

Nếu năng lượng gamma lớn hơn hai lần năng lượng nghỉ của một electron (1,022 MeV), có thể

xảy ra quá trình tạo cặp. Xác suất của tương tác này rất thấp cho tới khi năng lượng gamma đạt tới giá

trị vài MeV và quá trình tạo cặp chủ yếu xuất hiện ở năng lượng cao và chỉ xảy ra trong trường

Coulomb của hạt nhân. Trong tương tác này, photon sẽ biến mất và một cặp electron – positron xuất

2

E

E

 h

hiện. Năng lượng dư chuyển thành động năng của electron và positron

cm 02

e

e

(1.8)

Động năng tổng cộng của các hạt tích điện (electron và positron) được tạo bởi gamma tới cũng có

dạng hàm delta đơn giản.

Hình 1.6: Đỉnh tạo cặp trong phổ độ cao xung vi phân

Tạo cặp là một quá trình phức tạp bởi positron là hạt không bền và chỉ đi được vài milimet. Khi bị

làm chậm trong môi trường hấp thụ đến năng lượng cỡ năng lượng nhiệt của electron, positron sẽ hủy

với một electron và một cặp photon 0,511 MeV xuất hiện. Có ba khả năng xảy ra

+ Cả 2 photon đều bị hấp thụ. Năng lượng của tia gamma bị mất là: ( h – 1,022 + 1,022) = h

MeV. Như vậy tia gamma mất hoàn toàn năng lượng nên ta có sự đóng góp vào số đếm toàn phần.

+ Chỉ có 1 photon hủy bị hấp thụ, 1 photon thoát ra ngoài nên năng lượng tia gamma mất trong

vùng nhạy là: h – 1,022 + 0,511 = h – 0,511 MeV. Các xung này đóng góp số đếm vào phổ biên độ

xung tạo thành đỉnh thoát cặp thứ nhất (đỉnh thoát đơn, SE).

+ Khi cả 2 photon hủy đều thoát khỏi tinh thể, năng lượng tia gamma mất trong vùng nhạy của

detector là: h – 1,022 MeV. Các xung này đóng góp số đếm vào phổ biên độ xung tạo thành đỉnh

thoát cặp thứ hai (đỉnh thoát đôi, DE).

Tuy nhiên, các xác suất SE và DE này thường rất thấp. Do đó với nguồn cường độ mạnh hoặc đo

thời gian dài mới khảo sát được các đỉnh này.

Thời gian của quá trình hủy electron và positron rất ngắn, vì thế bức xạ hủy xuất hiện gần như

cùng lúc với tương tác tạo cặp ban đầu. Bức xạ hủy này gây ảnh hưởng đáng kể lên đáp ứng của các

detector gamma.

Không có công thức riêng lẻ nào tính được xác suất tạo cặp cho mỗi hạt nhân, nhưng một cách

gần đúng độ lớn của nó thay đổi theo bình phương của Z. Khi năng lượng gamma càng cao thì quá

trình tạo cặp càng trở nên quan trọng.

Hình 1.7: Vùng ưu tiên cho ba loại tương tác chính của gamma với vật chất (Theo The Atomic

Nuclear, R. D. Evans (1955))

1.1.1.4. Tán xạ kết hợp (Coherent scattering)

Cùng với tán xạ Compton, một loại tán xạ khác cũng có thể xuất hiện trong đó photon tương tác

kết hợp với tất cả các electron của một nguyên tử. Tán xạ kết hợp hay tán xạ Rayleigh không kích thích

và ion hóa nguyên tử, photon giữ nguyên năng lượng sau tán xạ. Bởi vì hầu như không có sự truyền

năng lượng nên quá trình này thường được bỏ qua khi khảo sát các tương tác của tia gamma. Tuy nhiên

hướng của photon bị thay đổi nên những mô hình hoàn chỉnh về vận chuyển bức xạ gamma phải tính

đến quá trình này. Xác suất của tán xạ kết hợp chỉ đáng kể đối với photon năng lượng thấp (thường là

dưới vài trăm keV cho các vật liệu thông thường) và môi trường hấp thụ có Z cao.

1.1.2. Những tiến bộ trong lĩnh vực chế tạo detector

Đối với mỗi vùng năng lượng của bức xạ điện từ, khi các công cụ thực nghiệm được phát triển thì

phép đo phổ cũng được cải tiến theo [13]. Ban đầu các detector chỉ xác định sự tồn tại của bức xạ điện

từ; sau đó chúng có thể xác định cường độ bức xạ, nhưng thiếu thông tin về năng lượng bức xạ. Hiện

nay các detector tia X và tia gamma có thể đo đạc được cường độ của bức xạ như là hàm của năng

lượng, tức là xác định được phổ phân bố độ cao xung theo năng lượng. Williams (1976) đã tổng kết

lịch sử các phương pháp đo đạc cho những vùng năng lượng khác nhau của bức xạ điện từ, theo đó

vùng năng lượng được khảo sát sau cùng là vùng năng lượng cao, ứng với tia X và tia gamma.

Năm 1895, Roentgen bắt đầu khảo sát tia X phát ra từ ống phóng điện chứa khí. Đối với tia X, các

thiết bị ghi nhận đầu tiên là kính ảnh, buồng ion hóa chứa khí. Sử dụng các phương pháp của quang

phổ học có thể đo được bước sóng tia X, nhưng phương pháp này không đạt được nhiều thành công

ngoại trừ việc xác định được bức sóng tia X có bậc 0,1 nm. Tuy nhiên Bragg phát hiện ra rằng, có thể

sử dụng các mặt phẳng trong tinh thể tự nhiên có độ tinh khiết cao để nhiễu xạ bức sóng trong vùng

này. Phương pháp nhiễu xạ Bragg đã cho thấy phổ tia X có chứa một phần liên tục và cả cấu trúc vạch

gián đoạn.

Việc nghiên cứu tia gamma cũng được bắt đầu trong thời gian này. Năm 1896 Becquerel khám

phá ra phóng xạ tự nhiên khi tình cờ phát hiện những bức xạ phát ra ở gần một kính ảnh. Năm 1900

Villard đã nhận thấy rằng các bức xạ phát ra từ các chất phóng xạ tự nhiên còn chứa một thành phần

khác có khả năng đâm xuyên mạnh và không bị lệch trong từ trường, gọi là tia gamma.

Sau những quan sát đầu tiên với kính ảnh thì lĩnh vực ghi đo tia X và tia gamma đã được phát

triển cùng với sự cải tiến của các ống đếm chứa khí có từ năm 1908 (Rutherford và Geiger 1908). Các

ống đếm có khả năng đo cường độ của chùm bức xạ nhưng không xác định được năng lượng của nó.

Năm 1948, Hofstadter chế tạo ra detector nhấp nháy NaI(Tl) có khả năng đo được phổ gamma

trong một dải năng lượng rộng. Với kích thước lớn, các tinh thể nhấp nháy có thể hấp thụ các tia

gamma năng lượng lên tới 1 MeV. Các detector loại này có đặc trưng là hiệu suất và độ phân giải tương đối cao (FWHM cỡ 45 keV tại vạch 662 keV của đồng vị 137Cs), tinh thể nhấp nháy có tính chất

lý hóa tương đối ổn định trong quá trình sử dụng. Ngày nay, detector nhấp nháy vẫn được sử dụng phổ

biến vì chúng đơn giản trong bảo quản và vận hành.

Vào những năm 1960, một loại phổ kế gamma khác được bổ sung dựa trên hiện tượng nhiễu xạ

Bragg, gọi là phổ kế nhiễu xạ hay phổ kế tinh thể. Loại phổ kế này có độ phân giải rất cao (FWHM cỡ

1 eV tại vạch 100 keV) ở vùng năng lượng thấp. Nó có nhược điểm là hiệu suất ghi thấp nên chỉ được

dùng để đo những nguồn cường độ lớn và chuẩn hóa các hệ phổ kế gamma khác trong suốt một thời

gian dài của kỷ nguyên detector nhấp nháy.

Bất chấp những thành công của các detector nhấp nháy, vẫn luôn tồn tại câu hỏi liệu có thể tạo ra

một buồng ion hóa từ vật liệu mật độ cao. Câu hỏi này đã dẫn tới sự ra đời của detector bán dẫn Ge(Li)

vào khoảng năm 1962 (Pell 1960, Freck và Wakefield 1962, Webb và Williams 1963, Tavendale và

Ewan 1963). Với những thành công bước đầu, nhiều loại vật liệu bán dẫn khác đã được nghiên cứu để

chế tạo detector bức xạ gamma cũng như các hạt tích điện khác. Để tập hợp điện tích thứ cấp hiệu quả,

các detector loại này phải được chế tạo dạng đơn tinh thể từ vật liệu bán dẫn có độ tinh khiết cao. Do

những khó khăn trong việc chế tạo các đơn tinh thể nên chỉ có một số ít vật liệu được sử dụng như

silicon và germanium. Các detector Ge có thể làm việc trong một dải năng lượng rộng hơn so với detector Si. Detector Ge(Li) có độ phân giải cao (FWHM cỡ 5 keV tại vạch 1332 keV của 60Co) và tốt

hơn 10 lần so với detector nhấp nháy NaI(Tl). Việc nâng cao độ phân giải có một ý nghĩa quan trọng

trong lịch sử chế tạo phổ kế gamma ở cả 2 mặt nghiên cứu và ứng dụng. Tuy nhiên nhược điểm lớn

nhất của các detector bán dẫn là việc giữ lạnh, nói chung là ở nhiệt độ nitrogen lỏng.

Vào những năm 1980, người ta chế tạo thành công các detector bán dẫn với nhiều ưu điểm hơn so

với thế hệ detector bán dẫn trước đây. Loại này cho phép bảo quản ở nhiệt độ phòng giữa các lần sử

dụng, nâng cao đáng kể độ chính xác trong các phép phân tích với hiệu suất ghi và độ phân giải tốt hơn (FWHM dưới 2 keV tại đỉnh 1332 keV của đồng vị 60Co) so với detector Ge(Li) cùng kích thước.

Với việc chế tạo thành công các detector bán dẫn silicon và germanium, các nhà chế tạo đã hướng

tới việc phát triển những detector tương tự với vật liệu Z cao hơn. Mayer (1966) đã đề nghị xem xét

một vài vật liệu gồm hai nguyên tố. Sau đó, Sakai (1982) nghiên cứu lại vấn đề này với vật liệu như

GaAs, CdTe và HgI2, đặc biệt ông chú ý tới khả năng hoạt động ở nhiệt độ phòng của các detector bán

dẫn loại này. Tuy nhiên các detector này không mang lại nhiều hiệu quả vì kích thước nhỏ, độ phân

giải hạn chế và hiệu quả thương mại hạn chế.

1.1.3. Detector germanium siêu tinh khiết

Detector germanium là loại detector ghi nhận tia gamma có độ phân giải cao nhất hiện nay, chúng

được sử dụng rộng rãi cho cả nghiên cứu cơ bản lẫn vật lý ứng dụng. Năng lượng của tia gamma hoặc

beta có thể được đo với độ phân giải lên tới 0,1%. Có hai loại detector bán dẫn germanium là: detector

germanium “khuếch tán lithium” ký hiệu Ge(Li) và detector gemanium siêu tinh khiết ký hiệu (High

Pure Germanium detector). Cả hai loại detector này đều có độ nhạy và độ phân giải tốt nhưng detector

Ge(Li) có một khuyết điểm là nó không ổn định trong môi trường nhiệt độ phòng bởi vì lớp lithium

được “khuếch tán” vào trong vùng nhạy sẽ rò rỉ ra khỏi detector. Sự phát triển của detector có vùng

nhạy bằng chất bán dẫn “không khuếch tán Li” với độ tinh khiết cao sẽ giải quyết được vấn đề này.

Các detector germanium về bản chất là các diode bán dẫn có cấu trúc P-I-N ở đó vùng I là vùng

nhạy đối với bức xạ ion hoá, đặc biệt đối với tia X và gamma. Khi phân cực ngược, sẽ xuất hiện một

điện trường ngang qua vùng I này (khi đó còn gọi là vùng nghèo). Khi photon tương tác với vùng

nghèo này của detector, các điện tích (bao gồm lỗ trống và electron) được tạo ra và được điện trường

này quét về hai cực P và N tương ứng. Điện tích này tỷ lệ với năng lượng tia tới để lại trong detector và

được biến đổi thành xung điện bởi tiền khuếch đại nhạy điện tích. Năng lượng cần thiết để tạo ra một

cặp electron – lỗ trống trong germanium có giá trị trung bình vào khoảng 3 eV. Ví dụ khi một photon

mang năng lượng 1 MeV vào trong detector sẽ tạo ra khoảng 38105 cặp electron – lỗ trống. Chúng ta

có thể tập hợp gần như tất cả những điện tích này trong detector germanium nếu như các tạp chất trong

germanium được loại bỏ đến một mức độ nào đó. Tuy nhiên sự sai biệt thống kê của 38105 cặp là quá

nhỏ cho nên nó có thể bị nhiễu loạn từ các cặp electron – lỗ trống kích thích nhiệt ngẫu nhiên. Để khắc

phục và giảm thiểu được điều này người ta phải làm lạnh tinh thể germanium và chất làm lạnh được sử

dụng chủ yếu là nitơ lỏng với nhiệt độ làm lạnh là 77 K. Bề mặt tinh thể Ge của detector phải được bảo

vệ tránh bị ẩm ướt hay nhiễm bẩn.

Tuy tín hiệu được tạo ra là do sự ion hoá của các electron có động năng, năng lượng của tia

gamma có thể được đo bằng detector germanium bởi vì năng lượng của một photon có thể được chuyển

sang cho các electron. Các tia gamma năng lượng thấp có thể bị hấp thụ hoàn toàn bởi hiệu ứng quang

điện tạo ra một electron mang hầu hết năng lượng của photon tới. Đối với các photon có năng lượng từ

khoảng 100 keV đến dưới 1 MeV, hiệu ứng Compton chiếm vai trò chủ đạo, vì vậy để chuyển toàn bộ

năng lượng photon cho các electron đòi hỏi phải có một hay nhiều hơn các tán xạ Compton và được kết

2

thúc bằng sự hấp thụ quang điện. Sự tạo thành các cặp electron – positron đóng một vai trò quan trọng

ecm2

ở các mức năng lượng trên (1,022 MeV).

1.1.4. Dạng hàm đáp ứng của detector đối với bức xạ gamma đơn năng

Khi đi qua môi trường của detector, tia gamma tới tương tác với detector sẽ được ghi nhận thông

qua các hiệu ứng trực tiếp (hiệu ứng quang điện) hoặc gián tiếp như tán xạ Compton, tạo cặp hoặc thoát

khỏi detector. Tùy theo hình học và cấu trúc cụ thể của detector cũng như bố trí vật liệu xung quanh

detector mà ảnh hưởng tán xạ sơ cấp và thứ cấp lên phổ sẽ thay đổi khác nhau. Một cách tổng quát phổ

gamma đo được là kết quả của sự ảnh hưởng của hệ detector lên phổ tới, làm phân bố lại dạng của phổ

tới, bao gồm đỉnh toàn phần do hiệu ứng quang điện, các đỉnh thoát đơn, thoát đôi từ hiệu ứng tạo cặp,

nền liên tục và các đỉnh tán xạ ngược từ hiệu ứng tán xạ Compton nhiều lần trong môi trường detector

và các vật liệu xung quanh [25]. Phổ gamma điển hình - dạng hàm đáp ứng của detector đối với nguồn 60Co được trình bày trong hình 1.8.

Hình 1.8: Dạng hàm đáp ứng của detector đối với nguồn 60Co

1.1.5. Hiệu suất

1.1.5.1. Định nghĩa về hiệu suất

Thuật ngữ “hiệu suất” được sử dụng trong rất nhiều tài liệu với nhiều ý nghĩa khác nhau. Trong

vật lý thực nghiệm, hiệu suất thường được định nghĩa như là tỉ lệ giữa đáp ứng của dụng cụ và giá trị

của đại lượng vật lý được đo đạc. Trong lĩnh vực phổ kế gamma, đại lượng vật lý ở đây là tốc độ phát

gamma ở một năng lượng xác định và đáp ứng của dụng cụ là tốc độ đếm toàn phần hoặc tốc độ đếm

đỉnh. Một cách tương ứng, ta sẽ phân biệt hai khái niệm hiệu suất toàn phần và hiệu suất đỉnh.

1.1.5.2. Các loại hiệu suất

Dựa vào các đặc điểm nói trên, có hai loại hiệu suất được định nghĩa [13], [21]

- Hiệu suất toàn phần (total efficiency) t: đó là xác suất của một photon phát ra từ nguồn để lại bất

cứ năng lượng nào khác không trong thể tích vùng hoạt của detector.

- Hiệu suất đỉnh (peak efficiency) p: được xác định bằng xác suất của một photon phát ra từ

nguồn để lại toàn bộ năng lượng của nó trong thể tích vùng hoạt của detector.

Hiệu suất đỉnh và hiệu suất toàn phần được liên hệ với nhau qua tỉ số đỉnh / toàn phần, gọi là tỉ số

P/T

TP

/

 p  t

(1.9)

Do xác suất của mỗi cơ chế tương tác phụ thuộc vào năng lượng của photon tới nên hiệu suất đỉnh

và tỉ số P/T cũng phụ thuộc vào năng lượng.

Trong đo đạc thực nghiệm trên hệ phổ kế gamma, khái niệm “hiệu suất” được hiểu là hiệu suất

đỉnh năng lượng toàn phần (full energy peak efficiency) được định nghĩa là tỉ số giữa tốc độ đếm đỉnh ở

năng lượng E (số đếm đỉnh chia cho thời gian đo) và tốc độ phát gamma từ nguồn cũng ở năng lượng E

tương ứng. Đối với một hệ phổ kế gamma cụ thể, bố trí hình học đo xác định và tại vạch năng lượng

quan tâm thì hiệu suất detector có giá trị xác định. Do đó, hiệu suất là một trong những thông số quan

trọng dùng để nghiên cứu các đặc trưng của detector, nguồn phóng xạ và hình học đo. Trong thực

N

pe

nghiệm, hiệu suất detector được tính theo công thức sau [9]

 e

t

2ln

w T 2/1

 yAke

t

m

(1.10)

e là hiệu suất thực nghiệm của detector,

peN là số đếm đóng góp trong quang đỉnh của

Trong đó:

là thời gian đo, y là cường độ phát của tia gamma, A là hoạt độ của nguồn phổ gamma thực nghiệm, mt

tại thời điểm chứng nhận, k là hệ số chuyển đổi từ đơn vị đo hoạt độ phóng xạ khác sang đơn vị Bq, wt

2/1T là chu kỳ bán rã. Sai số tương đối

là thời gian phân rã từ thời điểm chứng nhận đến thời điểm đo và

của hiệu suất thực nghiệm Ue được tính theo công thức

U

UUU

e

2 y

2 p

2 a

(1.11)

Trong đó: Up, Uy, Ua là sai số tương đối của số đếm đóng góp trong quang đỉnh của phổ gamma

thực nghiệm (Npe), cường độ phát xạ của tia gamma (y) và hoạt độ nguồn đo (A) tương ứng.

