intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Tài liệu ôn tập phần tam giác đồng dạng

Chia sẻ: Edulab Tilado | Ngày: | Loại File: PDF | Số trang:53

220
lượt xem
33
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Dưới đây là "Tài liệu ôn tập phần tam giác đồng dạng", mời các bạn cùng tham khảo để có thêm tài liệu học tập và ôn thi. Nội dung cuốn sách gồm 214 bài toán về tam giác đồng dạng. Hy vọng nội dung cuốn sách phục vụ hữu ích cho các bạn.

Chủ đề:
Lưu

Nội dung Text: Tài liệu ôn tập phần tam giác đồng dạng

  1.   Loading [MathJax]/jax/output/HTML‐CSS/jax.js HƯỚNG DẪN SỬ DỤNG SÁCH
  2. HƯỚNG DẪN SỬ DỤNG SÁCH Bạn đang cầm trên tay cuốn sách tương tác được phát triển bởi Tilado®. Cuốn sách này là phiên bản in của sách điện tử tại http://tilado.edu.vn. Để có thể sử dụng hiệu quả cuốn sách, bạn cần có tài khoản sử dụng tại Tilado®. Trong trường hợp bạn chưa có tài khoản, bạn cần tạo tài khoản như sau: 1.  Vào trang http://tilado.edu.vn 2.  Bấm vào nút "Đăng ký" ở góc phải trên màn hình để hiển thị ra phiếu đăng ký. 3.  Điền thông tin của bạn vào phiếu đăng ký thành viên hiện ra. Chú ý những chỗ có dấu sao màu đỏ là bắt buộc. 4.  Sau khi bấm "Đăng ký", bạn sẽ nhận được 1 email gửi đến hòm mail của bạn. Trong email đó, có 1 đường dẫn xác nhận việc đăng ký. Bạn chỉ cần bấm vào đường dẫn đó là việc đăng ký hoàn tất. 5.  Sau khi đăng ký xong, bạn có thể đăng nhập vào hệ thống bất kỳ khi nào. Khi đã có tài khoản, bạn có thể kết hợp việc sử dụng sách điện tử với sách in cùng nhau. Sách bao gồm nhiều câu hỏi, dưới mỗi câu hỏi có 1 đường dẫn tương ứng với câu hỏi trên phiên bản điện tử như hình ở dưới. Nhập đường dẫn vào trình duyệt sẽ giúp bạn kiểm tra đáp án hoặc xem lời giải chi tiết của bài tập. Nếu bạn sử dụng điện thoại, có thể sử dụng QRCode đi kèm để tiện truy cập. Cảm ơn bạn đã sử dụng sản phẩm của Tilado® Tilado®
  3. ĐỊNH LÍ TA ‐LET ĐỊNH LÍ TA ‐LET TRONG TAM GIÁC 1. Cho tam giác ABC, điểm F thuộc cạnh AB, điểm E thuộc cạnh AC sao cho  AF AE 1 = = . Gọi I là giao điểm của BE và CF, gọi D là giao điểm của AI và BC. FB EC 2 Chứng minh rằng I là trung điểm của AD, D là trung điểm của BC.   Xem lời giải tại: http://tilado.edu.vn/550/86111 2. Cho tam giác ABC vuông tại A. Vẽ ra phía ngoài tam giác đó các tam giác ABD vuông cân ở B, ACF vuông cân ở C. Gọi H là giao điểm của AB và CD, K là giao điểm của AC và BF. Chứng minh rằng: a.  HA = KA. b.  HA 2 = HB. KC. Xem lời giải tại: http://tilado.edu.vn/550/86122 3. Cho hình thang ABCD (AB // CD) có AB = a, CD = b. M và N lần lượt thuộc MA các cạnh AD và BC sao cho MN // CD và  = m (m > 0; 0 < a < b). MD a + mb Chứng minh rằng: MN = . m+1   Xem lời giải tại: http://tilado.edu.vn/550/86132 4. Cho tam giác OBC. Hai đường thẳng m và m' lần lượt qua B và C song song với nhau và không cắt tam giác OBC. Gọi A là giao điểm của OC và m, D là giao điểm 1 1 của OB và m'. Xác định vị trí của m và m' để  +  đạt giá trị lớn nhất. AB CD  