Trong tính toán MCNP, hiệu suất của detector được xác định bằng công thức [16]

 c

N pe N

s

(1.12)

, c

NN , s

pc

Trong đó: lần lượt là hiệu suất tính toán, số photon phát ra từ nguồn theo mọi hướng

và số photon đóng góp vào quang đỉnh của phổ gamma mô phỏng. Sai số tương đối của hiệu suất tính

toán được xác định theo công thức

U

c

1 N

pc

(1.13)

1.1.5.3. Các yếu tố ảnh hưởng đến hiệu suất ghi của detector

Các yếu tố ảnh hưởng đến hiệu suất detector bao gồm:

+ Phần bức xạ đi trực tiếp từ vật liệu phóng xạ vào detector

+ Phần bức xạ sẽ tán xạ ngược vào detector sau khi phát ra từ vật liệu phóng xạ nhưng không đi

đến detector.

+ Phần bức xạ bị hấp thụ bởi lớp bao bọc detector.

+ Phần bức xạ đi khỏi detector

+ Góc nhìn của nguồn đối với detector

+ Vấn đề hạn chế của hàm đáp ứng thời gian của detector làm trùng phùng số đếm các gamma nối

tầng trong nguồn phân rã đa năng dẫn đến sự thêm hoặc mất số đếm ở đỉnh năng lượng toàn phần.

1.1.6. Detector GEM 15P4 tại Trường Đại học Sư Phạm TP HCM

Năm 2007 phòng thí nghiệm Vật lý hạt nhân Trường Đại học Sư phạm TP HCM đã được trang

bị một hệ phổ kế gamma dùng detector GEM 15P4 với các thông số danh định:

+ Hiệu suất tương đối 15% so với detector nhấp nháy NaI(Tl) kích thước 3 inch x 3 inch. + Độ phân giải năng lượng tại đỉnh 1,332 MeV của đồng vị 60Co là 1,80 keV. + Tỷ số P/C 46:1 tại đỉnh 1,332 MeV của đồng vị 60Co.

+ Dải năng lượng cho phép 5 keV - 4 MeV

+ Phần mềm thu nhận và xử lý phổ Maestro 32.

1.2. PHƯƠNG PHÁP MÔ PHỎNG MONTE CARLO

1.2.1. Giới thiệu chung

Phương trình vận chuyển bức xạ qua vật chất chỉ có thể giải được cho một số cấu hình nhất định.

Tuy nhiên ngày nay quá trình tương tác của photon và electron đã được khảo sát rất chi tiết cũng như

dữ liệu tiết diện luôn có sẵn. Từ đây ý tưởng sử dụng phương pháp mô phỏng Monte Carlo cho việc

giải quyết các bài toán vận chuyển bức xạ được hình thành. Phương pháp Monte Carlo là phương pháp

giải số cho bài toán mô phỏng sự tương tác của những vật thể này với những vật thể khác hay là với

môi trường dựa trên các mối quan hệ vật thể – vật thể và vật thể – môi trường đơn giản. Phương pháp

Monte Carlo cố gắng mô hình hoá tự nhiên thông qua sự mô phỏng trực tiếp các lý thuyết động lực học

cần thiết dựa theo yêu cầu của hệ. Lời giải được xác định bằng cách lấy mẫu ngẫu nhiên của các quan

hệ hay là các tương tác vi mô cho đến khi hội tụ về kết quả. Do vậy cách thực hiện lời giải bao gồm các

hành động hay phép tính được lặp đi lặp lại.

Phương pháp này được sử dụng để mô tả lý thuyết các quá trình thống kê và đặc biệt hữu ích

trong các bài toán phức tạp không thể mô tả bằng các phương pháp tất định. Việc mô phỏng thường

được thực hiện trên máy tính bởi vì số phép thử phải rất lớn để có thể mô tả chính xác hiện tượng.

Trong quá trình mô phỏng một photon hoặc electron được xem như “hạt”. Mỗi hạt sẽ được theo

dõi từ vị trí ban đầu của nó trong nguồn phóng xạ, qua các lớp vật liệu trung gian và vào thể tích nhạy

của detector. Photon sẽ tương tác thông qua các hiệu ứng hấp thụ quang điện, tán xạ Compton và tạo

cặp, từ các tương tác này, electron, positron và các photon thứ cấp (bức xạ hãm, bức xạ huỳnh quang,

lượng tử hủy cặp) được tạo ra. Các số giữa 0 và 1 được lựa chọn một cách ngẫu nhiên để xác định loại

tương tác và vị trí xảy ra tương tác dựa trên các định luật vật lý và xác suất của các quá trình liên quan.

Tại mỗi điểm tương tác, kết quả tương tác sẽ được xác định bằng xác suất của mỗi loại tương tác có thể

và góc tán xạ. Quá trình này được lặp lại cho đến khi hạt nguồn và tất cả các hạt thứ cấp đã để lại toàn

bộ năng lượng của nó hoặc thoát ra khỏi thể tích detector. Nếu tất cả năng lượng này được để lại trong

detector, một số đếm sẽ được đưa vào phổ gamma tại năng lượng xấp xỉ của nó. Quá trình này được lặp

lại cho đến số ngẫu nhiên được giới hạn trước. Bằng cách theo dõi tất cả các sự kiện xảy ra, ta có thể

thu được một phổ phân bố của bức xạ tới.

1.2.2. Đặc trưng của phương pháp Monte Carlo

Tính đúng đắn phương pháp Monte Carlo phụ thuộc vào một số yếu tố như: luật số lớn, định lý

giới hạn trung tâm và số ngẫu nhiên [2].

1.2.2.1. Định lý giới hạn trung tâm

Định lý giới hạn trung tâm mô tả cách ước lượng Monte Carlo tiến đến giá trị thực. Theo lý

thuyết, ước lượng Monte Carlo luôn phân bố chuẩn quanh giá trị thực của bài toán khi N lớn. Độ lệch

chuẩn của việc tính toán Monte Carlo khi đó được cho bởi căn bậc hai của phương sai chia cho N .

Kết quả này là quan trọng cho việc đánh giá độ chính xác của tiến trình Monte Carlo.

1.2.2.2. Luật số lớn

Luật số lớn phát biểu rằng ước lượng phương pháp Monte Carlo của tích phân khi sử dụng n số

b

n

ngẫu nhiên sẽ hội tụ về giá trị thực của tích phân khi n đủ lớn.

)

)( xf

dx

( nf i

1 n

1  ab

1

a

(1.14)

Với f(ni) là hàm được lấy tích phân và ni là tập hợp n số ngẫu nhiên có phân bố đều trong giới hạn

x = a và x = b. Vế trái của phương trình (1.14) là ước lượng Monte Carlo của tích phân còn vế phải là

tích phân thực của hàm giữa a và b. Định lý này đặc biệt quan trọng do nó xác định các kết quả tính

toán Monte Carlo như những ước lượng phù hợp. Do đó hai tính toán Monte Carlo lý tưởng cần tạo ra

cùng một ước lượng (trong sai số thống kê).

1.2.2.3. Số ngẫu nhiên

Để tạo được một dãy số ngẫu nhiên, nhiều phương pháp khác nhau đã được áp dụng. Ở đây, xin

trình bày một phương pháp được dùng phổ biến nhất đó là phương pháp đồng dư tuyến tính. Phương

pháp này đã được sử dụng trong nhiều ngôn ngữ lập trình, chẳng hạn như C, Fortran. Đồng thời nó

cũng là phương pháp chính được sử dụng trong chương trình MCNP5 và DETEFF.

Dùng phương pháp Monte Carlo điều quan trọng nhất là phải tạo ra các số ngẫu nhiên phân bố

đều trên khoảng (0, 1) và có mật độ xác suất bằng 1. Một thuật toán tạo số ngẫu nhiên được gọi là

phương pháp đồng dư tuyến tính như sau

Mx 0

x

ax

c

n

n

1

 n

/ Mxn

là số nguyên lẻ số gieo ban đầu.

Trong đó: a và c là các số nguyên, M thường là một số nguyên có giá trị lớn, x0 là số gieo ban đầu

nx là số ngẫu nhiên ở lần gieo thứ n.

có thể được đặt bởi người dùng trong quá trình tính toán,

Thuật toán tạo số ngẫu nhiên này có ưu điểm là đơn giản, dễ sử dụng, tính toán nhanh và dãy số

ngẫu nhiên do nó tạo ra là khá tốt. Chu kì của phương pháp đồng dư tuyến tính (chiều dài của dãy số

nx sẽ lấy tất

điều này có nghĩa là trong trường hợp tốt nhất thì cho đến khi số đầu tiên bị lặp lại) M

cả các giá trị có trong đoạn.

1.2.3. Chương trình MCNP5

1.2.3.1. Giới thiệu

MCNP là phần mềm vận chuyển bức xạ đa năng dựa trên phương pháp Monte Carlo đã được xây

dựng ở phòng thí nghiệm quốc gia Los Alamos, Mỹ [12]. Đây là một công cụ tính toán rất mạnh, có thể

mô phỏng số vận chuyển neutron, photon và electron, và giải các bài toán vận chuyển bức xạ 3 chiều,

phụ thuộc thời gian, năng lượng liên tục trong các lĩnh vực từ thiết kế lò phản ứng đến bảo vệ bức xạ và vật lý y học với các miền năng lượng neutron từ 10-11 MeV đến 20 MeV và các miền năng lượng

photon và electron từ 1 keV đến 1000 MeV.

Chương trình Monte Carlo vận chuyển hạt đầu tiên là MCS được viết năm 1963. Tiếp theo MCS

là MCN được viết năm 1965. MCN có thể giải bài toán các neutron tương tác với vật chất hình học 3

chiều và sử dụng các số liệu vật lý được lưu trong các thư viện riêng rẽ, phát triển cao.

MCN được hợp nhất với MCG (chương trình Monte Carlo gamma xử lý các photon năng lượng

cao) năm 1973 để tạo ra MCNG – chương trình ghép cặp neutron – gamma. Năm 1973, MCNG được

hợp nhất với MCP (chương trình Monte Carlo photon với xử lý vật lý chi tiết đến năng lượng 1 keV)

để mô phỏng chính xác các tương tác Neutron – Photon và trở thành MCNP từ đó. Mặc dù đầu tiên

MCNP có nghĩa là Monte Carlo neutron – photon song hiện nay nó có nghĩa là Monte Carlo N Particle.

Ở đây, hạt N có thể là neutron, photon và electron.

MCNP3 được viết lại hoàn toàn và công bố năm 1983. MCNP3 là phiên bản đầu tiên được phân

phối quốc tế. MCNP4 được công bố năm 1990. Nó thích ứng với việc mô phỏng hạt N đa tác vụ hoạt

động trên các cấu trúc máy tính song song. MCNP4 đã bổ sung vận chuyển electron.

MCNP4A được công bố năm 1993 với các nét nổi bật là phân tích thống kê được nâng cao, đa tác

vụ làm việc với nhiều bộ xử lý để chạy song song trên hệ cấu trúc máy tính song song.

MCNP4B, được công bố năm 1997, đã đưa vào các toán tử vi phân nhiễu loạn, vật lý photon được

nâng cao.

MCNP4C được công bố năm 2000, mô tả những nét nổi bật của xử lý cộng hưởng không phân

giải, các nâng cao vật lý electron.

MCNP4C2 có các đặc trưng mới là vật lý quang hạt nhân và một vài cải tiến khác, được công bố

năm 2001.

MCNP5 có bổ sung thêm hiệu ứng giản nở Doppler cùng với các thư viện tiết diện được cập nhật.

MCNP được nhóm X-5, ban vật lý ứng dụng, phòng thí nghiệm quốc gia Los Alamos, cải tiến và

công bố phiên bản cứ 2 – 3 năm một lần. MCNP có thể làm việc trên các máy tính Cray UNICOS, các

workstation hay các máy tính (PC) chạy Unix hay Linux, các máy tính chạy trên Window. MCNP đã

cách mạng hóa khoa học không chỉ ở cách nó được ứng dụng mà còn ở thực tế nó đang trở thành kho

kiến thức vật lý. Hiện nay có khoảng 250 người sử dụng MCNP ở Los Alamos. Trên toàn thế giới, có

khoảng 3000 người sử dụng tích cực ở khoảng 200 thiết bị. Kiến thức và kinh nghiệm có trong MCNP

là rất lớn.

Trong 10 năm gần đây các tính toán bằng phần mềm mô phỏng MCNP đã được triển khai ở Viện

Nghiên cứu Hạt nhân Đà Lạt, Trung tâm Nghiên cứu & Triển khai Công nghệ Bức xạ TP HCM, Viện

Khoa học và Kỹ thuật hạt nhân Hà nội, Viện Năng lượng Nguyên tử Việt Nam. Những tính toán này

chủ yếu là các tính toán tới hạn lò phản ứng và các phân bố trường liều bức xạ.

Trong luận văn này, phương pháp mô phỏng Monte Carlo dựa trên cơ sở chương trình MCNP5 đã

được sử dụng để mô hình hóa cấu hình detector – nguồn – buồng chì và xây dựng các đường cong hiệu

suất.

1.2.3.2. Các mô hình tương tác photon trong chương trình MCNP5

Phương pháp Monte Carlo cho phép mô phỏng lần lượt từng photon riêng biệt đi xuyên qua thể

tích hoạt động của detector. Các đại lượng vật lý tuân theo qui luật thống kê được lấy mẫu tương ứng

theo một hàm phân bố xác suất thích hợp. Chẳng hạn, trong trường hợp nguồn điểm, hướng và điểm tới

của tia gamma trên bề mặt detector được xác định bằng cách lấy mẫu ngẫu nhiên từ phân bố đồng

dạng. Điểm tương tác của tia gamma trong thể tích hoạt động của detector được xác định bằng cách lấy

mẫu ngẫu nhiên từ phân bố hàm mũ theo cường độ tia gamma. Cường độ tia gamma trong môi trường

được mô tả theo hàm số phụ thuộc vào hệ số hấp thụ tuyến tính toàn phần và bề dày lớp vật chất như

I

 rteI

sau

t N  t

 0

 

, (1.15)

t

 T

Photoelect

ric

Compton

Scattering

hom

som

Scattering

Pair

production

(1.16)

Trong đó: I là cường độ tia gamma tại độ sâu r bên trong thể tích hoạt động của detector, I0 là

t là tiết diện tương tác hiệu dụng

cường độ tia gamma tại bề mặt detector, N là mật độ nguyên tử,

toàn phần.

r

r

 t

dr

eI 0

Đặt R là số ngẫu nhiên thuộc khoảng (0, 1) và thỏa mãn công thức

R

0 

r

 t

dr

eI 0

(1.17)

0

r



1ln(

R

)

1  t

Suy ra (1.18)

Nếu r vượt quá kích thước giới hạn phần thể tích hoạt động của detector thì tia gamma được xem

như không tương tác và thoát khỏi detector. Còn nếu r nhỏ hơn kích thước giới hạn thì tia gamma được

xem như trải qua một tương tác. Sau đó bản chất của tương tác được xác định bằng cách lấy mẫu theo

các tiết diện tương tác tương ứng với các quá trình tương tác như hấp thụ quang điện, tán xạ Compton,

tán xạ Thomson, tạo cặp … Hướng và năng lượng của tia gamma tán xạ sau đó lại được xác định bằng

việc lấy mẫu theo các hàm phân bố xác suất thích hợp. Các sản phẩm con cháu (electron quang điện,

electron vỏ K, tia X của quá trình quang điện; electron và tia gamma tán xạ của quá trình tán xạ

Compton; electron, positron và các photon hủy cặp của quá trình tạo cặp …) sẽ tiếp tục tương tác bên

trong thể tích hoạt động của detector cho đến khi năng lượng tia gamma tới được hấp thụ hoàn toàn

hoặc một phần và một phần thoát khỏi thể tích hoạt động của detector. Phần năng lượng hấp thụ này sẽ

được chuyển đổi thành xung điện áp với độ cao tỉ lệ tương ứng. Phân bố độ cao xung theo năng lượng

hay còn gọi là phổ gamma mô phỏng được lấy ra bằng thẻ truy xuất kết quả F8 của chương trình

MCNP5. Ngoài ra do ảnh hưởng của ba hiệu ứng là sự giãn rộng thống kê số lượng các hạt mang điện,

hiệu suất tập hợp điện tích và đóng góp của các nhiễu điện tử làm cho quang đỉnh của phổ gamma thực

nghiệm có dạng Gauss. Do đó quá trình mô phỏng phổ gamma còn sử dụng tùy chọn GEB (Gauss

Energy Broadening) của thẻ FT8 trong chương trình MCNP5. Khi đó phổ gamma mô phỏng phù hợp

tốt với phổ gamma thực nghiệm. Dựa trên cơ sở phổ gamma mô phỏng này hiệu suất tính toán của

detector được xác định bằng cách lấy số photon đóng góp trong đỉnh năng lượng toàn phần chia cho số

photon phát ra từ nguồn theo mọi hướng.

Đối với các tương tác photon, MCNP5 có hai mô hình: đơn giản và chi tiết. Trong trường hợp xử

lý đơn giản, MCNP5 bỏ qua tán xạ kết hợp (tán xạ Thomson) và các photon huỳnh quang tạo ra từ hấp

thụ quang điện. Xử lý này được sử dụng cho các bài toán photon năng lượng cao hoặc các bài toán mà

trong đó electron là tự do. Trường hợp xử lý chi tiết sẽ tính đến tán xạ kết hợp và cả photon huỳnh

quang. Xử lý này được áp dụng ở năng lượng dưới giá trị EMCPF của thẻ PHYS:P với giá trị mặc định

là 100 MeV.

Việc tạo ra electron từ photon có thể theo ba cách. Cả ba cách này là như nhau cho cả hai mô hình

đơn giản và chi tiết. (1) Nếu vận chuyển electron được kích hoạt (mode P E) thì tất cả các va chạm

photon ngoại trừ tán xạ kết hợp đều có thể tạo ra electron, các electron này sẽ được dự trữ cho vận

chuyển sau đó. (2) Nếu vận chuyển electron không được kích hoạt (không có E trong thẻ MODE) thì

mô hình bức xạ hãm TTB (thick – target bremsstrahlung) được sử dụng. Mô hình này tạo ra các

electron nhưng giả thiết rằng chúng chuyển động cùng hướng với photon tới và ngay lập tức bị hủy.

Các photon bức xạ hủy này sẽ được lưu trữ cho quá trình vận chuyển sau đó. Gần đúng TTB không

được sử dụng trong các bài toán MODE P E, nhưng là mặc định cho các bài toán MODE P. (3) Nếu tùy

chọn IDES trên thẻ PHYS:P có giá trị 1 thì tất cả các quá trình sinh electron đều bị tắt, do đó không có

photon nào được tạo từ các electron.

Sau đây ta sẽ xét mô hình xử lý chi tiết trong MCNP5 bởi đây là xử lý tốt nhất cho hầu hết các

ứng dụng, đặc biệt là đối với các hạt nhân Z cao hoặc các bài toán xuyên sâu.

Tán xạ Compton (tán xạ không kết hợp)

Để mô hình quá trình tán xạ Compton điều cần thiết là phải xác định góc tán xạ  giữa phương

'E và động năng của

chuyển động của tia tới và photon thứ cấp, năng lượng của photon thứ cấp

'EE 

electron giật lùi . Trong MCNP5 [43], tiết diện tán xạ vi phân được tính theo công thức

, 

d

)

,

( KvZI ),

(  )

d

,

( Zinc

1

(1.19)

 ,

d

)

,

Compton

Scattering

Zinc (



0

(1.20)

2

K

)

,

2 

1

d 

2  ( d r 0

'  

'  

 ' 

  

  

  

  

13

,2

817938

10.

' lần lượt là năng lượng của photon tới và

trong đó là công thức Klein – Nishima,

r 0

'

2



là bán kính electron cổ điển,  và

  cos

  

 1/

 1

cmE / e

), và . Thừa số photon thứ cấp tính bằng đơn vị 0,511 MeV (

vZI ( ),

hiệu chỉnh sẽ làm giảm tiết diện tán xạ vi phân Klein – Nishima (tính cho một electron) theo

hướng về phía trước đối với photon có E thấp và vật liệu có Z cao. Đối với vât liệu có Z bất kỳ, thừa số

v

sin



1

vZI ( ),

ZI (

)0,

0

( ZI

,

)

Z

1 

 2

8

 1



1

v

v



2

,41

2166

,29

1445

cm

sẽ tăng từ đến , trong đó , h là hằng số hiệu chỉnh

max

10 h

cme 2

Planck, , . 

Tán xạ Thomson (tán xạ kết hợp)

Trong tán xạ Thomson, chỉ có hướng của photon tới thay đổi, còn năng lượng của nó không thay

đổi. Để mô hình tán xạ Thomson người ta chỉ tính góc tán xạ  và quá trình vận chuyển tiếp theo của

photon tán xạ. Trong MCNP5 [43], tiết diện quá trình tán xạ vi phân được tính theo công thức

, ) 

d

,

2

TvZC

)(),

d 

(

( Zcoh

1

(1.21)

 , )

d

,

 T

hom

son

Scattering

Zcoh (

 1 

(1.22)

T

d

1(

2 )  d

2 )(  r 0

độc lập với năng lượng photon tới. trong đó

(2 vZC ),

Thừa số hiệu chỉnh sẽ làm giảm tiết diện tán xạ vi phân Thomson theo hướng tán xạ

vZC ), (

ngược với photon có E cao và vật liệu Z thấp. Đối với vật liệu có Z bất kỳ, thừa số hiệu chỉnh

( ZC

)0,

Z

ZC ,

(

)

0

v

 

1

(2 vZC ),

sẽ giảm từ đến . Giá trị của tại được nội suy từ bảng các

)

(2 i vZC , i

8

 1



1

v



2

,41

2166

v

sin



1

,29

1445

cm

có trong thư viện tiết diện tương tác của chương trình MCNP5. Trong đó giá trị

v max

1 

 2

10 h

cme 2

, , , h là hằng số

Planck.

Hấp thụ quang điện

Trong hấp thụ quang điện, năng lượng E của photon tới bị hấp thụ, phát ra một vài photon huỳnh

quang và làm bật ra một electron quỹ đạo có năng lượng liên kết e < E và truyền cho electron động

năng E – e. Trong MCNP5, hấp thụ quang điện được mô tả theo một trong ba trường hợp sau [43]

+ Không có photon huỳnh quang nào năng lượng lớn hơn 1 keV được phát ra. Trong trường hợp

này chỉ có hiện tượng các electron chuyển mức liên tiếp (cascade) để lấp đầy lỗ trống do electron quỹ

đạo bị bật ra từ hấp thụ quang điện hoặc hiệu ứng Auger. Vì không có photon huỳnh quang phát ra nên

quá trình vận chuyển của photon xem như kết thúc.

'

'

'

+ Có một photon huỳnh quang năng lượng lớn hơn 1 keV được phát ra. Ở đây năng lượng photon

E

E

(

 eE

)



e

e

e

'e là phần năng lượng kích thích dư sẽ bị tiêu tán bởi các quá trình Auger tiếp theo và được mô hình

huỳnh quang , E là năng lượng photon tới, E – e là động năng electron thoát,

hóa bằng MODE P E của chương trình MCNP5. Các chuyển đổi trạng thái sơ cấp nhờ năng lượng kích

'e sẽ đóng góp vào hiệu suất huỳnh quang toàn phần và phát ra các tia X như

thích dư

K

(,

KK );

(,

KK );

(,

KKM

);

(,

N

K

)

 1

L 3

 2

L 3

'  1

'  2

.

'e trong trường

+ Có hai photon huỳnh quang có thể được phát ra nếu năng lượng kích thích dư

''e có thể lấp đầy lỗ trống trên quỹ đạo của

hợp (2) lớn hơn 1 keV. Electron có năng lượng liên kết

'e và làm phát ra photon huỳnh quang thứ hai với năng lượng

''

''

electron có năng lượng liên kết

E

'  e

e

''e cũng sẽ bị tiêu tán bởi các quá trình Auger tiếp

. Đến lượt mình, năng lượng kích thích dư

theo và được mô hình bằng MODE P E của chương trình MCNP5. Các chuyển đổi trạng thái thứ cấp

này xảy ra khi các electron ở những lớp cao hơn chuyển về lớp L. Do đó các chuyển đổi trạng thái sơ

1K hoặc

2K sẽ để lại một lỗ trống ở lớp L.

cấp

Mỗi photon huỳnh quang phát ra trong hai trường hợp sau được giả thiết là đẳng hướng và tiếp tục

'E ,

''E > 1 keV. Các năng lượng liên kết e,

'e và

''e phải rất gần với mép hấp thụ tia X

vận chuyển nếu

bởi vì tiết diện hấp thụ tia X thay đổi đột ngột tại các mép này.

Tạo cặp

Hiệu ứng tạo cặp xảy ra khi photon có năng lượng E > 1,022 MeV đi ngang qua trường lực hạt

nhân. Trong MCNP5, hiệu ứng tạo cặp được mô tả theo một trong ba trường hợp sau [43]

+ Cặp electron – positron tạo thành sẽ tiếp tục di chuyển và mất dần năng lượng nhưng không

phát các photon hủy.

+ Cặp electron – positron tạo thành với positron có động năng nhỏ hơn năng lượng kết thúc của

2

electron sẽ không di chuyển và phát ra các photon hủy.

E 

cm 02

+ Cặp electron – positron tạo thành và phần năng lượng còn lại biến thành động năng

cặp electron – positron được giữ lại tại điểm tương tác. Positron hủy với một electron tại điểm tương

tác và tạo ra hai photon có cùng năng lượng 0,511 MeV nhưng có hướng ngược nhau.

1.2.3.3. Dữ liệu hạt nhân và phản ứng của MCNP5

MCNP5 sử dụng các thư viện số liệu hạt nhân và nguyên tử năng lượng liên tục. Các nguồn cung

cấp dữ liệu chính bao gồm:

+ The Evaluated Nuclear Data File (ENDF)

+ The Evaluated Nuclear Data Library (ENDL)

+ The Activation Library (ACTL)

+ Applied Nuclear Science (T – 2) Group tại Los Alamos.

1.2.3.4. Tally F8

MCNP5 cung cấp cho chúng ta 7 tally chuẩn cho neutron, 6 tally chuẩn cho photon và 4 tally

chuẩn cho electron [43]. Các tally cơ bản này có thể thay đổi bởi người dùng theo nhiều cách khác

nhau. Trong bài toán mô phỏng detector thì tally F8 được sử dụng.

Tally F8 hay còn gọi là tally độ cao xung, có chức năng cung cấp các phân bố năng lượng của

xung được tạo ra trong cell detector. Nó cũng cho ta biết sự mất mát năng lượng trong một cell. Tally

độ cao xung này mô phỏng tương tự một detector vật lý. Các khoảng chia năng lượng (energy bin)

trong tally F8 tương ứng với năng lượng toàn phần mất trong detector ở các kênh xác định bởi mỗi hạt

vật lý.

Trong cấu hình thực nghiệm, giả sử nguồn phát ra 100 photon năng lượng 10 MeV và 10 trong số

những photon này đến được detector. Tiếp theo, giả sử photon thứ nhất (và bất kỳ photon con cháu nào

của nó được tạo ra trong detector) để lại 1 keV trong detector trước khi rời khỏi nó, photon thứ hai để

lại 2 keV, và cho đến photon thứ 10 để lại 10 keV. Khi đó độ cao xung ở detector sẽ là 1 xung trong

khoảng chia năng lượng 1 keV, 1 xung trong khe năng lượng 2 keV, cho đến 1 xung trong khoảng chia

năng lượng 10 keV.

Khi đánh giá độ cao xung tương tự bằng MCNP5 ô nguồn được cho một khoảng năng lượng nhân

với trọng số của hạt nguồn. Nếu hạt đi ngang qua một mặt thì năng lượng nhân với trọng số của hạt

được trừ khỏi đi năng lượng tích lũy của ô mà nó rời khỏi và cộng với năng lượng tích lũy của ô mà nó đi vào. Năng lượng là động năng của hạt cộng với 2m0c2 = 1,022 MeV nếu hạt là positron. Ở cuối mỗi

quá trình, năng lượng tích lũy trong mỗi ô đánh giá được chia cho trọng số nguồn. Năng lượng nhận

được khi đó sẽ xác định số ghi được đặt vào khoảng chia năng lượng phù hợp. Giá trị của số ghi là

trọng số nguồn đối với đánh giá F8. Giá trị số ghi này bằng 0 nếu không có hạt nào đi vào ô trong suốt

quá trình mô phỏng.

Khi đánh giá độ cao xung được sử dụng với các khoảng chia năng lượng cần phải lưu ý các số

đếm âm từ quá trình không tương tự và các số ghi 0 gây nên do hạt đi qua ô được đánh giá độ cao xung

nhưng không để lại năng lượng. Trong một số chương trình những sự kiện này gây nên các đóng góp

lớn vào số ghi độ cao xung ở khoảng chia năng lượng nhỏ nhất. Và trong một số chương trình khác lại

không có đóng góp nào từ chúng được thực hiện. MCNP5 dung hòa điều này bằng cách đếm những sự

kiện trên trong khoảng chia 0 và khoảng chia epsilon để những số ghi này có thể được tách ra. Các

electron truyền va chạm (knock – on electrons) được mô phỏng trong MCNP5 là không tương tự vì sự

mất mát năng lượng được bao gồm trong tỉ suất mất mát năng lượng tán xạ nhiều lần chứ không được

trừ đi ở mỗi sự kiện va chạm. Vì vậy, các electron truyền va chạm có thể gây nên các số ghi âm độ cao

xung năng lượng. Những số ghi này sẽ được đặt trong khoảng chia năng lượng 0. Một trường hợp khác

là phân biệt giữa các sự kiện các hạt không đi vào ô và các hạt đi vào ô nhưng không để lại năng lượng.

Trong MCNP, điều này được thực hiện bằng tạo ra mất mát năng lượng tùy ý đủ nhỏ cho các hạt chỉ đi

qua ô và sẽ xuất hiện trong khoảng chia năng lượng zero.

1.2.3.5. Cấu trúc của chương trình

Phần quan trọng để vận hành một chương trình MCNP5 chính là input. Trong file này các thông

số như cấu hình hệ đo, thời gian gieo hạt, số hạt cần gieo, các thông số chính xác của nguồn được khai

báo. Qua các thông số nhận được, MCNP5 sử dụng thư viện số liệu hạt nhân và các quá trình tính toán,

gieo số ngẫu nhiên tuân theo quy luật phân bố, ghi lại sự kiện lịch sử phát ra từ nguồn cho đến hết thời

gian sống của nó. Khả năng mô tả hình học ba chiều của MCNP5 là rất tốt, input chuẩn được chia ra

làm 3 phần là định nghĩa ô, định nghĩa mặt và định nghĩa vật liệu chúng được ngăn cách nhau bằng các

dòng trống. Định nghĩa ô dựa các mặt biên được liên kết lại với nhau tạo thành và được lấp đầy vật

chất đồng nhất tương ứng. Định nghĩa mặt là các dạng toàn phương liên kết tạo thành các ô. Trong định

nghĩa dữ liệu cần phải khai báo nguồn, vật liệu cấu tạo các ô, loại đánh giá cần tính toán, số hạt gieo,

độ quan trọng của các ô.

Cấu trúc input trong MCNP5 được trình bày như sau:

+ Các dòng thông báo (tùy ý)

……………………………………………..(dòng trống).

+ Một dòng thông báo tên bài toán

+ Định nghĩa các ô.

……………………………………………..(dòng trống).

+ Định nghĩa các mặt.

……………………………………………..(dòng trống).

+ Định nghĩa dữ liệu.

1.3. Phương pháp mô phỏng trong nghiên cứu hệ phổ kế gamma

Cùng với sự phát triển của các máy tính điện tử, các phương pháp Monte Carlo ngày càng được

áp dụng rộng rãi trong các nghiên cứu khoa học và công nghệ hạt nhân. Trong nghiên cứu hệ phổ kế

gamma và các đặc trưng của detector đã có nhiều chương trình đáng tin cậy sử dụng phương pháp

Monte Carlo để đánh giá các đặc trưng của hệ phổ kế tiêu biểu như các phần mềm EGS4 (Nelson et al.

1985, Stanford Linear Accelerator Center), GEANT (R. Brun et al. 1986, CERN Data Handling

Division, Geneva), CYLTRAN (Halbleib và Mehlhorn, 1986, Integrates Tiger Series), MCNP (J.F.

Briesmeister, 1997, Los Alamos National Laboratory Report, LA-12625-M), GESPECOR (O. Sima và

D. Arnold, 2000), DETEFF (Cornejo Diaz và D. Pérez Sánchez,1998; Jurado Vargas et al., 2002),

PENELOPE (PENetration and Energy LOss of Photon and Electrons, Salvat et al., 2003). Thông qua

đó người sử dụng có thể mô phỏng lại hệ đo của mình và từ đó đánh giá các đặc trưng mong muốn.

Đa số các công trình nghiên cứu về hệ phổ kế gamma và các đặc trưng của detector đều tập trung

vào các vấn đề liên quan đến mô phỏng hàm đáp ứng, sử dụng mô phỏng trong việc hỗ trợ tính toán

hiệu suất đối với các dạng hình học nguồn và mẫu khác nhau, khảo sát hiệu suất theo năng lượng, theo

khoảng cách, hiệu chỉnh trùng phùng tổng đối với gamma phân rã nhiều tầng, hiệu chỉnh tự hấp thụ đối

với hình học nguồn và mẫu thể tích. Vấn đề quan trọng khi thực hiện bài toán mô phỏng là phải có bộ

số liệu đầu vào về kích thước hình học cũng như cấu trúc và thành phần vật liệu được mô tả càng giống

thực tế càng tốt. Sự đúng đắn này được kiểm chứng bằng cách so sánh kết quả tính toán với số liệu

thực nghiệm của các nguồn chuẩn phóng xạ. Phần dưới đây sẽ liệt kê vắn tắt một số công trình tiêu

biểu liên quan đến việc ứng dụng phương pháp mô phỏng Monte Carlo để nghiên cứu detector bán dẫn

germanium siêu tinh khiết.

1.3.1. Các nghiên cứu trên thế giới

Năm 1992, một chương trình tính toán mang tên MAR được viết bởi nhóm tác giả Bertolo,

Manduchi và Manuchi [10] dựa trên phương pháp Monte Carlo dùng để tính toán hoạt độ của mẫu phóng xạ trong hộp dạng Marinelli với detector. Các dung dịch chuẩn để kiểm tra gồm 57Co, 134Cs, 137Cs, 88Y và 65Zn được đổ vào hộp Marinelli thể tích 3 lít. Kết quả cho thấy sự phù hợp giữa tính toán mô phỏng và thực nghiệm. Từ đó ứng dụng trong phân tích định lượng phóng xạ vết các nguyên tố 40K, 235U, và 228Th cùng con cháu của chúng trong nhiều mẫu nước và bùn.

Năm 1993, Haase, Tait và Wiechen [22] đã triển khai mô phỏng Monte Carlo đối với hệ phổ kế

gamma cho phép tính toán quãng đường đi của photon trong nguồn và detector cũng như hiệu suất toàn

phần. Từ đó đánh giá hệ số hiệu chỉnh tự hấp thụ và trùng phùng tổng. Việc tính toán được thực hiện

khi cho biết kích thước và vị trí tương đối của nguồn với detector, cũng như hiệu suất phát gamma tương ứng. Hệ số hiệu chỉnh trùng phùng tổng đối với các nguồn 22Na, 57Co, 60Co và 88Y dạng trụ và

Marinelli phù hợp tốt với kết quả thí nghiệm hoặc với mô hình tính toán khác. Đường cong hiệu suất

toàn phần và quãng đường đi trung bình của photon trong nguồn cũng được khảo sát cụ thể đối với

detector Ge(Li) và loại p.

Năm 2000, cùng với ý tưởng cần phải kiểm tra lại thông tin về detector cung cấp bởi nhà sản xuất,

nhóm tác giả Talavera, Neder, Daza và Quintana [39] đã sử dụng mô phỏng Monte Carlo với phần

mềm GEANT để mô phỏng hàm đáp ứng hệ detector loại n hiệu suất tương đối 28,3% ở năng lượng

1332 keV. Từ đó tính toán hiệu suất đỉnh toàn phần và so sánh với thực nghiệm với nhiều hình học đo

như: nguồn điểm đặt trên trục detector ở khoảng cách 28 cm, giấy lọc cellulose có bán kính 2,2 cm trên

nắp detector, hộp Marinelli 1,25 lít chứa mẫu nước và các matrix rắn, hộp Petri chứa mẫu dạng rắn.

Các hiệu ứng quan tâm ảnh hưởng đến hiệu suất đỉnh toàn phần bao gồm: ảnh hưởng hình học của

detector liên quan đến thông tin cung cấp từ nhà sản xuất, ảnh hưởng của các đặc trưng từ mẫu bao

gồm tính đồng nhất, hình học mẫu, thành phần hóa học, mật độ liên quan mạnh đến hiệu ứng tự hấp thụ

đặc biệt ở vùng năng lượng thấp.

Năm 2000, Korum và Vidmar [26] đã ứng dụng chương trình mô phỏng Monte Carlo GEANT3

để tính tỉ số đỉnh trên toàn phần của hệ phổ kế gamma dùng detector đồng trục đáy kín kiểu n của hãng

Ortec và nhận thấy rằng hiệu suất tính toán lớn hơn hiệu suất thực nghiệm. Để giải thích sự khác biệt

này các tác giả cho rằng cần phải hiệu chỉnh các thông số lớp lithium ở bề mặt lõi, lớp boron ở bề mặt

ngoài tinh thể germanium siêu tinh khiết và bề dày lớp vỏ nhôm của detector.

Năm 2000, Laborie, Le Petit, Abt và Girad [28] bằng chương trình GEANT3 đã tính toán hiệu

suất đỉnh năng lượng toàn phần của các vạch gamma trong miền năng lượng 46 – 1836 keV được đo

trên hệ phổ kế gamma dùng detector dạng hình giếng. Kết quả cho thấy hiệu suất tính toán với các

thống số do nhà sản xuất cung cấp cao hơn hiệu suất thực nghiệm và thay đổi theo năng lượng. Sự khác

biệt giữa hiệu suất tính toán và thực nghiệm sẽ không đáng kể và không phụ thuộc vào năng lượng khi

bề dày lớp chết dùng để tính toán là 1,5 mm.