  4. Xem lời giải tại: http://tilado.edu.vn/550/86142 5. Cho một tấm bìa hình chữ nhật có kích thước 15cm và 20cm. Gấp tấm bìa đó theo đường chéo . Diện tích phần bìa chồng lên nhau bằng mấy phần diện tích tấm bìa hình chữ nhật?   Xem lời giải tại: http://tilado.edu.vn/550/86153 6. Cho tam giác ABC, trọng tâm G. Một đường thẳng đi qua G cắt các cạnh AB, AC theo thứ tự ở C', B' và cắt tia đối của tia CB ở A'. Chứng minh hệ thức:  1 1 1 ′ + ′ = ′ . GA GB GC   Xem lời giải tại: http://tilado.edu.vn/550/86162 7. Đoạn thẳng AB gấp 5 lần đoạn thẳng CD; đoạn thẳng A’B’ gấp 7 lần đoạn thẳng CD. a.  Tính tỉ số của hai đoạn thẳng AB và A’B’. b.  Cho biết đoạn thẳng MN = 505 cm và đoạn thẳng M’N’ = 707 cm. So sánh hai AB MN tỉ lệ   và  A ′B ′ M ′N ′ Xem lời giải tại: http://tilado.edu.vn/550/86171 8. Cho các hình vẽ. Tìm độ dài của đoạn thẳng AN; QP, biết các số trong hình có cùng đơn vị đo là cm.  
  5. Xem lời giải tại: http://tilado.edu.vn/550/86181 MA 1 9. Gọi M là điểm nằm trên đoạn thẳng AB sao cho  = . Tính các tỉ số  MB 2 AM MB ; ? AB AB   Xem lời giải tại: http://tilado.edu.vn/550/86191 10. Cho điểm C thuộc đoạn thẳng AB. CA 2 a.  Biết AB = 20 cm, = . Tính độ dài CA, CB. CB 3 CA m CA b.  Biết  = . Tính tỉ số   ? AB n CB Xem lời giải tại: http://tilado.edu.vn/550/861101 11. Cho đoạn thẳng AB. Điểm C thuộc đoạn thẳng AB, điểm D thuộc tia đối của CA DA tia BA sao cho  = = 2. Biết CD = 4 cm, tính độ dài AB? CB DB   Xem lời giải tại: http://tilado.edu.vn/550/861112 12. Cho hình thang ABCD (AB // CD). Một đường thẳng song song với hai đáy, cắt các cạnh bên AD và BC theo thứ tự tại E và F. Tính FC, biết AE = 4 cm; ED = 2 cm; BF = 6 cm.   Xem lời giải tại: http://tilado.edu.vn/550/861122 BD 1 13. Cho ΔABC. Điểm D thuộc cạnh BC sao cho  = . Điểm E thuộc đoạn BC 4
  6. AK thẳng AD sao cho AE = 2ED. Gọi K là giao điểm của BE và AC. Tính tỉ số   ? KC   Xem lời giải tại: http://tilado.edu.vn/550/861132 14. Cho hình thang ABCD (AB // CD). Một đường thẳng song song với hai đáy, cắt các cạnh bên AD và BC theo thứ tự tại E và F.  AE CF Chứng minh rằng:  + = 1.  AD BC   Xem lời giải tại: http://tilado.edu.vn/550/861142 15. Cho ΔABC, điểm D thuộc cạnh BC. Qua D kẻ DE // AC (E ∈ AB); DF // AB ( AE AF F ∈ AC). Tính:  + ? AB AC   Xem lời giải tại: http://tilado.edu.vn/550/861152 16. Cho ΔABC, một đường thẳng song song với cạnh BC cắt hai cạnh AB, AC lần lượt tại D và E. Qua C kẻ đường thẳng song song với EB, cắt AB ở F. Chứng minh rằng: AB 2 = AD. AF.   Xem lời giải tại: http://tilado.edu.vn/550/861162 17. Cho hình thang ABCD (AB // CD; AB 
  7. MD NC c.   và  . DA CB Xem lời giải tại: http://tilado.edu.vn/550/861172 18. Cho ΔABC (AB 
  8. ĐỊNH LÍ ĐẢO VÀ HỆ QUẢ CỦA ĐỊNH LÍ TA‐LET 22. Tìm các cặp đường thẳng song song trong hình và giải thích vì sao chúng song song.   Xem lời giải tại: http://tilado.edu.vn/551/862161 23. Tính các độ dài x, y trong hình vẽ. a.  b.  Xem lời giải tại: http://tilado.edu.vn/551/862171 24. Tính độ dài x, y theo a trên hình vẽ, biết DM / / EN / / BC.