Năm 2001, Ewa, Bodizs, Czifrus và Molnar [17] đã ứng dụng chương trình mô phỏng Monte

Carlo MCNP4 để tính toán hiệu suất đỉnh năng lượng toàn phần của hệ phổ kế dùng detector của hãng

Ortec trong miền năng lượng 50 – 2000 keV dựa vào các thông tin về hệ phổ kế do nhà sản suất cung

cấp. So sánh với thực nghiệm cho thấy hiệu suất tính toán lớn hơn hiệu suất thực nghiệm đặc biệt ở

miền năng lượng thấp 50 – 300 keV. Sự khác biệt này được giải thích là do ảnh hưởng của các nguyên

nhân như hạn chế của lý thuyết tương tác giữa bức xạ gamma với vật chất, sự suy giảm photon khi

chúng xuyên qua các lớp vật liệu của hệ phổ kế trước khi đi vào thể tích vùng hoạt tinh thể germanium,

độ hụt phóng xạ, bề dày lớp chết, sai số của tỉ số phân nhánh, tính thăng giáng của quá trình tập hợp

điện tích.

Năm 2002, Tsutsumi, Oishi, Kinouchi, Sakamoto và Yoshida [40] đã ứng dụng chương trình mô

phỏng Monte Carlo EGS – 4 để tính toán mô phỏng và thiết kế hệ phổ kế gamma dùng detector triệt

Compton sử dụng trong việc xác định hoạt độ của mẫu đo và bản thân nó là nguồn phông đáng kể.

Năm 2006, Salgado, Conti và Becker [38] đã tính toán các đặc trưng của detector kiểu planar bằng

chương trình mô phỏng Monte Carlo MCNP5 đối với các tia X trong miền năng lượng 20 – 150 keV và

đã phát hiện có sự khác biệt với thực nghiệm khoảng 10%.

Năm 2006, Dryak và Kovar [16] đã tiến hành đo các thông số vật lý của detector, trong đó có bề

dày lớp germanium bất hoạt bằng phương pháp suy giảm chùm tia gamma 59,5 keV của nguồn phóng xạ 241Am, đường kính và chiều cao tinh thể germanium bằng phương pháp chụp ảnh tia X, đường kính

và độ sâu hốc khoan trong tinh thể bằng phương pháp chụp ảnh phóng xạ. Bộ số liệu này được đưa vào

input của chương trình MCNP4C2 để mô phỏng phổ gamma và tính toán hiệu suất detector trong miền

năng lượng 40 – 2754 keV. Kết quả cho thấy giữa hiệu suất tính toán và thực nghiệm có độ lệch không

vượt quá 1,5%.

1.3.2. Các nghiên cứu trong nước

Tại Việt Nam có nhiều nhóm nghiên cứu ứng dụng phương pháp Monte Carlo trong vận chuyển

bức xạ để khảo sát các đặc trưng của hệ phổ kế.

Nhóm nghiên cứu Lê Văn Ngọc, Nguyễn Thị Thanh Huyền, Nguyễn Hào Quang [29], [30] sử

dụng chương trình MCNP4C2 nghiên cứu tính toán hiệu suất đỉnh cho hệ phổ kế gamma môi trường ký

hiệu GMX tại Viện Khoa học và Kỹ thuật Hạt nhân Hà Nội.

Nhóm nghiên cứu Ngô Quang Huy, Đỗ Quang Bình, Võ Xuân Ân [4], [5], [6] ở Đại học Công

nghiệp TP HCM và Trung tâm Hạt nhân TP HCM nghiên cứu về phổ và tối ưu hiệu suất của hệ phổ kế

gamma detector đặt tại Trung tâm Hạt nhân TP HCM bằng chương trình MCNP4C2.

Nhóm nghiên cứu Mai Văn Nhơn, Trương Thị Hồng Loan, Đặng Nguyên Phương, Trần Ái

Khanh, Trần Thiện Thanh [1], [3], [7] ở Bộ môn Vật lý Hạt nhân, Trường Đại học Khoa học Tự nhiên

TP HCM sử dụng phương pháp mô phỏng Monte Carlo với chương trình MCNP4C2 và MCNP5 để

nghiên cứu chuẩn hiệu suất và đặc trưng đáp ứng của detector có tại Phòng thí nghiệm Bộ môn Vật lý

Hạt nhân.

Các công trình nghiên cứu nói trên đã cho thấy mô phỏng Monte Carlo với các chương trình dựng

sẵn như MCNP rất đáng tin cậy để mô hình hóa chính xác hệ phổ kế, mô phỏng phổ gamma và đánh

giá các đặc trưng của detector.

CHƯƠNG 2

MÔ HÌNH HÓA HỆ PHỔ KẾ GAMMA DETECTOR HPGe

Để mô hình hóa hệ phổ kế gamma bằng chương trình MCNP5, cần phải tìm hiểu chi tiết cấu trúc

vật liệu, các thông số về mật độ, thành phần hóa học, nồng độ nguyên tố, các đặc trưng của nguồn

phóng xạ, loại phân bố năng lượng, xác suất phát, loại hạt gây tương tác trên detector. Như ta đã biết,

hệ phổ kế gamma gồm buồng chì, detector, nguồn phóng xạ và hệ thống điện tử rất phức tạp. Tuy

nhiên khi tiến hành mô hình hóa hệ phổ kế thì có thể bỏ qua những yếu tố đóng góp không đáng kể vào

phổ gamma mô phỏng [8]. Do đó chỉ có cấu trúc hình học và thành phần vật liệu của detector, buồng

chì và nguồn phóng xạ là đáng quan tâm nhất và cần được mô tả càng chính xác càng tốt. Thông tin về

buồng chì có được bằng cách khảo sát, đo đạc trực tiếp, còn thông tin về detector và nguồn phóng xạ

do nhà sản xuất cung cấp. Bộ số liệu đầu vào này phải chính xác và thỏa mãn các chuẩn mực đối với

một input của MCNP5 [43].

2.1. Hệ phổ kế gamma

Hệ phổ kế gamma sử dụng trong luận văn này đặt tại Phòng thí nghiệm Vật lý Hạt nhân, trường

Đại học Sư phạm TP HCM (phụ lục 1). Hệ phổ kế gồm: buồng chì, detector HPGe GEM 15P4, nguồn

cung cấp cao thế, tiền khuếch đại nhạy điện tích, khuếch đại, khối phân tích biên độ đa kênh, khối xử lý

và lưu trữ số liệu. Tuy nhiên, như đã nói ở trên, chỉ có detector, nguồn và buồng chì là được quan tâm.

2.1.1. Detector

Các hình 2.1 và 2.2 trình bày sơ đồ cấu trúc của detector GEM 15P4, cấu trúc hình học và thành

phần vật liệu được lấy từ số liệu do nhà sản xuất cung cấp. Đây là detector germanium siêu tinh khiết

dạng đồng trục với các thông số danh định như đã trình bày trong phần 1.1.6.

Hình 2.1: Cấu trúc bên trong của detector GEM 15P4 [35]

Phần chính của detector là tinh thể germanium siêu tinh khiết có đường kính ngoài 51,2 mm,

chiều cao 45 mm, ở giữa có một hốc hình trụ đường kính 11 mm và chiều cao 33,5 mm. Tín hiệu được

lấy ra từ một điện cực bằng đồng đặt ở trong hốc của tinh thể. Mặt trên và mặt bên của tinh thể được bao phủ bởi lớp lithium khuếch tán 0,7 mm được gọi là lớp germanium bất hoạt. Đây cũng là lớp n+ được nối với cực dương của nguồn điện. Vì lớp tiếp xúc lithium n+ được hình thành bằng cách khuếch

tán lithium vào tinh thể germanium [20], [35], do đó mật độ của lớp này được lấy xấp xỉ mật độ

germanium tinh khiết. Điều này cũng có nghĩa là vùng hoạt của tinh thể nhỏ hơn kích thước vật lý của nó. Mặt trong hốc tinh thể là lớp boron được cấy ion với bề dày 0,3 μm. Đây là lớp p+ được nối với cực

âm của nguồn điện. Mặt trên cùng của tinh thể có phủ hai lớp vật liệu, trong đó lớp trên là kapton 0,1

mm và lớp dưới là mylar được kim loại hóa với bề dày 0,06 mm. Tinh thể germanium đặt trong một

hộp kín bằng nhôm và ghép cách điện với que tản nhiệt bằng đồng. Que tản nhiệt sẽ dẫn nhiệt từ tinh

thể germanium đến bình chứa nitrogen lỏng -1960C (77 K) nhằm giảm tối thiểu ảnh hưởng nhiễu do

dao động nhiệt trong tinh thể germanium và các linh kiện điện tử của tiền khuếch đại. Hộp kín bằng

nhôm có bề dày 0,76 mm để đảm bảo tránh sự hấp thụ photon năng lượng thấp và che chắn bức xạ

hồng ngoại từ bên ngoài vào tinh thể germanium. Các điện cực cách điện với nhau bởi lớp teflon và có

một khoảng chân không trong tinh thể. Toàn bộ hộp kín này được đặt trong một vỏ nhôm có đường

kính 70 mm và dày 1,3 mm. Khoảng chân không giữa mặt trên tinh thể và mặt dưới vỏ nhôm là 3 mm

giúp tránh các va chạm vào bề mặt tinh thể khi lắp ráp detector. Detector được đặt trong một buồng chì

để giảm phông gamma từ môi trường.

Hình 2.2: Tiết diện detector và ảnh tia X của một detector cùng loại của Ortec [11]

2.1.2. Buồng chì

Để giảm phông do các đồng vị phóng xạ tự nhiên và nhân tạo phân bố xung quanh detector làm

ảnh hưởng đến kết quả phân tích phổ gamma, detector và mẫu đo phải được đặt trong một buồng chì

thích hợp. Cấu trúc buồng chì tại Phòng thí nghiệm Vật lý Hạt nhân Trường Đại học Sư phạm TP

HCM được trình bày trên hình 2.3.

Hình 2.3: Tiết diện buồng chì (đơn vị mm)

Dưới đáy buồng chì là một lỗ tròn đường kính 11,5 cm để đặt detector. Buồng chì có dạng hình

trụ với đường kính ngoài 60,2 cm và cao 51,93 cm. Phần nắp buồng chì dày 5 cm, thành dày 7,8 cm và

đáy dày 6,05 cm. Mặt trong của buồng chì là một lớp đồng dày 0,15 cm có tác dụng hấp thụ các tia X

phát ra từ chì. Giữa thân và nắp buồng chì là một lớp sắt dày 0,93 cm làm giá đỡ và di chuyển nắp

buồng chì khi thực hiện việc đo đạc mẫu. Tất cả các kích thước được khảo sát bằng thước cuộn và

thước kẹp.

2.1.3. Nguồn phóng xạ

Nhằm phục vụ cho thực nghiệm và mô phỏng, luận văn đã sử dụng bộ tám nguồn chuẩn model RSS – 8EU do hãng Spectrum Techniques LLC sản suất và nguồn 226Ra của hãng Leybold Didactic

GmbH. Chu kỳ bán rã, hoạt độ, ngày sản xuất và năng lượng gamma của các nguồn này được trình bày

trong phụ lục 4.

Hình 2.4: Ảnh chụp và cấu trúc nguồn cuả hãng Spectrum Techniques LLC

Hình 2.5: Cấu trúc nguồn 226Ra của hãng Leybold Didactic GmbH

Bộ nguồn chuẩn phóng xạ đặt tại Phòng thí nghiệm Vật lý Hạt nhân bao gồm 133Ba, 109Cd, 57Co, 60Co, 22Na và 65Zn. Viên phóng xạ có dạng hình trụ đường kính 0,3048 cm và chiều cao 0,0127 cm,

chứa trong hốc epoxy đường kính 0,635 cm và sâu 0,2619 cm. Cả viên phóng xạ và hốc epoxy được

đặt trong một đĩa plexiglas với đường kính 2,54 cm và chiều cao 0,3 cm. Bề dày cửa sổ kiểu nguồn này

là 0,0381 cm. Mặt trên cùng của đĩa plexiglas có dán một lớp decal với các thông tin về nguyên tố

phóng xạ, hoạt độ, thời gian bán rã, ngày sản xuất, công ty sản xuất và cơ quan cấp chứng nhận nguồn.

Để khảo sát sự phụ thuộc của đại lượng FWHM theo năng lượng và cung cấp các thông số cho tùy chọn GEB trong input của chương trình tính toán, nguồn 226Ra được mượn từ Phòng thí nghiệm Bộ

môn Vật lý Hạt nhân, Trường Đại học KHTN TP HCM và đo trong 24 giờ. Đây là nguồn có dạng đĩa tròn đường kính 6,5 cm, bề dày 0,5 cm làm bằng hợp kim chứa 226Ra đặt trong một hốc hình giếng của

giá đỡ bằng thép không gỉ hình trụ. Trên giá đỡ này có một đầu nối bằng đồng hình bầu dục đàn hồi

nhằm tạo sự thuận tiện khi lắp đặt nguồn trong các thí nghiệm.

2.2. Mô hình hóa hệ phổ kế gamma dùng MCNP5

2.2.1. Mô tả hình học cấu hình detector – buồng chì – nguồn

Để mô hình hóa hệ phổ kế gamma bằng MCNP, phải có một input trong đó các yếu tố cần mô

phỏng được chia thành các ô đồng chất giới hạn bởi các mặt được định nghĩa trước. Đối với bài toán

hiệu tại, cấu hình detector – buồng chì – nguồn được chia làm 23 ô và được lấp đầy bằng vật liệu tương

ứng. Các ô gồm có

Ô 1: Lõi đồng dẫn tín hiệu Ô 7: Vỏ nhôm ngoài cùng

Ô 2: Lớp boron Ô 8: Lớp kapton

Ô 3: Tinh thể Germanium Ô 9: Lớp mylar

Ô 4: Lớp lithium khuếch tán Ô 10: Vỏ cách điện

Ô 5: Lớp nhôm bảo vệ tinh thể Ô 11: Lõi dây dẫn

Ô 6: Chân không bên trong lớp nhôm Ô 12: Chân không phía dưới tinh thể

Tương ứng Ô 13: Cóc teflon Ô 19: Lớp đồng

với 23 ô trên, Ô 14: Chân không trong hốc lõi Ô 20: Chất phóng xạ

cần 44 mặt khác Ô 15: Không khí trong buồng chì Ô 21: Hốc epoxy

nhau. Độ quan Ô 16: Nắp buồng chì Ô 22: Đĩa plexiglas

trọng của 23 ô Ô 17: Thân buồng chì Ô 23: Không gian quanh buồng chì

đầu bằng 1 và Ô 18: Lớp sắt

của ô cuối cùng

bằng 0, nghĩa là trong quá trình mô phỏng nếu có hạt nào ra ngoài buồng chì thì MCNP sẽ không theo

dõi hạt này nữa. Kết quả mô tả hình học bằng MCNP5 được trình bày trong hình 2.6.

Hình 2.6: Cấu hình detector – buồng chì – nguồn được mô hình hóa bằng MCNP5

2.2.2. Input của chương trình MCNP5

Một input điển hình của chương trình MCNP5 trong mô phỏng phổ gamma các nguồn phóng xạ

được trình bày trong phụ lục 6. Trong đó, các 1 và 2 là dòng tiêu đề và dòng thông báo bắt đầu khai

báo thẻ ô (cell card). Dòng thứ 3 là dòng thông báo định nghĩa ô cho detector, những dòng thông báo

loại này nhằm giúp người sử dụng chương trình dễ dàng phân biệt và điều chỉnh các ô khi cần thiết.

Ngoài dòng thông báo, các dòng bắt đầu ký tự “c” như vậy sẽ tạm thời được bỏ qua, MCNP5 sẽ không

xử lý các dòng này. Các dòng từ 4 đến 32 khai báo các thẻ ô, dòng 33 là dòng phân cách, dòng 34 bắt

đầu khai báo thẻ mặt (surface card). Các dòng từ 35 đến 82 khai báo thẻ mặt, dòng 83 là dòng phân

cách, dòng 84 bắt đầu khai báo thẻ dữ liệu (data card). Cụ thể dòng 85 mô tả mode p được sử dụng. Từ

dòng 86 đến dòng 100 mô tả vật liệu. Từ dòng 102 đến dòng 108 mô tả nguồn phóng xạ. Dòng 109 là

thẻ xử lý đặc biệt FT8 với tùy chọn GEB. Dòng tiếp theo 110 mô tả thẻ truy suất kết quả phân bố độ

cao xung theo năng lượng F8. Dòng 111 mô tả thẻ E8 được sử dụng kèm theo thẻ truy suất F8. Trong

đó các khoảng chia năng lượng được chia tương ứng với số kênh của hệ phổ kế gamma, tức là 8192

kênh. Hai dòng cuối 112 và 113 thiết lập điều kiện kết thúc quá trình mô phỏng gồm số photon phát ra

từ nguồn và thời gian tính toán.

Trong quá trình mô phỏng, MODE P được sử dụng thay cho MODE P E để tiết kiệm thời gian

tính toán, vì hiệu ứng Doppler quan trọng trong bài toán phổ gamma tán xạ lại không có đóng góp lên

miền tán xạ năng lượng thấp của phổ gamma hấp thụ toàn phần [3]. Mặt khác ở đây áp dụng mô hình

chi tiết về tương tác của photon với vật chất. Mô hình này, ngoài các quá trình quan trọng, có tính đến

quá trình tán xạ Thomson và phát huỳnh quang. Đối với MODE P, quá trình tương tác của electron với

vật chất được mô phỏng theo mô hình gần đúng TTB của chương trình MCNP5.

Khi photon đi qua vùng nghèo, các cặp hạt mang điện được tạo ra và tập hợp về hai điện cực.

Thông qua tiền khuếch đại nhạy điện tích, điện tích các hạt mang điện được chuyển đổi thành xung

điện áp. Xung điện áp này tỉ lệ với phần năng lượng của photon được giữ lại trong detector. Khi đó,

phổ phân bố độ cao xung, hay phổ gamma mô phỏng được lấy ra bằng thẻ truy suất kết quả F8 của

chương trình MCNP5 như đã trình bày ở phần 1.2.3.4. Khi được truy suất bằng thẻ F8, kết quả phân bố

độ cao xung được tính bằng số đếm theo năng lượng (chuẩn theo số quá trình phát photon từ nguồn tại

năng lượng đó).

Ngoài ra, do ảnh hưởng của ba hiệu ứng là sự giãn rộng thống kê số lượng các hạt mang điện,

hiệu ứng tập hợp điện tích và sự đóng góp của các nhiễu điện tử [25] làm cho các quang đỉnh của phổ

gamma thực nghiệm có dạng Gauss. Tuy nhiên MCNP lại không mô phỏng hiệu ứng này mà sử dụng

một kỹ thuật làm phù hợp về độ rộng đỉnh giữa thực nghiệm và tính toán. MCNP cho phép làm điều

này thông qua tùy chọn GEB (gaussian energy broadening) của thẻ FT8 được sử dụng kèm theo thẻ kết

quả phân bố độ cao xung F8. Với tùy chọn GEB, phổ gamma mô phỏng phù hợp tốt hơn với phổ

gamma thực nghiệm. FWHM (keV) E (keV) Giá trị độ rộng đỉnh năng lượng toàn phần tại Thực nghiệm Tính toán một nữa chiều cao cực đại FWHM phụ thuộc vào năng

lượng E theo công thức bán thực nghiệm sau [43]

FWHM



Eba

2cE

(2.1)

Trong đó: a, b, c là các hằng số được xác định bằng phương pháp làm khớp bình phương tối thiểu

công thức trên với một số vạch năng lượng của nguồn chuẩn phóng xạ. Các giá trị a, b, c sau đó được

đưa vào input chương trình MCNP5 qua tùy chọn GEB

FT8 GEB a b c

Để có được dữ liệu thực nghiệm về sự phụ thuộc của FWHM theo năng lượng E, nguồn phóng xạ 226Ra, như đã đề cập ở phần 2.1.3 được sử dụng. Kết quả thực nghiệm và tính toán được trình bày trong

bảng 2.1 và hình 2.7.

Bằng chương trình Microcal Origin 6.0 dữ liệu đo đạc sẽ được làm khớp công thức bán thực

nghiệm (2.1), các hệ số a, b, c nhận được giá trị sau

a = 0,00091 ± 0,00002

b = 0,00082 ± 0,00004

c = 0,35560 ± 0,06957

Đưa các hệ số này vào tùy chọn GEB, các đỉnh năng lượng trong phổ gamma mô phỏng sẽ được

mở rộng và có dạng Gauss tương tự trong phổ thực nghiệm.

Bảng 2.1: Dữ liệu thực nghiệm và tính toán FWHM từ phổ gamma của 226Ra

295 352 609 665 768 806 1238 1377 1401 1408 1729 1,38 1,42 1,60 1,64 1,72 1,75 2,00 2,08 2,09 2,09 2,27 1,37 1,42 1,61 1,65 1,72 1,74 2,00 2,08 2,09 2,09 2,27

Hình 2.7: Sự phụ thuộc của FWHM vào năng lượng E

2.2.3. Tính toán bề dày lớp germanium bất hoạt

Trong mô tả ban đầu của detector GEM 15P4, các thông số về kích thước hình học và thành phần

vật liệu được lấy từ nhà sản xuất. Tuy nhiên nhiều nghiên cứu đã cho thấy khi tính toán đáp ứng cho

detector, cụ thể là hiệu suất đỉnh năng lượng toàn phần, bằng mô phỏng Monte Carlo thường xuất hiện

một sự chênh lệch giữa tính toán và thực nghiệm. Hiệu suất tính toán Monte Carlo thường cao hơn 10 –

20% so với thực nghiệm, chẳng hạn như trong công trình của Korun [27]. Trong luận văn này, kết quả

tính toán Monte Carlo ban đầu cho hiệu suất ở vị trí nguồn – detector 10 cm được cho trong bảng 2.2.

Có thể thấy giữa tính toán và thực nghiệm, giá trị hiệu suất lệch nhau rất lớn, trong đó giá trị tính toán

luôn cao hơn so với thực nghiệm. Sự chênh lệch này thường xuất phát từ sự bất định trong bề dày lớp

germanium bất hoạt. Gần đây, nhóm nghiên cứu Ngô Quang Huy và cộng sự [6] đã trình bày những kết

quả nghiên cứu cho thấy bề dày lớp germanium bất hoạt này tăng theo thời gian. Sự tăng bề dày lớp

này làm giảm hiệu suất detector do tăng các hiệu ứng hấp thụ, tán xạ và giảm thể tích tinh thể

germanium. Hiệu suất ở vùng năng lượng thấp bị ảnh hưởng do các hiệu ứng hấp thụ và tán xạ làm

giảm khả năng xuyên sâu vào vùng hoạt của tinh thể của tia gamma. Trong khi đó, ở năng lượng cao,

các tia gamma có nhiều khả năng hơn để thoát ra khỏi vùng hoạt tinh thể. Cả hai hiệu ứng này đề làm

giảm diện tích các quang đỉnh và do đó làm giảm hiệu suất. Qua việc scan detector bằng nguồn chuẩn

trực, Debertin và cộng sự [14] cũng đã chứng minh rằng bề dày lớp germanium bất hoạt ở bề mặt tinh

thể germanium thay đổi đáng kể. Sự chênh lệch giữa tính toán và thực nghiệm cũng có thể do độ bất

định trong các kích thước của tinh thể germanium được cung cấp bởi nhà sản xuất. Ngoài ra hiệu suất

thực nghiệm thường thấp hơn tính toán là do tình trạng kém tập hợp điện tích gây bởi những tính chất

của trường điện từ trong detector [18], [19].

Đối với bài toán mô phỏng hệ phổ kế gamma, trong nhiều công trình đã công bố, các kích thước

của detector do nhà sản xuất cung cấp được điều chỉnh lại sao cho kết quả tính toán phù hợp với thực

nghiệm [17], [23], [36], [39]. Đó là bề dày lớp germanium bất hoạt, bề dày lớp boron, bề dày các lớp

vật liệu khác bên trên và xung quanh tinh thể germanium, đường kính và chiều cao tinh thể, khoảng

cách giữa tinh thể và nắp nhôm. Trong đó sự thay đổi bề dày lớp germanium bất hoạt ảnh hưởng nhiều

nhất đến kết quả tính toán và do đó thường được tính toán lại [6], [17], [23].

Bảng 2.2: So sánh hiệu suất thực nghiệm và tính toán tại vị trí nguồn – detector 10cm

Thực nghiệm Tính toán Độ lệch (%) Năng lượng (keV)

80,99 88,03 122,06 136,47 276,39 302,85 356,02 383,85 511,00 1115,55 Hiệu suất Sai số (%) Hiệu suất Sai số (%) 0,005862 0,006651 0,008324 0,008314 0,005327 0,004928 0,004157 0,003832 0,002794 0,001281 0,008491 0,008680 0,009907 0,009674 0,005770 0,005267 0,004422 0,004101 0,003069 0,001501 0,34 0,32 0,34 0,35 0,50 0,51 0,58 0,59 0,40 0,62 0,58 1,02 1,61 1,64 0,66 0,60 0,58 0,67 0,73 1,87 44,84 30,50 19,02 16,35 8,32 6,89 6,36 7,01 9,85 17,20

1173,24 1274,53 1332,50 0,001209 0,001154 0,001082 0,65 0,77 2,08 0,001436 0,001340 0,001285 0,65 0,69 0,68 18,80 16,06 18,80

Trong luận văn này, bề dày lớp germanium bất hoạt do nhà sản xuất cung cấp (0,07 cm) được tính

toán lại dựa trên cơ sở phương pháp luận của công trình [6]. Để thực hiện việc này, các nguồn phóng xạ chuẩn gồm 133Ba, 109Cd, 57Co, 60Co, 22Na, 65Zn được sử dụng để đo đạc và tính toán hiệu suất đối với

13 quang đỉnh tương ứng tại độ cao 10 cm so với mặt trên detector. Độ cao 10 cm được chọn vì đây là

điểm chính giữa của vùng không gian đặt mẫu đo giữa mặt detector và nắp buồng chì, hơn nữa độ cao

này nhằm tránh tán xạ của tia gamma với nắp buồng chì và tránh hiệu ứng trùng phùng tổng có thể gây

sai lệch hiệu suất của detector. Hiệu suất thực nghiệm được cho trong bảng 2.2 với sai số bé hơn 3%.

Bảng 2.3 và hình 2.8 trình bày hiệu suất tính toán bằng MCNP5 trong đó bề dày lớp germanium bất

 ay

ln(

b

x

)

hoạt được lấy theo các giá trị 0,07; 0,11; 0,15 và 0,19 cm. Kết quả cho thấy bề dày lớp germanium bất

hàm số hoạt nghịch biến với hiệu suất detector. Các số liệu được làm khớp bình phương tối thiểu theo dạng với hệ số xác định R2 ≈ 0,999. So sánh các giá trị hiệu suất thực nghiệm của

detector với các đường làm khớp tương ứng trong hình 2.8 có thể xác định được bề dày lớp germanium

bất hoạt (cm), giá trị này được trình bày ở dòng cuối cùng của bảng 2.3. Giá trị bề dày này sẽ được đưa

vào input của chương trình mô phỏng thay cho giá trị được cung cấp bởi nhà sản xuất. Cũng cần lưu ý

rằng, đây chỉ là giá trị trung bình của bề dày lớp germanium bất hoạt bởi vì nó không có giá trị chính

xác đồng thời thay đổi trên khắp bề mặt tinh thể [14].

Hình 2.8: Hiệu suất tính toán theo các bề dày lớp germanium bất hoạt khác nhau

Lớp germanium bất hoạt là một lớp germanium có pha lithium theo phương pháp khuếch tán, nó

trở thành một lớp vật liệu không thu góp năng lượng của bức xạ mà chỉ thuần túy hấp thụ và tán xạ. Bề

dày lớp này nhỏ nhất khi detector xuất xưởng và tăng dần nếu detector ở nhiệt độ cao do lithium tiếp

tục khuếch tán vào sâu trong thể tích tinh thể germanium. Khi mới nhập về tháng 12/2007, detector

GEM 15P4 được bảo quản ở nhiệt độ phòng 6 tháng năm 2008 trước khi đưa vào phòng thí nghiệm.

Sau đó 2 tháng năm 2009 và 2 tháng năm 2010, hệ phổ kế gamma không làm việc và detector không

được giữ lạnh ở nhiệt độ nitơ lỏng. Để có thể định lượng sự gia tăng bề dày lớp germanium bất hoạt

cần có những nghiên cứu chi tiết hơn nữa, tuy nhiên với những khảo sát ban đầu này, có thể kết luận

rằng, bề dày lớp germanium bất hoạt đã tăng.

Bảng 2.3: Hiệu suất detector và kết quả tính toán bề dày lớp germanium bất hoạt

Bề dày lớp germanium bất hoạt (cm) Năng lượng 0,07 0,11

80,99 88,03 122,06 136,47 276,39 302,85 356,02 383,85 511,00 1115,55 1173,24 1274,53 1332,50 0,15 0,005569 0,006094 0,008081 0,008044 0,004982 0,004557 0,003821 0,003551 0,002667 0,001300 0,001255 0,001159 0,001110 0,19 0,004508 0,005097 0,007267 0,007363 0,004644 0,004239 0,003559 0,003290 0,002482 0,001208 0,001155 0,001071 0,001031 Bề dày tính toán (cm) 0,1404 0,1302 0,1380 0,1362 0,1142 0,1073 0,1041 0,1070 0,1234 0,1580 0,1669 0,1510 0,1641 0,008491* 0,006892 0,007280 0,008680 0,008956 0,009907 0,008828 0,009674 0,005375 0,005770 0,004915 0,005267 0,004116 0,004422 0,003804 0,004101 0,002862 0,003069 0,001397 0,001501 0,001340 0,001436 0,001248 0,001340 0,001196 0,001285 Trung bình ± Độ lệch chuẩn = 0,1339 ± 0,0219

2.2.4. Kiểm tra độ tin cậy của chương trình

Để có thể sử dụng được input đã xây dựng được cho các tính toán tiếp theo, điều quan trọng là

phải xác định độ tin cậy của chương trình mô phỏng cũng như độ tin cậy của các thông tin do nhà sản

xuất cung cấp. Cách hiệu quả nhất để làm việc này là so sánh với các số liệu thu được từ thực nghiệm.

Ở đây hiệu suất thực nghiệm và tính toán bằng MCNP5 của detector với các cấu hình đo khác nhau sẽ

được so sánh. Các thí nghiệm và mô phỏng được tiến hành trên các nguồn chuẩn có hình học đã mô tả

ở phần 2.1.3. Để sai số tương đối của hiệu suất tính toán dưới 1% việc mô phỏng được thực hiện với số quá trình của hạt cỡ 108, trong đó bề dày lớp germanium bất hoạt được lấy theo giá trị đã được tính

toán phía trên. Trong thực nghiệm, mỗi nguồn chuẩn phóng xạ được đo trong khoảng thời gian sao cho số đếm đỉnh lớn hơn 104 để sai số thống kê đạt dưới 1%. Kết quả xác định diện tích đỉnh từ phổ gamma

của các nguồn chuẩn được trình bày trong bảng 2.4.

Bảng 2.4: Dữ liệu đo phổ gamma nguồn chuẩn

Đồng vị NL (keV) DT SS (%) TC (%) TD(s)

Khoảng cách nguồn – detector 5 cm

Co-60

Na-22

Zn-65 Co-57

Ba-133

Cd-109 1173,24 1332,50 511,00 1274,53 1115,55 122,06 136,47 80,99 276,39 302,85 356,02 383,85 88,03 147956 130481 638263 138767 97480 751750 91970 720843 101179 238743 680044 90031 99861 0,26 0,28 0,13 0,27 0,32 0,12 0,33 0,12 0,31 0,20 0,12 0,33 0,32 4,72 4,72 5,98 5,98 0,18 0,52 0,52 5,16 5,16 5,16 5,16 5,16 0,09 1800 1800 2400 2400 18000 9000 9000 3000 3000 3000 3000 3000 12600

Khoảng cách nguồn – detector 10 cm

Co-60

Na-22

Zn-65 Co-57

Ba-133

Cd-109 1173,24 1332,50 511,00 1274,53 1115,55 122,06 136,47 80,99 276,39 302,85 356,02 383,85 88,03 160507 143050 520644 115864 95824 793197 98851 567590 85731 202923 579510 76964 109452 0,25 0,26 0,14 0,29 0,32 0,11 0,32 0,13 0,34 0,22 0,13 0,36 0,30 1,80 1,80 2,29 2,29 0,08 0,08 0,19 0,19 1,91 1,91 1,91 1,91 1,91 5400 5400 5400 5400 50400 28800 28800 7200 7200 7200 7200 7200 43200

Khoảng cách nguồn – detector 15 cm

Co-60

Na-22

Zn-65 Co-57

Ba-133

Cd-109 1173,24 1332,50 511,00 1274,53 1115,55 122,06 136,47 80,99 276,39 302,85 356,02 383,85 88,03 117047 104671 526302 118912 125138 680757 84718 954636 151978 354014 1016387 135421 130715 0,29 0,31 0,14 0,29 0,28 0,12 0,34 0,10 0,26 0,17 0,10 0,27 0,28 1,00 1,00 1,27 1,27 0,05 0,11 0,11 0,10 0,10 0,10 0,10 0,10 0,03 7800 7800 10800 10800 129600 50400 50400 25200 25200 25200 25200 25200 108000

Trong đó: NL là năng lượng quang đỉnh, DT là diện tích quang đỉnh tại năng lượng tương ứng, SS

là sai số diện tích đỉnh, TC là thời gian chết và TD là thời gian đo nguồn. Với số liệu đo được, hiệu suất

thực nghiệm được tính toán theo công thức đã nêu ở phần 1.1.5.2, sau đó so sánh với kết quả có được

bằng mô phỏng. Bảng 2.5 thể hiện kết quả so sánh giữa thực nghiệm và tính toán.

Bảng 2.5: So sánh hiệu suất thực nghiệm và tính toán

NL (keV) δ (%) εTN SSTN (%) εTT SSTT (%)

Khoảng cách nguồn – detector 5 cm

80,99 88,03 122,06 136,47 276,39 302,85 356,02 383,85 511,00 1115,55 1173,24 1274,53 1332,50 0,018479 0,020877 0,025392 0,024899 0,015605 0,014391 0,012109 0,011127 0,007997 0,003631 0,003462 0,003315 0,003078 0,57 1,02 1,61 1,64 0,64 0,60 0,57 0,65 0,72 1,87 0,66 0,76 0,67 0,019313 0,020663 0,025925 0,025456 0,014905 0,013577 0,011398 0,010509 0,007778 0,003663 0,003535 0,003290 0,003156 0,23 0,23 0,22 0,23 0,33 0,33 0,37 0,39 0,47 0,74 0,75 0,80 0,82 4,51 1,03 2,10 2,24 4,48 5,65 5,87 5,55 2,73 0,90 2,10 0,76 2,53

Khoảng cách nguồn – detector 10 cm

80,99 88,03 122,06 136,47 276,39 302,85 356,02 383,85 511,00 1115,55 1173,24 1274,53 1332,50 0,005862 0,006651 0,008324 0,008314 0,005327 0,004928 0,004157 0,003832 0,002794 0,001281 0,001209 0,001154 0,001082 0,58 1,02 1,61 1,64 0,66 0,60 0,58 0,67 0,73 1,87 0,66 0,77 0,66 0,006206 0,006665 0,008504 0,008434 0,005174 0,004727 0,003961 0,003673 0,002731 0,001348 0,001262 0,001199 0,001116 0,43 0,41 0,42 0,42 0,57 0,60 0,63 0,63 0,83 0,77 0,83 0,78 0,89 5,87 0,21 2,16 1,44 2,86 4,07 4,71 4,14 2,24 5,26 4,39 3,89 3,15

Khoảng cách nguồn – detector 15 cm

80,99 88,03 122,06 136,47 276,39 302,85 356,02 383,85 511,00 0,002765 0,003167 0,004027 0,004017 0,002648 0,002411 0,002045 0,001891 0,001393 0,57 1,01 1,60 1,63 0,62 0,59 0,57 0,62 0,73 0,002919 0,003209 0,004132 0,004131 0,002598 0,002387 0,002009 0,001866 0,001402 0,57 0,51 0,52 0,52 0,72 0,76 0,84 0,87 0,73 5,56 1,30 2,59 2,83 1,91 1,01 1,75 1,32 0,60

1115,55 1173,24 1274,53 1332,50 0,000648 0,000603 0,000566 0,000539 1,86 0,67 0,77 0,68 0,000685 0,000638 0,000576 0,000570 0,86 0,98 0,96 0,95 5,63 5,79 1,70 5,78

Trong đó: εTN, SSTN, εTT, SSTT và δ là hiệu suất thực nghiệm, sai số tương đối của hiệu suất thực

nghiệm, hiệu suất tính toán, sai số tương đối của hiệu suất tính toán và độ lệch tương đối giữa tính toán

với thực nghiệm.

Từ các bảng số liệu trên có thể thấy rằng sự sai lệch nhỏ hơn 6% ở cả 3 cấu hình đo và các số liệu

hiệu suất thu được từ chương trình MCNP5 là phù hợp với thực nghiệm. Kết quả này đã khẳng định

hiệu lực của chương trình mô phỏng MCNP5 cũng như sự mô tả hình học hệ đo một cách chi tiết. Từ

đây có thể kết luận rằng bộ số liệu đầu vào này là đủ tin cậy cho các tính toán tiếp theo trên hệ phổ kế

gamma với detector GEM 15P4.