  9.   Xem lời giải tại: http://tilado.edu.vn/551/862181 25. Cho ΔABC, điểm D trên cạnh AB sao cho AD = 13,5 cm; DB = 4,5 cm. Tính tỉ số các khoảng cách từ các điểm D và B đến cạnh AC.   Xem lời giải tại: http://tilado.edu.vn/551/862192 26. Cho ΔABC, BC = 15 cm. Trên đường cao AH lấy các điểm I, K sao cho AK = KI = IH. Qua I và K vẽ các đường EF // MN // BC. (M, E  ∈  AB; N, F  ∈  AC) a.  Tính độ dài các đoạn thẳng MN; EF. b.  Tính S MNFE, biết S ΔABC = 270 cm 2. Xem lời giải tại: http://tilado.edu.vn/551/862212 27. Cho hình thang ABCD (AB / / CD). Đường thẳng d / / AB, cắt các cạnh bên và đường chéo AD; BD; AC; BC theo thứ tự tại các điểm M; N; P; Q. Chứng minh rằng: MN = PQ.   Xem lời giải tại: http://tilado.edu.vn/551/862222 28. Cho hình thang cân ABCD (AB / / CD). Hai đường chéo AC và BD cắt nhau tại O. Gọi M; N theo thứ tự là trung điểm của BD và AC. Biết MD = 3MO, đáy lớn CD = 5,6 cm. 
  10. a.  Tính MN; AB? b.  So sánh MN với nửa hiệu các độ dài của CD và AB. Xem lời giải tại: http://tilado.edu.vn/551/862232 AE p 29. Cho hình thang ABCD (AB / / CD). Lấy E trên cạnh AD sao cho  =  .  ED q p. CD + q. AB Kẻ EF / / CD ; F ∈ BC. Chứng minh rằng: EF =  . p+q   Xem lời giải tại: http://tilado.edu.vn/551/862243 30. Cho hình thang ABCD (AB / / CD). Trên tia đối của tia BA lấy điểm E sao cho AK AC BE = CD. Gọi I, K lần lượt là giao điểm của AC với DB, DE. Chứng minh  = . KC CI   Xem lời giải tại: http://tilado.edu.vn/551/862253 31. Cho hình thang ABCD (AB // CD). Một đường thẳng song song với hai đáy AM 1 cắt các cạnh bên AD, BC tại M, N sao cho  = . MD 2 BN a.  Tính tỉ số   ? NC b.  Cho AB = 8 cm, CD = 17 cm. Tính MN? Xem lời giải tại: http://tilado.edu.vn/551/862262 32. Cho ΔABC, Aˆ = 120 0, AB = 3 cm, AC = 6 cm. Tính độ dài đường phân giác AD (D ∈ BC).   Xem lời giải tại: http://tilado.edu.vn/551/862272
  11. 33. Cho ΔABC cân tại A. Các đường phân giác BD, CE (D ∈ AC, E ∈ AB). a.  Chứng minh DE // BC. b.  Tính độ dài AB, biết DE = 6 cm, BC = 15 cm. Xem lời giải tại: http://tilado.edu.vn/551/862282 34. Cho hình bình hành ABCD, một đường thẳng đi qua D cắt AC, AB, CB theo thứ tự tại M, N, K. a.  Chứng minh: DM 2 = MN. MK DM DM b.  Tính:  + = ? DN DK Xem lời giải tại: http://tilado.edu.vn/551/862293 35. Cho ΔABC, gọi I là trung điểm của AB, E là trung điểm của BI, D thuộc cạnh 1 BF EF AC sao cho CD = CA. Gọi F là giao điểm của BD và CE. Tính các tỉ số  ;  . 3 FD FC   Xem lời giải tại: http://tilado.edu.vn/551/862303