2.3. Mô phỏng phổ gamma

Để kiểm tra tính hiệu lực của chương trình mô phỏng cho bài toán về phổ, cần thiết phải so sánh phổ mô phỏng với phổ thực nghiệm. Nguồn 60Co đã được sử dụng để tiến hành đo đạc thực nghiệm và mô phỏng. Nguồn 60Co được lựa chọn với lý do đây là nguồn được sử dụng nhiều trong thực tế cho mục đích xác định các thông số danh định của hệ đo, đồng thời năng lượng gamma của nguồn 60Co có

thể gây ra hầu hết các hiệu ứng đại diện cho tương tác của bức xạ gamma với detector. Nguồn được đo

ở khoảng cách 10 cm so với bề mặt detector trong thời gian 216000 s để có thể khảo sát được các đỉnh

thoát đơn (SE), đỉnh thoát đôi (DE), đỉnh bức xạ hủy (511 keV). Việc mô phỏng được thực hiện với

cấu hình tương tự như thực nghiệm và số lịch sử hạt là 2 tỉ nhằm loại bỏ những thăng giáng thống kê

trong phổ gamma.

Hình 2.9 và bảng 2.6 trình bày sự so sánh giữa hai phổ gamma thực nghiệm và tính toán ở các

đỉnh quan tâm. Trong đó giá trị diện tích đỉnh tính toán được chuẩn theo thực nghiệm đối với vạch

năng lượng 1332,5 keV, vạch này được chọn vì có năng lượng lớn nên không bị ảnh hưởng bởi các nền

Compton của các quang đỉnh khác.

90000

75000

Mô phỏng MCNP5 Thực nghiệm

60000

45000

m ế đ ố S

30000

15000

0

0

200

400

600

800

1000

1200

1400

Năng lượng (keV)

21

Mô phỏng MCNP5

18

Thực nghiệm

15

12

9

m ế đ ố S

6

3

0

0

200

400

600

800

1000

1200

1400

Năng lượng (keV)

Hình 2.9: So sánh phổ 60Co thực nghiệm và mô phỏng theo giai đo tuyến tính

Hình 2.10: So sánh phổ 60Co thực nghiệm và mô phỏng theo giai đo logarithm

Bảng 2.6: Đánh giá tỷ lệ diện tích các đỉnh năng lượng quan tâm

Tính toán (TT) Thực nghiệm (TN) Tỷ lệ TT/TN

Đỉnh BS DE 511,00 SE 1173,24 1332,50 Tỷ số P/C 3931966 257469 268188 309734 7332772 6395542 45:1 3205532 290040 284966 358972 6450712 5621706 51:1 1,2 0,9 0,9 0,9 1,1 1,1 0,9

Hình 2.9 cho thấy phổ mô phỏng và thực nghiệm gần như trùng nhau. Các quang đỉnh 1332,5 keV,

1173,24 keV, đỉnh thoát đơn, đỉnh bức xạ hủy, đỉnh thoát đôi và đỉnh tán xạ ngược có cùng vị trí trên

phổ với độ cao tương đối phù hợp. Tỉ lệ về diện tích giữa các đỉnh này gần bằng đơn vị như đã thể hiện

trong bảng 2.6. Tuy nhiên phổ mô phỏng nằm hơi cao hơn so với phổ thực nghiệm. Điều này có thể

xuất phát từ những nguyên nhân như ảnh hưởng của hệ điện tử, sự không phù hợp giữa số đếm tích lũy

trong phổ gamma thực nghiệm và mô phỏng. Ngoài ra, phổ gamma mô phỏng chưa thể tái tạo lại hoàn

toàn phổ thực nghiệm ở vùng năng lượng dưới 250 keV do các vật liệu phức tạp và khó xác định xung

quanh detector chưa được đưa vào chương trình mô phỏng. Một lý do nữa gây ra sự khác biệt ở vùng

năng lượng thấp là trong tính toán mô phỏng, quá trình vận chuyển electron bị bỏ qua (sử dụng mode P thay cho mode P E như đã đề cập ở phần 2.2.2), trong khi đó 60Co phát electron với năng lượng cực đại

là 318 keV. Nhận xét này phù hợp với nhiều nghiên cứu khác [3], [5], [9], [41]. Hình 2.10 được biểu

diễn theo giai đo logarithm cho thấy sự phù hợp tốt hơn giữa mô phỏng và thực nghiệm. Lưu ý rằng có

một sự chênh lệch khá rõ giữa mô phỏng và thực nghiệm ở đuôi trái của đỉnh 1332,5 keV. Sự khác biệt

này được giải thích là do MCNP mô phỏng đỉnh dạng Gauss lý tưởng với tùy chọn GEB, trong khi đó

đuôi trái của phổ thực nghiệm sẽ bị nâng lên do nền tán xạ Compton. Tỷ số P/C cũng được tính toán đối với đỉnh 1332,5 keV của 60Co, hai kết quả tính toán và thực nghiệm phân bố xung quanh giá trị

danh định 46:1 của detector GEM 15P4 và có tỷ lệ là 0,9.

Những kết quả trên khẳng định chương trình mô phỏng được xây dựng là có hiệu lực tốt

không chỉ cho việc chuẩn hiệu suất đỉnh của detector mà cả trong các bài toán về phổ gamma.

CHƯƠNG 3

MÔ PHỎNG ĐƯỜNG CONG HIỆU SUẤT ĐỈNH

NĂNG LƯỢNG TOÀN PHẦN

3.1. KẾT QUẢ MÔ PHỎNG

Trên cơ sở khẳng định độ tin cậy của chương trình mô phỏng ở phần 2.2.4, đường cong hiệu suất

sẽ được tiếp tục hoàn thiện bằng mô phỏng MCNP5. Có 32 đỉnh năng lượng trải dài từ 59 keV đến 2

MeV đã được chọn để tính toán. Các đỉnh năng lượng này được chọn theo khuyến cáo từ tài liệu

IAEA-TECHDOC-619 [24], đây là những tia gamma phát với xác suất cao từ các nguồn có chu kỳ bán

rã tương đối dài và thường được sử dụng để chuẩn detector gamma. Chương trình mô phỏng với cấu

hình đo tương tự như thực nghiệm được chạy với số lịch sử hạt đủ lớn sao cho sai số hiệu suất dưới

1%. Ngoài ra, để có đủ dữ liệu thành lập một công thức giải tích cho hiệu suất theo năng lượng và

khoảng cách như sẽ trình bày ở phần sau, 3 khoảng cách 7,5; 12,5 và 17,5 cm tiếp tục được mô phỏng.

Kết quả quá trình tính toán được trình bày trong bảng 3.1 và 3.2. Kết quả này, cùng với những giá

trị hiệu suất đã tính toán đối với các nguồn thực ở phần 2.2.4 cho thấy sự thay đổi của hiệu suất theo

năng lượng và khoảng cách từ nguồn đến detector một cách tương đối đầy đủ.

Bảng 3.1: Kết quả mô phỏng MCNP5 hiệu suất cho 3 khoảng cách 5, 10 và 15 cm

Khoảng cách nguồn – detector 5 cm Khoảng cách nguồn – detector 10 cm Khoảng cách nguồn – detector 15 cm

Năng lượng (keV) Hiệu suất Hiệu suất Hiệu suất

59,54 74,66 96,73 165,85 171,28 188,25 244,69 255,06 344,28 391,69 411,12 443,97 514,01 591,76 661,66 702,65 0,005142 0,012415 0,023503 0,022517 0,022247 0,020815 0,016594 0,015961 0,011661 0,010153 0,009622 0,008876 0,007673 0,006678 0,006005 0,005665 Sai số (%) 0,36 0,24 0,22 0,22 0,22 0,23 0,31 0,31 0,37 0,40 0,41 0,42 0,38 0,44 0,43 0,39 0,001707 0,004032 0,007584 0,007595 0,007534 0,007092 0,005768 0,005548 0,004074 0,003557 0,003374 0,003125 0,002709 0,002359 0,002126 0,002001 Sai số (%) 0,61 0,37 0,38 0,36 0,37 0,38 0,50 0,49 0,61 0,66 0,69 0,72 0,48 0,51 0,55 0,56 0,000821 0,001951 0,003647 0,003765 0,003722 0,003521 0,002877 0,002767 0,002061 0,001810 0,001717 0,001598 0,001384 0,001201 0,001084 0,001023 Sai số (%) 0,83 0,56 0,48 0,53 0,51 0,55 0,68 0,62 0,92 0,81 0,97 0,81 0,59 0,75 0,68 0,62

778,90 834,84 867,38 898,04 964,07 1085,84 1212,95 1299,14 1408,02 1494,05 1596,49 1620,74 1771,35 1810,70 1836,06 1963,80 0,005154 0,004827 0,004660 0,004522 0,004228 0,003800 0,003442 0,003228 0,003014 0,002847 0,002689 0,002642 0,002440 0,002387 0,002370 0,002231 0,38 0,50 0,39 0,52 0,41 0,44 0,47 0,52 0,55 0,54 0,56 0,57 0,60 0,62 0,80 0,65 0,001822 0,001709 0,001656 0,001607 0,001512 0,001377 0,001241 0,001167 0,001093 0,001029 0,000980 0,000961 0,000891 0,000869 0,000863 0,000814 0,63 0,63 0,67 0,65 0,71 0,75 0,81 0,84 0,88 0,73 0,78 0,77 0,81 0,83 0,92 0,87 0,000921 0,000875 0,000846 0,000824 0,000773 0,000703 0,000631 0,000595 0,000555 0,000525 0,000508 0,000495 0,000459 0,000448 0,000444 0,000423 0,96 0,77 0,92 0,83 0,97 0,93 0,82 0,76 0,77 0,76 0,86 0,88 0,73 0,92 0,72 0,75

Bảng 3.2: Kết quả mô phỏng MCNP5 hiệu suất cho khoảng cách 7,5, 12,5 và 17,5 cm

Khoảng cách nguồn – detector 7,5 cm

Năng lượng (keV) Hiệu suất Hiệu suất Hiệu suất

59,54 74,66 80,99 88,03 96,73 122,06 136,47 165,85 171,28 188,25 244,69 255,06 276,39 302,85 344,28 356,02 383,85 391,69 411,12 443,97 511,00 514,01 591,76 0,002764 0,006585 0,009892 0,010690 0,012400 0,013662 0,013515 0,012190 0,012069 0,011335 0,009110 0,008759 0,008146 0,007412 0,006441 0,006209 0,005745 0,005613 0,005325 0,004919 0,004271 0,004257 0,003707 Sai số (%) 0,45 0,32 0,31 0,34 0,29 0,32 0,34 0,31 0,33 0,36 0,41 0,42 0,42 0,47 0,47 0,55 0,57 0,51 0,53 0,56 0,70 0,51 0,61 Khoảng cách nguồn – detector 12,5 cm Sai số (%) 0,82 0,58 0,56 0,51 0,53 0,50 0,51 0,50 0,51 0,53 0,60 0,61 0,70 0,68 0,73 0,75 0,78 0,82 0,82 0,76 0,93 0,76 0,84 0,001144 0,002792 0,004052 0,004386 0,005110 0,005678 0,005664 0,005182 0,005126 0,004832 0,003939 0,003784 0,003516 0,003228 0,002806 0,002713 0,002511 0,002451 0,002321 0,002163 0,001878 0,001862 0,001619 Khoảng cách nguồn – detector 17,5 cm Sai số (%) 0,84 0,59 0,57 0,55 0,55 0,54 0,55 0,58 0,59 0,61 0,69 0,81 0,75 0,85 0,87 0,87 0,91 0,91 0,85 0,89 0,98 0,92 0,98 0,000621 0,001463 0,002152 0,002427 0,002747 0,003030 0,003050 0,002842 0,002819 0,002662 0,002188 0,002111 0,001950 0,001784 0,001557 0,001505 0,001404 0,001377 0,001308 0,001212 0,001056 0,001052 0,000912

0.030

0.025

Nguồn - detector 5 cm Nguồn - detector 7.5 cm Nguồn - detector 10 cm

0.020

Nguồn - detector 12.5 cm Nguồn - detector 15 cm Nguồn - detector 17.5 cm

0.015

t ấ u s u ệ i H

0.010

0.005

0.000

0

300

600

1500

1800

900

1200 Năng lượng (keV)

661,66 702,56 778,90 834,84 867,38 898,04 964,07 1085,84 1115,55 1173,24 1212,95 1274,53 1299,14 1332,50 1408,02 1494,05 1596,49 1620,74 1771,35 1810,70 1836,06 1963,80 0,003322 0,003139 0,002857 0,002672 0,002595 0,002530 0,002373 0,002148 0,002080 0,001990 0,001953 0,001859 0,001837 0,001790 0,001708 0,001618 0,001515 0,001488 0,001381 0,001354 0,001346 0,001263 0,61 0,52 0,57 0,59 0,54 0,54 0,54 0,54 0,68 0,71 0,58 0,68 0,61 0,70 0,64 0,66 0,73 0,73 0,73 0,74 0,69 0,71 0,001460 0,001376 0,001252 0,001176 0,001137 0,001108 0,001043 0,000948 0,000925 0,000880 0,000850 0,000813 0,000796 0,000782 0,000744 0,000710 0,000677 0,000664 0,000619 0,000603 0,000598 0,000566 0,88 0,91 0,97 0,94 0,95 0,91 0,89 0,95 0,97 0,95 0,97 0,92 0,94 0,91 0,98 0,91 0,91 0,95 0,93 0,91 0,98 0,96 0,000822 0,000779 0,000705 0,000662 0,000641 0,000625 0,000590 0,000534 0,000519 0,000494 0,000484 0,000459 0,000457 0,000445 0,000424 0,000405 0,000390 0,000381 0,000353 0,000343 0,000341 0,000323 0,99 0,91 0,95 0,98 0,96 0,98 0,92 0,95 0,99 0,94 0,93 0,97 0,98 0,95 0,91 0,92 0,99 0,97 0,98 0,95 0,94 0,92

Hình 3.1: Đồ thị hiệu suất theo năng lượng ở những cấu hình khác nhau

Từ hình 3.1 có thể nhận thấy giá trị hiệu suất detector luôn đạt cực đại tại vạch 122 keV trong khi

khoảng cách nguồn – detector thay đổi, nghĩa là đối với vùng năng lượng thấp hơn 122 keV thì hiệu

suất detector có xu hướng tăng dần theo năng lượng, ngược lại hiệu suất sẽ giảm dần trong vùng năng

lượng lớn hơn 122 keV. Tại các vạch ứng với vùng năng lượng thấp (E < 122 keV), trước khi các

photon phát ra từ nguồn đến tương tác trong vùng thể tích nhạy của detector, chúng phải trải qua quá

trình tương tác và mất mát năng lượng với các vật liệu bên ngoài detector, chẳng hạn như lớp nhôm bảo

vệ, không khí, lớp germanium bất hoạt. Các photon này mang năng lượng thấp nên phần lớn năng

lượng của chúng đã bị các vật liệu trên giữ lại và phần năng lượng mất mát này không được detector

ghi nhận, đây là lý do tại sao hiệu suất detector trong trường hợp này thường nhỏ và tăng dần theo năng

lượng photon. Ở vùng năng lượng cao (E > 122 keV), các photon phát ra từ nguồn có thể thoát ra khỏi

vùng làm việc giới hạn của detector. Vì thế tia gamm với năng lượng càng lớn thì càng có nhiều khả

năng thoát ra khỏi vùng nhạy của detector hơn, kết quả là hiệu suất ghi giảm.

Hình 3.1 cũng cho thấy hiệu suất thay đổi rõ rệt theo khoảng cách từ nguồn đến detector, hiệu suất

càng lớn khi khoảng cách càng gần. Hiệu suất ở khoảng cách 5 cm khác biệt nhiều so với khoảng cách

10 hay 15 cm. Điều này được giải thích là do khi nguồn để xa detector, góc khối thu nhận bức xạ giảm

và sự hấp thụ bức xạ của không khí trên đường đi nhiều hơn.

3.2. Đường cong hiệu suất

Khi khảo sát hiệu suất của detector ở nhiều năng lượng khác nhau, người ta nhận thấy cần thiết

phải làm khớp nó thành một đường cong từ các điểm này để có thể mô tả hiệu suất toàn vùng năng

lượng mà ta quan tâm. Khi đó hiệu suất detector ở những năng lượng không thể xác định trong thực

nghiệm có thể được tính toán bằng phương pháp nội suy. Một số công thức lý thuyết đã được mô tả

trong các tài liệu và cũng được đưa vào trong các gói phần mềm sử dụng cho việc phân tích phổ

gamma.

Năm 1966, Freeman và Jenkin đã đưa ra một công thức liên hệ giữa hiệu suất và năng lượng,

trong đó ngoài các hệ số còn chứa tiết diện quang điện và Compton của photon với germanium. Công

thức này đã có vài thành công hạn chế đối với các detector nhỏ trong vùng năng lượng từ 500 đến 1500

keV. Sau đó ý tưởng này được Mowatt (1969) tiếp tục phát triển cho các detector lớn ở vùng năng

lượng thấp hơn bằng việc đưa vào hai thông số mô tả sự suy giảm của gamma trước khi đến được đến

detector và tỉ lệ giữa số gamma đến detector với số gamma tương tác trong thể tích nhạy của detector.

Phương pháp này cũng cho thấy sự phù hợp với thực nghiệm cho những detector có thể tích 6 đến 60 cm3 trong vùng năng lượng 40 keV đến 11 MeV [13]. Mặc dù có những thành công, nhưng các công

thức bán thực nghiệm này chứa các tiết diện tương tác và tương đối phức tạp. Do đó nhiều nghiên cứu

đã tập trung vào việc tìm kiếm một mối liên hệ đơn giản hơn giữa hiệu suất và năng lượng, trong đó

không chứa tiết diện tương tác.

Kể từ khi các hệ phổ kế với detector bán dẫn ra đời, người ta nhận thấy rằng có thể mô tả các dữ

liệu thực nghiệm bằng một hàm giải tích đơn giản ở giai đo logarithm. Nói chung, đối với mỗi loại cấu

hình của detector chúng ta lại có những dạng đường cong hiệu suất khác nhau. Ở đây chúng ta chỉ đề

cập đến đường cong hiệu suất của detector dạng đồng trục. Đối với detector đồng trục, có nhiều hàm

làm khớp được đề nghị. Đối với khoảng năng lượng từ 60 keV đến 2000 keV, người ta thường sử dụng

một công thức tuyến tính thể hiện mối tương quan giữa logarithm của hiệu suất và logarithm của năng

n

i

ln

a

/ EE

lượng [13], [25], [34], [37]

 ln(

i

0 )

(3.1)

i

0

Với ai, E, ε lần lượt là hệ số có được từ việc làm khớp, năng lượng đỉnh, hiệu suất ở năng lượng E

tương ứng, hệ số E0 = 1 keV. Để bao quát hết cả dải năng lượng, người ta thường chia khoảng năng

lượng này ra làm hai phần với biên ở khoảng 200 keV và làm khớp theo từng phần riêng biệt này [13].

Trong luận văn này, các đường cong hiệu suất được chia thành 2 phần với công thức giải tích

ln



a

ln(

EE /

)

a

EE /

)

tương ứng như sau

 ln(

2

a 1

0

2

0

0

ln



ln(

EE /

)

với E < 188,25 keV (3.2)

a  0

a 1

0

với E > 188,25 keV (3.3)

Hiệu suất mô phỏng sẽ được làm khớp theo các đa thức (3.2) và (3.3) bằng chương trình Microcal

Origin 6.0. Kết quả được thể hiện trong bảng 3.3. Hình 3.2 là các đường cong hiệu suất đỉnh của

detector GEM 15P4 đối với nguồn điểm.

Bảng 3.3: Kết quả làm khớp hiệu suất mô phỏng với hàm đa thức ở giai đo logarithm

Hệ số ai của đa thức làm khớp

Khoảng cách E < 188,25 keV a1 a0 a2

5 cm 7,5 cm 10 cm 12,5 cm 15 cm 17,5 cm -61,08 ± 6,95 27,60 ± 2,97 -59.90 ± 6.29 26.78 ± 2.69 -58,98 ± 5,36 26,12 ± 2,29 -59.56 ± 6.73 26.24 ± 2.88 -60,74 ± 7,79 26,63 ± 3,33 -59.87 ± 6.25 26.03 ± 2.68 E > 188,25 keV a1 a0 -2,85 ± 0,32 10,36 ± 0,03 -0,96 ± 0,01 -0.94 ± 0.01 -2.76 ± 0.29 9.67 ± 0.04 -0,93 ± 0,01 -2,69 ± 0,24 9,14 ± 0,04 -0.93 ± 0.01 -2.70 ± 0.31 8.75 ± 0.04 -0,92 ± 0,01 -2,74 ± 0,35 8,41 ± 0,04 -0.92 ± 0.01 -2.67 ± 0.28 8.09 ± 0.04

Nguồn - detector 5 cm

5.90

Nguồn - detector 7.5 cm

Nguồn - detector 10 cm

5.20

Nguồn - detector 12.5 cm

Nguồn - detector 15 cm

4.50

Nguồn - detector 17.5 cm

3.80

3.10

4 0 1 x t ấ u s u ệ i H

2.40

1.70

1.00

3.50

4.30

5.10

5.90

6.70

7.50

Năng lượng (keV)

Hình 3.2: Đường cong hiệu suất đỉnh của detector theo giai đo logarithm

3.3. Hiệu suất theo năng lượng và khoảng cách

Đối với lĩnh vực phân tích kích hoạt neutron và đo phổ gamma, trong nhiều trường hợp các phép

đo đòi hỏi việc chuẩn hiệu suất detector trên một dải năng lượng rộng từ vài keV đến vài MeV với

nhiều cấu hình đo khác nhau. Dễ dàng nhận thấy rằng hiệu suất đỉnh năng lượng toàn phần của hệ đo

không chỉ phụ thuộc vào năng lượng tia gamma mà còn phụ thuộc vào cả hình học đo. Để khảo sát hiệu

suất của detector theo cả hai thông số này, người ta phải làm từng bước. Trước hết là cố định hình học

đo, sử dụng nhiều nguồn chuẩn khác nhau để xây dựng nên một đường cong hiệu suất bằng cách làm

khớp dữ liệu thực nghiệm với một đường cong lý thuyết. Sau đó đường cong hiệu suất này sẽ được xây

dựng cho nhiều cấu hình đo khác nhau. Các đường cong hiệu suất khi đó được vẽ trên cùng một đồ thị

và ta thu được hiệu suất của detector theo năng lượng ở các cấu hình đo khác nhau. Tất nhiên, để kết

quả khảo sát càng chi tiết cần phải tiến hành càng nhiều phép đo, tuy nhiên việc chuẩn detector như vậy

luôn gặp những khó khăn và tốn kém khi tiến hành thực nghiệm. Do đó đã có nhiều cách tiếp cận để

giải quyết vấn đề này. Nhiều gói phần mềm đã được xây dựng dựa trên những giả thiết, mô hình và

nguyên lý khác nhau để tính toán hiệu suất [31]. Một cách tiếp cận khác là tính toán lý thuyết thuần túy

sử dụng các cơ chế tương tác của bức xạ gamma với vật chất detector [42]. Ngoài ra, tính toán Monte

Carlo cũng được xem như một giải pháp hiệu quả.

Trong luận văn này, từ những số liệu thu được ở trên, một hàm giải tích đơn giản sẽ được xây

dựng để biểu diễn sự phụ thuộc của hiệu suất đỉnh năng lượng toàn phần vào năng lượng và khoảng

cách nguồn – detector đối với nguồn điểm thay cho việc sử dụng nhiều hàm giải tích ở các khoảng cách

n

i

ln

a

/ EE

 ln(

i

0 )

khác nhau. Như trên ta đã biết hiệu suất đỉnh của detector có thể được biểu diễn theo đa thức (3.1)

i

0

Giả sử các hệ số ai có thể được tính toán theo khoảng cách nguồn – detector (d) theo công thức

m

j

[32]

a

i

da ij

(3.4)

0

j

Trong đó: aij là các hệ số của đa thức, có thể thu được bằng cách làm khớp dữ liệu (dj,ai) theo đa

n

m

i

j

thức (3.4). So sánh (3.1) và (3.4), một công thức tổng quát cho hiệu suất có thể được viết như sau

ln

/ EE

 ln(

0 )

da ij

(3.5)



0

0

i

j

Khi đó có thể tính toán hiệu suất trong một dải năng lượng rộng cho nhiều khoảng cách nguồn –

detector khác nhau từ những hệ số aij.

Kết quả tính toán hệ số aij bằng chương trình Microcal Origin 6.0 được cho trong bảng 3.4. Từ dữ

liệu làm khớp này, hiệu suất của detector trong dải năng lượng từ 59,54 keV đến 1963,80 keV khi

nguồn ở một độ cao bất kỳ từ 5 cm đến 17,5 cm so với bề mặt detector có thể được tính toán từ những

2

4

i

j

công thức giải tích sau

ln

EE /

 ln(

da ij

0 )

với E < 188,25 keV (3.6)



i

0

j

0

1

4

i

j

ln

EE /

 ln(

0 )

da ij

với E > 188,25 keV (3.7)



i

j

0

0

Bảng 3.4: Kết quả tính toán các hệ số aij

Vùng năng lượng E < 188,25 keV Vùng năng lượng E > 188,25 keV

a2 a0

a1 -49,999290 22,992380 -2,373810 -0,295110 2,817680 -6,223060 -0,558130 0,058930 1,174030 0,040810 -0,084920 -0,004330 -0,001000 0,000107 0,002070 a0 12,429760 -0,519980 0,023030 -0,000335 -0,000005 a1 -1,151430 0,072350 -0,009130 0,000516 -0,000011 Hệ số aij ai0 ai1 ai2 ai3 ai4

Do điều kiện không cho phép tiến hành xác định hiệu suất thực nghiệm cho nhiều khoảng cách

khác trong khoảng từ 5 cm đến 17,5 cm nên để kiểm tra tính đúng đắn của công thức giải tích (3.6),

(3.7), dữ liệu thực nghiệm cho 3 khoảng cách nguồn – detector 5cm, 10 cm và 15 cm đã được sử dụng

làm chuẩn so sánh. Hiệu suất cho 13 đỉnh năng lượng của các nguồn phóng xạ chuẩn 133Ba, 109Cd, 57Co, 60Co, 22Na, 65Zn tương ứng với các cấu hình thực nghiệm đã được tính toán bằng công thức giải

tích và đối chiếu với thực nghiệm. Kết quả tính toán được trình bày trong bảng 3.5. Hình 3.3 cho thấy

với năng lượng gamma lớn hơn 250 keV, tất cả giá trị tính toán lệch so với thực nghiệm dưới 10%, đặc

biệt ở vùng trên 300 keV sai lệch trong khoảng 5%. Kết quả này có thể bắt nguồn từ lý do chương trình

mô phỏng chưa thể tái tạo hoàn chỉnh phần phổ gamma dưới 250 keV như đã đề cập ở phần 2.3. Một

nguyên nhân nữa cũng có thể đề cập đến là chất lượng buồng chì chưa tốt. Hiện tượng tán xạ từ thành

buồng chì có thể đã ảnh hưởng đến phổ gamma thực nghiệm ở vùng năng lượng tia X và gây ra sự thay

đổi hiệu suất detector trong vùng năng lượng này. Theo công trình [32], để thu được một công thức giải

tích có hiệu lực cao, tất cả dữ liệu sử dụng làm khớp phải là dữ liệu thực nghiệm. Tuy nhiên, ở đây trên

cơ sở khẳng định độ tin cậy của chương trình mô phỏng MCNP5, các công thức giải tích được xây

dựng hoàn toàn từ dữ liệu mô phỏng. Do đó nếu tính đến những sai số mắc phải khi tiến hành làm

khớp, sai số thực nghiệm và sai số mô phỏng thì kết quả tính toán là đáng tin cậy và có thể sử dụng tốt

các công thức giải tích này cho vùng năng lượng trên 250 keV.

Bảng 3.5: Hiệu suất thực nghiệm (TN) và tính toán (TT) theo công thức giải tích

Khoảng cách 5 cm Khoảng cách 10 cm Khoảng cách 15 cm

80,99 88,03 122,06 136,47 276,39 302,85 356,02 383,85 511,00 1115,55 1173,24 1274,53 1332,50

Năng lượng (keV)

TN 0,018479 0,020877 0,025392 0,024899 0,015605 0,014391 0,012109 0,011127 0,007997 0,003631 0,003462 0,003315 0,003078 TT 0,017628 0,021372 0,031072 0,030711 0,014287 0,013086 0,011204 0,010423 0,007919 0,003741 0,003565 0,003292 0,003154 TN 0,005862 0,006651 0,008324 0,008314 0,005327 0,004928 0,004157 0,003832 0,002794 0,001281 0,001209 0,001154 0,001082 TT 0,005220 0,006313 0,009281 0,009280 0,004901 0,004499 0,003868 0,003605 0,002759 0,001330 0,001268 0,001174 0,001126 TN 0,002765 0,003167 0,004027 0,004017 0,002648 0,002411 0,002045 0,001891 0,001393 0,000648 0,000603 0,000566 0,000539 TT 0,004648 0,005721 0,008957 0,009130 0,002374 0,002179 0,001873 0,001746 0,001336 0,000643 0,000614 0,000568 0,000545

)

15

%

(

10

i

Nguồn - detector 5 cm Nguồn - detector 10 cm Nguồn - detector 15 cm

5

0

m ệ h g n c ự h t i

-5

-10

ớ v o s h c ệ

l

ộ Đ

-15

0

200

400

600

800

1000

1200

1400

Năng lượng (keV)

Hình 3.3: So sánh hiệu suất thực nghiệm và tính toán từ công thức giải tích

CHƯƠNG 4

KẾT LUẬN CHUNG

Với mục tiêu ban đầu là tính toán hiệu suất của detector GEM 15P4 bằng chương trình MCNP5,

kết hợp giữa thực nghiệm và tính toán, luận văn đã đạt được những kết quả cụ thể sau đây:

1. Xây dựng được một bộ số liệu đầu vào về cấu trúc hình học và thành phần vật liệu cho hệ phổ

kế gamma dùng detector GEM 15P4 của hãng Ortec, đặt tại Phòng thí nghiệm Vật lý Hạt nhân,

Trường Đại học Sư phạm TP HCM nhằm mô hình hóa hệ phổ kế bằng chương trình MCNP.

Trong đó, thông tin về buồng chì có được từ khảo sát và đo đạc trực tiếp, thông tin về nguồn

chuẩn phóng xạ và detector do nhà sản xuất cung cấp.

2. Tính toán lại bề dày lớp germanium bất hoạt dựa trên cơ sở phương pháp luận của công trình

[6]. Kết quả tính toán là 0,1339 cm cao hơn so với số liệu từ nhà sản xuất (0,07 cm). Cùng với

những khảo sát ban đầu, kết quả tính toán này đã khẳng định bề dày lớp germanium bất hoạt của

detector đã tăng lên đáng kể so với ngày xuất xưởng.

3. Khẳng định hiệu lực của chương trình mô phỏng xây dựng được cũng như các thông tin về mô

hình hệ đo bằng việc so sánh hiệu suất mô phỏng với thực nghiệm của 13 đỉnh năng lượng ở 3 cấu

hình đo 5, 10 và 15 cm. Với bề dày lớp germanium bất hoạt 0,1339 cm, độ sai biệt giữa hiệu suất

tính toán và thực nghiệm luôn nhỏ hơn 6%. 4. Mô phỏng hàm đáp ứng của detector dùng nguồn 60Co tại khoảng cách 10 cm. Việc so sánh

dạng phổ và diện tích các đỉnh năng lượng quan tâm cho thấy có sự phù hợp tốt giữa phổ mô

phỏng và phổ thực nghiệm ngoại trừ vùng năng lượng dưới 250 keV. Kết quả này khẳng định

chương trình mô phỏng không chỉ có hiệu lực trong việc chuẩn hiệu suất detector mà còn có thể

được sử dụng cho các bài toán về phổ gamma.

5. Xây dựng được bộ dữ liệu về hiệu suất đỉnh ở 6 khoảng cách nguồn – detector 5cm, 7,5 cm, 10

cm, 12,5 cm, 15 cm và 17,5 cm trải dài trên khoảng năng lượng từ 59 đến 1963 keV cho dạng

nguồn điểm, khớp hóa dữ liệu ở giai đo logarithm với các hàm đa thức để có được bộ đường cong

hiệu suất. Trên cơ sở đó đánh giá sự phụ thuộc của hiệu suất vào năng lượng tia gamma và

khoảng cách đặt nguồn phóng xạ.

6. Thiết lập được các công thức giải tích cho việc tính toán hiệu suất của detector như là hàm của

năng lượng và khoảng cách. So sánh với dữ liệu thực nghiệm cho thấy, các công thức này cho

phép tính toán chính xác hiệu suất của detector ở vùng năng lượng phía trên 250 keV với độ sai

lệch dưới 10% và dưới 5% ở vùng năng lượng cao hơn.

KIẾN NGHỊ VỀ NHỮNG NGHIÊN CỨU TIẾP THEO

1. Mặc dù so với bề dày lớp germanium bất hoạt thì các thông số khác của detector có ảnh hưởng

không đáng kể đến hiệu suất đỉnh năng lượng toàn phần, chỉ vài phần trăm [9]. Do đó ở đây, trong

quá trình mô hình hóa detector bằng MCNP5, tất cả các thông số còn lại đều có giá trị như nhà

sản xuất đưa ra. Thực tế khi mô tả detector, các thông số này đều được hiệu chỉnh lại bằng

phương pháp chụp ảnh tia X và chụp ảnh phóng xạ. Tuy nhiên những phương pháp này đều vượt

quá điều kiện hiện có của Phòng thí nghiệm, nên để có được mô hình detector gần với thực tế

nhất, các nghiên cứu tiếp theo cần sử dụng Monte Carlo khảo sát ảnh hưởng các thông số còn lại

đến hiệu suất, từ đó tối ưu mô hình detector. Đồng thời tiến hành những đo đạc và tính toán chi

tiết hơn nữa để định lượng quá trình gia tăng bề dày lớp germanium bất hoạt.

2. Những kết quả trong phần 2.3 cho thấy phổ gamma mô phỏng chưa thể tái tạo hoàn chỉnh phổ

thực nghiệm ở vùng dưới 250 keV. Do đó cần khảo sát chi tiết ảnh hưởng của các vật liệu xung

quanh detector lên hàm đáp ứng. Đặc biệt cần kết hợp với các phương pháp khác để tính toán bề

dày tối ưu của buồng chì và các lớp bổ sung để tiết kiệm vật liệu và nâng cao khả năng che chắn

phông gamma từ môi trường.

3. Như đã đề cập ở phần mở đầu, khi cần đạt độ chính xác cao trong phân tích hàm lượng phóng

xạ chúng ta cần phải quan tâm đến các hiệu ứng trùng phùng và tự hấp thụ. Có nhiều cách tiếp cận

để giải quyết các vấn đề này, trong đó MCNP5 là một công cụ hiệu quả. Do đó trên cơ sở đã mô

hình hóa hệ phổ kế, với sự hỗ trợ của MCNP, cần tiếp tục đi sâu nghiên cứu hiệu ứng trùng phùng

và tự hấp thụ cho nhiều cấu hình đo và dạng mẫu khác nhau nhằm phục vụ có hiệu quả cho các đo

đạc và phân tích trên hệ phổ kế gamma.

4. Quá trình mô phỏng phải xử lý rất nhiều file dữ liệu input và output, kinh nghiệm cho thấy việc

xử lý thủ công sẽ mất nhiều thời gian và công sức đồng thời dễ gặp sai sót. Do đó cần thiết phải

xây dựng một chương trình kết nối với MCNP5 nhằm tự động hóa quá trình đọc input và trích

xuất thông tin từ output. Việc làm này sẽ giúp người dùng MCNP5 tiết kiệm được thời gian, tránh

sai sót và nâng cao hiệu quả sử dụng chương trình.

DANH MỤC CÁC CÔNG TRÌNH CỦA TÁC GIẢ

[1] T.V. Luyen, T.H. Vinh, T.K. Dinh (2007), “Distribution of natural radioactivity on size particles in soil

profiles”, 7th National Conference On Nuclear Science and Technology, Da nang, 347-348.

[2] T.H.Vinh, V.X. An, H.D. Tam, P.N.T. Vinh (2010), “Modelling of the GEM 15P4 HPGe detector used in

gamma spectrometry by the MCNP5 code”, 7th Scientific Conference, University of Natural Sciences VNU-

HCMC. (Submitted)

[3] H.D. Tam, P.N.T. Vinh, T.H. Vinh, L.T.M. Thuan (2010), “Building the curve efficiency of HPGe detector

system using dish source for nuclear laboratory of Ho Chi Minh City University of Pedagogy”, Journal of Natural Science of University of Pedagogy of HCM City, 85-90.

TÀI LIỆU THAM KHẢO

Tiếng Việt

[1] Đặng Nguyên Phương, Nguyễn Võ Hoài Thơ, Trương Thị Hồng Loan (2008), “Xây dựng chương

trình hiệu chỉnh trùng phùng cho hệ phổ kế gamma”, Hội nghị khoa học lần thứ 6, Trường Đại học

Khoa học Tự nhiên Đại Học Quốc Gia TP. Hồ Chí Minh, trang 53.

[2] Lê Văn Ngọc, Trần Văn Hùng (2005), Bài giảng tại lớp tập huấn MCNP, Trung Tâm Đào Tạo,

viện Nghiên cứu Hạt Nhân Đà Lạt.

[3] Mai Văn Nhơn, Trương Thị Hồng Loan, Trần Ái Khanh, Trần Thiện Thanh, Đặng Nguyên Phương

(2008), “Nghiên cứu ảnh hưởng tán xạ nhiều lần từ vật liệu xung quanh đầu dò lên phổ năng lượng

gamma của đầu dò bằng chương trình MCNP”, Tạp chí phát triển Khoa học & Công nghệ, Đại học

Quốc Gia TP. Hồ Chí Minh, tập 11, số 10, trang 66-76.

[4] Ngô Quang Huy, Đỗ Quang Bình, Võ Xuân Ân (2007), “Khảo sát ảnh hưởng của các thông số vật

lý đến hiệu suất đếm của detector bán dẫn siêu tinh khiết bằng chương trình MCNP4C2”, Tạp chí

phát triển Khoa học và Công nghệ, Đại học Quốc Gia TP. Hồ Chí Minh, tập 10, số 5, trang 21-26.