  12. TÍNH CHẤT ĐƯỜNG PHÂN GIÁC CỦA TAM GIÁC BÀI TẬP LIÊN QUAN 36. Cho tam giác ABC có các góc B và C là góc nhọn, đường phân giác AD. Biết  AD = AB = √5cm, BD = 2cm. Tính độ dài DC.   Xem lời giải tại: http://tilado.edu.vn/552/86311 37. Chứng minh rằng tam giác ABC là tam giác vuông nếu các đường phân giác BI CI 1 BD, CE cắt nhau tại I thỏa mãn:  . = BD CE 2   Xem lời giải tại: http://tilado.edu.vn/552/86322 38. Cho tam giác ABC vuông tại A, đường phân giác AD. Gọi M, N theo thứ tự là chân đường vuông góc kẻ từ B, C đến AD. BM + CN Chứng minh rằng: AD ≤ . 2   Xem lời giải tại: http://tilado.edu.vn/552/86332 39. Cho tam giác ABC với AB = 4cm, AC = 8cm, BC = 6cm. Hai tia phân giác trong AD và BE cắt nhau tại O. Chứng minh rằng đoạn thẳng nối điểm O với trọng tâm G của tam giác ABC song song với BC.   Xem lời giải tại: http://tilado.edu.vn/552/86342 40. Cho tam giác ABC, đường phân giác AD. Đặt AC = b, AB = c. Chứng minh
  13. 2bc rằng: AD < . b+c   Xem lời giải tại: http://tilado.edu.vn/552/86353 41. Cho ΔABC có AB = 6 cm, AC = 9 cm, BC = 10 cm. Kẻ đường phân giác AD của  ^ BAC (D ∈ BC). a.  Tính DB, DC? b.  Tính tỉ số diện tích của ΔABD và ΔACD Xem lời giải tại: http://tilado.edu.vn/552/86361 42. Cho ΔABC có các đường phân giác AD, BE, CF (D ∈ BC, E ∈ AC, F ∈ AB). DB EC FA Tính  . .  ? DC EA FB   Xem lời giải tại: http://tilado.edu.vn/552/86371 43. Cho ΔABC, Aˆ = 90 0, đường phân giác AD (D ∈ BC). Biết DB = 15 cm, DC = 20 cm. Tính AB, AC.   Xem lời giải tại: http://tilado.edu.vn/552/86381 44. Cho ΔABC, Aˆ = 90 0, AB = AC = 1 dm, đường phân giác BD (D ∈ AC). Tính AD, DC.   Xem lời giải tại: http://tilado.edu.vn/552/86391 45. Cho ΔABC có AB = 12 cm, AC = 20 cm, BC = 28 cm. Kẻ đường phân giác AD ^ của BAC (D ∈ BC). Qua D kẻ DE // AB (E ∈ AC).
  14. a.  Tính BD, DC, DE? b.  Cho biết S ΔABC = a cm 2. Tính S ΔABD ; S ΔADE ; S ΔDCE ? Xem lời giải tại: http://tilado.edu.vn/552/863102 46. Cho ΔABC, Aˆ = 90 0, AB = 15 cm, AC = 20 cm, đường cao AH (H ∈ BC). ^ ^ Tia phân giác của HAB cắt HB tại D. Tia phân giác của HAC cắt HC tại E. a.  Tính AH. b.  Tính DH, HE. Xem lời giải tại: http://tilado.edu.vn/552/863112 47. Cho ΔABC, AB = AC = 10 cm, BC = 12 cm. Gọi I là giao điểm các đường phân giác của ΔABC. Tính BI.   Xem lời giải tại: http://tilado.edu.vn/552/863122 48. Cho ΔABC, Aˆ = 90 0, AB = 21 cm, AC = 28 cm. Đường phân giác AD ( D ∈ BC), DE⊥AC (E ∈ AC). a.  Tính BD, DC, DE. b.  Tính S ΔABD; S ΔACD ? Xem lời giải tại: http://tilado.edu.vn/552/863132 49. Cho ΔABC, AB = AC = 15 cm, BC = 10 cm. Đường phân giác BD (D ∈ AC) a.  Tính AD, DC. b.  Đường vuông góc với BD cắt đường thẳng AC tại E. Tính EC. Xem lời giải tại: http://tilado.edu.vn/552/863142 50. Cho ΔABC, các đường phân giác BD và CE (D ∈ AC, E ∈ AB). Biết  AD 2 AE 5 = ; = . DC 3 EB 6