[5] Ngô Quang Huy, Đỗ Quang Bình, Võ Xuân Ân (2006), “Mô phỏng các phổ gamma phức tạp đo

trên hệ phổ kế gamma dùng detector bằng chương trình MCNP”, Tạp chí phát triển Khoa học &

Công nghệ, Đại học Quốc Gia TP. Hồ Chí Minh, tập 9, số 9, trang 63-70.

[6] Ngô Quang Huy, Đỗ Quang Bình, Võ Xuân Ân (2005), “Nghiên cứu sự tăng bề dày lớp germanium

bất hoạt trong detector bán dẫn siêu tinh khiết bằng chương trình MCNP”, Tạp chí phát triển Khoa

học & Công nghệ, Đại học Quốc Gia TP. Hồ Chí Minh, tập 8, số 12, trang 35-43.

[7] Trương Thị Hồng Loan, Đặng Nguyên Phương, Mai Văn Nhơn (2008), “Khảo sát ảnh hưởng của

việc trừ phông có và không có che chắn mẫu trong hệ phổ kế gamma ”, Hội nghị Khoa học lần thứ

6, Trường Đại học Khoa học Tự nhiên, Đại học Quốc Gia TP HCM, trang 54.

[8] Võ Văn Hoàng (2004), Mô phỏng trong vât lý, Nhà Xuất Bản Đại học Quốc gia TP HCM.

[9] Võ Xuân Ân (2008), Nghiên cứu hiệu suất ghi nhận của detector bán dẫn siêu tinh khiết (HPGe)

trong phổ kế gamma bằng phương pháp Monte Carlo và thuật toán di truyền, Luận án tiến sĩ vật lý,

Trường ĐHKHTN TP HCM.

Tiếng Anh

[10] Bertolo A., Manduchi C. and Manuchi G. (1992), “The computer code MAR for calculating the

activity of radioactive samples in Marinelli beakers”, Nucl. Instr. and Meth. A314, 584-589.

[11] Boson J., Agren G., Johansson L. (2008), “A detailed investigaion of detector response for

improved Monte Carlo efficiency calculations”, Nucl. Instr. and Meth, A 587, 304 – 3114.

[12] Briesmeister J.F., Ed. (2001), MCNP4C2- Monte Carlo N-particle Transport Code System, Los

Alamos National Laboratory, LA-13709-M.

[13] Debertin K., Helmer R. G. (1988), “Gamma and X – Ray Spectrometry with Semiconductor

Dectectors”, Science Publishing Copany, Inc., Amsterdam.

[14] Debertin K., Grosswendt B. (1982), Nucl. Instr. and Meth. 203.

[15] Dowdal M., “Practicable Monte Carlo calibration of detector for environmental measurements”,

Norwegian Radiation Protection Authority.

[16] Dryak P., Kovar P. (2006), “Experimental and MC determination of detector efficiency in the 40 –

2754 keV energy range for measuring point source geometry with the source – to – detector

distance of 25 cm”, Appl. Rad. and Isot., 1346 – 1349.

[17] Ewa I.O.B, Bodizs D., Czifrus Sz. And Molnar Zs. (2001), “Monte Carlo Determination of Full

Energy Peak Efficiency for a Detector”, Appl. Rad. and Isot., 55 103 – 108.

[18] Friedman R.J., Reichard M.C., Blue T.E., Brown A.S. (2001), Health Phys, 80. [19] Glenn F. K. (1988), Radiation Detection and Measurements, 2nd ed., John Wiley and Sons.

[20] Gilmore G., Hemingway J.D. (1995), Practical Gamma – ray Spectrometry, Wiley, Chichester.

[21] Gelsema Sjoerd J. (2001), “Advanced -ray spectrometry dealing with coincidence and attenuation

effects”, Delft University Press, The Netherlands.

[22] Hasse G., Tail D. and Wiechen A. (1993), “Monte Carlo simulation of several gamma – emitting

source and detector arrangements for determining corrections of self attenuation and coincidence

summation in gamma spectrometry”, Nucl. Instr. and Meth., A329 483-492.

[23] Helmer R.G., Nica N., Hardy J.C., Iacob V.E. (2004), “Precise efficiency calibration of an

detector up to 3.5 MeV with measurments and Monte – Carlo calculations”, Appl. Rad. and Isot.,

60, 173 – 177.

[24] IAEA (1991), X – ray and gamma – ray standards for detector calibration. IAEA-TECHDOC-

619.

[25] Knoll G.F. (1999), “Radiation Detection and Measurement, Third Edition”, John Wiley & Sons,

Inc., New York.

[26] Korum M., Vidmar T. (2000), “Monte Carlo Calculations of the Total to – Peak Ratio in Gamma –

ray Spectrometry”, Appl. Rad. and Isot., 52 785 – 789.

[27] Korun M., Vidmar T. (1997), Nucl. Instr. and Meth. A 390, 203.

[28] Laborie J.M., Le Petit G., Abt D. and Girard M. (2000), “Monter Carlo Calculations of the

Efficiency Calibration Curve and Coincidence – summing Correction in Low – level Gamma –

ray Spectrometry using Well – type Detector”, Appl. Rad. and Isot., 53 57 – 62.

[29] Le Van Ngoc (2005), “Study on determination of the detector’s registering characteristics by

MCNP4C2”, Internal Report, CD/05/04-13, VAEC.

[30] Le Van Ngoc, Nguyen Thi Thanh Huyen and Nguyen Hao Quang (2007), “Study on Monte Carlo

calculation of peak efficiencies of the superpure detector (GMX) in environmental gamma

spectrometry with using MCNP4C2”, VNU Journal of Science, Hanoi, Vol. 23, No.2, 99-104.

[31] Liyu W. (1995), IAE/SPAN V5.1 Multipurpose Gamma – ray Spectrum Analysis Software, China

Institute of Atomic Energy, Beijing.

[32] Medhat M. E., Ali M. A., Awaad Z. (2001), “A new expression for the full energy peak efficiency

of a high pure germanium detector”, Communication of the Joint Institute for Nuclear Research,

Dubna.

[33] Marsegurra M., Zio E. and Cadini F. (2005), “Genetic Algorithm Optimization of a Model – Free

Fuzzy Control System”, Annals of Nuclear Energy, 32 712 – 728.

[34] Nix D. E. and Scott N. E. (1976), “Detection efficiency calibration for radiological monitoring of nuclear plants”. Radioelement Analysis Progress and Problem Proc. Of the 23rd Conf on

Analytical Chemistry in Energy and Technology, Gatlinburg, Tennessee.

[35] Ortec, detector manufacturing.

[36] Rodenas J., Pascual A., Zarza I., Serradell V., Ortiz J., Ballesteros L. (2003), “Analysis of the

influence of germanium dead layer on detector calibration simulation for environmental radiactive

samples using the Monte Carlo method Nucl. Instr. and Meth, A 496, 390 – 399.

[37] Sanderson C. G. (1976), “Comparison of Ge(Li) well and N – type coaxial detectors for low

energy gamma ray analysis of environment samples”, Radioelement analysis Progress and

Problems Proc. Of the 23rd Conf on Analytical Chemistry in Energy and Technology, Gatlinburg,

Tennessee.

[38] Salgado C. M., Claudio C. Conti and Paulo H.B. Becker (2006), “Determination of Detector

Response using MCNP5 for 20 – 150 keV X - rays”, Appl. Rad. and Isot., 64 700 – 705.

[39] Talavera M. García, Neder H., Daza M.J., Quintana B. (2000), “Towards a proper modeling of

detector and source characteristics in Monte Carlo simulations”, Appl. Radiat. Isot., 52, 777-783.

[40] Tsutsumi M., Oishi T., Kinouchi N., Sakamoto R. and Yoshida M. (2002), “Design of an Anti –

Compton Spectrometer for Low – level Radioactive Wastes using Monte Carlo Techniques”,

Journal of Nucl. Sci. and Techno., Vol 39, No. 9 p. 957 – 963.

[41] Truong Thi Hong Loan, Tran Thien Thanh, Dang Nguyen Phuong, Tran Ai Khanh, Mai Van Nhon

and Le Van Ngoc (2007), “Gamma spectrum simulation and coincidence summing factor

calculation for point sources with using MCNP code”, Communication in Physics.

[42] Vnatomwicz V. (1986), Handbook of Nuclear Data for Neutron Activation Analysis, Vol. 1.

[43] X – 5 Monte Carlo Team (2003), MCNP – A General Purpose Monte Carlo N – Particle

Transport Code, Version 5, Volume I: Overview and Theory, Los Alamos National Laboratory,

LA-UR-03-1987.

[44] Zerby and Moran (1958), National Laboratory Report ORNL-2454.

PHỤ LỤC

Phụ lục 1: Hệ phổ kế gamma tại Phòng thí nghiệm Vật lý Hạt nhân

Phụ lục 2: Thông tin về detector do nhà sản xuất cung cấp

Phụ lục 3: Thông tin về bộ nguồn chuẩn phóng xạ model RSS – 8EU

133Ba

Nguồn T1/2

109Cd 57Co

10,51 năm Hoạt độ (μCi) 1 Nơi sản xuất USA Ngày sản xuất 1/2008

60Co

462,6 ngày 271,8 ngày 1 1 USA USA 1/2008 12/2007

22Na

5,271 năm 1 USA 1/2008

2,602 năm 1 USA 12/2007

65Zn 226Ra

244,3 ngày 1 USA 12/2007

1602 năm 5 Germany 1968 Năng lượng (keV) 80,99 276,39 302,85 356,02 383,85 88,03 122,06 136,47 1173,24 1332,55 511,00 1274,53 1115,55 - Cường độ phát (%) 43,10 7,164 18,33 62,05 8,94 3,61 85,60 10,68 99,9736 99,9856 179,79 99,944 50,6 -

Phụ lục 4: Đặc trưng của các nguồn phóng xạ sử dụng trong thực nghiệm

Năng lượng (keV) Cường độ phát (%)

59,54

35,78

119,78 ngày

96,73

3,41

115,1 ngày

255,06

1,82

64,84 ngày

514,01

98,5

312,7 ngày

834,84

10

115,1 ngày

391,69

64

30,17 năm

T1/2 432,2 năm

78,76 ngày

Phụ

Nguồn 241Am 75Se 113Sn 85Sr 54Mn 113Sn 137Cs 56Co

20300 năm

661,66 1771,35 1810,70 1963,80 702,65

84,99 15,49 0,71 0,71 99,79

2,8 ngày

171,28

90,78

137,6 ngày

165,85

79,87

1,913 năm

1620,74

1,49

7380 năm

94Nb 111In 139Ce 228Th 243Am 154Eu

8,8 năm

74,66 188,25 591,76 1494,05 1596,49

67,4 0,22 4,99 0,71 1,81

lục 5: Đặc trưng của các nguồn phóng xạ sử dụng trong toán tính

152Eu

13,6 năm

106,6 ngày

88Y

244,69 344,28 411,12 443,97 778,90 867,38 964,07 1085,84 1212,95 1299,14 1408,02 1836,06 898,04

7,55 26,58 2,237 3,125 12,96 4,241 14,62 10,13 1,415 1,632 20,85 99,36 94

Phụ lục 6: Một input điển hình của chương trình MCNP5

1- Problem - Coaxial Detector Efficiencies And Pulse height distribution 2- c Cell Cards 3- c ---------------------------------------- Dectector ------------------------------------------ 4- 1 5 -8.94 -2 -24 20 imp:p,e=1 $ Loi Cu dan tin hieu 5- 2 8 -2.31 (-3 -25 24):(2 -3 -24 23) imp:p,e=1 $ Lop Boron 6- 3 1 -5.35 (-6 -26 25):(3 -6 -25 23) imp:p=1 imp:e=0 $ Tinh the 7- 4 9 -5.05 (-7 -27 26):(6 -7 -26 23) imp:p,e=1 $ Lop Li khuech tan 8- 5 2 -2.6989 ((7 -8 -27 22):(4 -8 -22 21):(4 -5 -21 19) & 9- :(1 -5 -19 18))#(-36 -22 21) imp:p,e=1 $ Holder Al 10- 6 3 -0.00129 ((-9 -30 29):(8 -9 -29 21):(5 -9 -21 18) & 11- :(-9 -18 15))#(-36 -21 20) imp:p,e=1 $ Khong khi trong Detector 12- 7 2 -2.6989 (-10 -31 30):(9 -10 -30 15) imp:p,e=1 $ Vo Al 13- 8 11 -1.11 -8 -29 28 imp:p,e=1 $ Lop Kapton 14- 9 10 -1.435 -8 -28 27 imp:p,e=1 $ Lop Mylar 15- 10 4 -0.92 (35 -37 -23 22):(35 -36 -22 20) imp:p,e=1 $ Vo cach dien in/out 16- 11 14 -7.14 -35 -23 20 imp:p,e=1 $ Loi day dan in/out 18- 12 3 -0.00129 (2 -7 -23 22) & #1#(-37 -23 22) imp:p,e=1 $ Khoang chan khong 19- 13 12 -2.2 (-4 -22 19)#1 imp:p,e=1 $ Coc Teflon 20- 14 5 -8.94 -1 -19 18 imp:p,e=1 $ Que dan lanh bang Cu 21- c ----------------------------------------- Lead Shield ---------------------------------------- 22- 15 3 -0.00129 ((-12 -32 31):(10 -12 -31 17) & 23- :(10 -11 -17 15))#(-40 -44 41) imp:p,e=1 $ Khong khi trong buong chi 24- 16 6 -11.34 (-14 -34 33) imp:p,e=1 $ Nap buong chi 25- 17 6 -11.34 (13 -14 -32 16):(11 -14 -16 15) imp:p,e=1 $ Than buong chi 26- 18 7 -7.86 -14 -33 32 imp:p,e=1 $ Lop sat 27- 19 5 -8.94 (12 -13 -32 16):(11 -12 -17 16) imp:p,e=1 $ Lop Cu 28- c ----------------------------------------- Standard Source ----------------------------------- 29- 20 14 -7.14 -38 -43 42 imp:p,e=1 $ Active Element (Zn) 30- 21 13 -1.15 (-39 -44 42)#20 imp:p,e=1 $ Holder Epoxy 31- 22 15 -1.19 (-40 -44 41)#(-39 -44 42) imp:p,e=1 $ Dia Plexiglas

32- 23 0 14:-15:34 imp:p,e=0 $ Universe 33- 34- c Surface Cards 35- c ----------------------------------- From inner to outer------------------------------------- 36- 1 cz 0.13 $ Que dan lanh bang Cu 37- 2 cz 0.54997 $ Mat ngoai loi Cu dan tin hieu 38- 3 cz 0.55 $ Mat ngoai lop Boron 39- 4 cz 0.88 $ Mat ngoai lop Teflon 40- 5 cz 1.546 $ Mat ngoai holder Al 1 41- 6 cz 2.56 $ Ban kinh tinh the Ge 42- 7 cz 2.63 $ Mat ngoai lop Li khuech tan 43- 8 cz 2.706 $ Mat ngoai holder Al 2 44- 9 cz 3.37 $ Mat trong vo Al 45- 10 cz 3.5 $ Mat ngoai vo Al 46- 11 cz 5.75 $ Mat trong than buong Pb 47- 12 cz 22.15 $ Mat trong lop Cu 48- 13 cz 22.3 $ Mat ngoai lop Cu 49- 14 cz 30.1 $ Mat ngoai than buong Pb 50- c ----------------------------------- From bottom to top ------------------------------------ 51- 15 pz 0 $ Mat day than buong Pb 52- 16 pz 6.05 $ Mat duoi lop Cu 53- 17 pz 6.2 $ Mat tren lop Cu 54- 18 pz 18.514 $ Mat day Mount Cup 55- 19 pz 20.114 $ Mat duoi Coc Teflon 56- 20 pz 20.644 $ Mat duoi loi Cu dan tin hieu 57- 21 pz 21.164 $ Mat duoi Mount Cup 58- 22 pz 21.484 $ Mat duoi lop chan khong 59- 23 pz 22.484 $ Mat duoi tinh the Ge 60- 24 pz 25.83397 $ Mat tren loi Cu dan tin hieu 61- 25 pz 25.834 $ Mat tren lop Boron 62- 26 pz 26.984 $ Mat duoi lop Li khuech tan 63- 27 pz 27.054 $ Mat tren lop Li khuech tan 64- 28 pz 27.06 $ Mat tren lop Mylar 65- 29 pz 27.07 $ Mat tren lop Kapton 66- 30 pz 27.37 $ Mat duoi End Cap 67- 31 pz 27.5 $ Mat tren End Cap 68- 32 pz 46 $ Mat duoi lop Fe 69- 33 pz 46.93 $ Mat tren lop Fe 70- 34 pz 51.93 $ Mat tren nap Pb 71- c ---------------------------------- High Voltage Contact ----------------------------------- 72- 35 c/z 0 -2.14 0.1 $ Loi day dan in/out 73- 36 c/z 0 -2.14 0.2 $ Lop cach dien day dan in/out 1 74- 37 c/z 0 -2.14 0.48 $ Lop cach dien day dan in/out 2 75- c -------------------------------- Standard Source ------------------------------------------- 76- 38 cz 0.1524 $ Ban kinh vien phong xa 77- 39 cz 0.3175 $ Ban kinh Holder epoxy 78- 40 cz 1.27 $ Ban kinh Dia Plexiglas 79- 41 pz 32.5 $ Mat duoi Dia Plexiglas 80- 42 pz 32.5381 $ Mat duoi Vien phong xa 81- 43 pz 32.5508 $ Mat tren Vien phong xa

0.20

0.18

82- 44 pz 32.8 $ Mat tren Dia Plexigla 83- 84- c Data Cards 85- mode p 86- m1 32000 -1.0 cond=-1 $ Ge 87- m2 13000 -1.0 cond=-1 $ Al 88- m3 7000 -0.755 8000 -0.232 18000 -0.013 $ Atmosphere 89- m4 1000 -0.14372 6000 -0.85628 $ Polyethylene 90- m5 29000 -1.0 cond=-1 $ Cu 91- m6 82000 -1.0 cond=-1 $ Pb 92- m7 26000 -1.0 cond=-1 $ Fe 93- m8 5000 -1.0 cond=-1 $ B 94- m9 32000 -0.9999 3000 -0.0001 cond=-1 $ Ge Li 95- m10 1000 -0.053 6000 -0.526 8000 -0.421 $ Mylar C10H12O6 96- m11 1000 -0.028 6000 -0.720 7000 -0.077 8000 -0.175 $ Kapton C22H10N204 97- m12 6000 -0.24 9000 -0.76 $ Teflon (C2F4)n 98- m13 1000 -0.06 6000 -0.721 8000 -0.219 $ Epoxy 99- m14 30000 -1.0 cond=-1 $ Zn 100- m15 1000 -0.054 6000 -0.405 8000 -0.541 $ Plexiglas (C5H8O5)n 101- c ==> Standard Source 102- sdef cel=20 pos=0 0 0 axs=0 0 1 ext=d1 rad=d2 erg=d3 par=2 wgt=10 103- si1 32.5381 32.5508 104- s1 -21 0 105- si2 0.0 0.1524 106- sp2 -21 1 107- si3 l 0.511 1.1155 108- sp3 d 0.0283 0.5075 $ Zn65 109- ft8 geb 0.00093 0.00077 0.45092 110- f8:p 3 111- e8 0 .0001 .0002 8190i 1.99839 112- nps 900000 113- ctme 2