  15. Tính các cạnh của ΔABC, biết chu vi của ΔABC bằng 45 cm.   Xem lời giải tại: http://tilado.edu.vn/552/863152 51. Cho ΔABC, AB = 12 cm, AC = 18 cm, đường phân giác AD (D ∈ BC). Điểm I thuộc đoạn thẳng AD sao cho AI = 2ID. Gọi E là giao điểm của BI và AC. AE a.  Tính tỉ số  . EC b.  Tính AE, EC. Xem lời giải tại: http://tilado.edu.vn/552/863162 52. Cho ΔABC, AB = AC = b , BC = a, Aˆ = 36 0 Chứng minh: a 2 + ab − b 2 = 0.   Xem lời giải tại: http://tilado.edu.vn/552/863173 AB 53. Cho ΔABC, AB = AC, Aˆ = 36 0. Tính  . BC   Xem lời giải tại: http://tilado.edu.vn/552/863183 54. Cho ΔABC có AB + AC = 2BC. Gọi I là giao điểm các đường phân giác ΔABC và G là trọng tâm của ΔABC. Chứng minh IG // BC.    Xem lời giải tại: http://tilado.edu.vn/552/863193 55. Cho ΔABC (AB < AC). Trên cạnh AC lấy điểm D sao cho CD = AB. Gọi M, N ^ ^ lần lượt là trung điểm của AD, BC. Tính CMN, biết BAC = 50 0.  
  16. Xem lời giải tại: http://tilado.edu.vn/552/863203
  17. TAM GIÁC ĐỒNG DẠNG TRƯỜNG HỢP ĐỒNG DẠNG CẠNH ‐ CẠNH ‐ CẠNH 56. Cho điểm O nằm trong ΔABC. Gọi P, Q, R lần lượt là trung điểm của các đoạn thẳng OA, OB, OC. a.  Chứng minh: ΔPQR ∼ ΔABC b.  Tính chu vi ΔPQR, biết chu vi ΔABC bằng 540 cm. Xem lời giải tại: http://tilado.edu.vn/553/86511 57. Cho tứ giác ABCD có AB = 3 cm, BC = 10 cm, CD = 12 cm, AD = 5 cm, đường chéo BD = 6 cm. Chứng minh: a.  ΔABD ∼ ΔBDC b.  Tứ giác ABCD là hình thang. Xem lời giải tại: http://tilado.edu.vn/553/86521 58. Cho ΔABC, Aˆ = 90 0, AB = 24 cm, BC = 26 cm và  ΔIMN, ˆI = 90 0, IN = 25 cm, MN = 65 cm. Chứng minh: ΔABC ∼ ΔIMN   Xem lời giải tại: http://tilado.edu.vn/553/86531 ^ AB BC 59. Cho ΔABC, Aˆ = 90 0 và ΔA ′ B ′ C ′ , A ′ = 90 0. Biết  ′ ′ = ′ ′ = 2.  A B B C AC a.  Tính  = ? A ′C ′ b.  Chứng minh: ΔABC ∼ ΔA ′ B ′ C ′ Xem lời giải tại: http://tilado.edu.vn/553/86541
  18. 60. Cho ΔA ′ B ′ C ′ ∼ ΔABC. Biết AB = 3 cm, AC = 5 cm, BC = 7 cm và nửa chu vi của ΔA ′ B ′ C ′  là 30 cm. Tính độ dài các cạnh của ΔA ′ B ′ C ′ .   Xem lời giải tại: http://tilado.edu.vn/553/86552 3 61. Cho hai tam giác đồng dạng có tỉ số chu vi là   và hiệu hai cạnh tương ứng 4 của chúng là 2 cm. Tính hai cạnh đó.   Xem lời giải tại: http://tilado.edu.vn/553/86562 62. Cho ΔABC có AB : BC : AC = 4 : 5 : 6. Biết ΔDEF ∼ ΔABC và cạnh nhỏ nhất của ΔDEF là 8 cm. Tính các cạnh còn lại của ΔDEF.   Xem lời giải tại: http://tilado.edu.vn/553/86572 63. Cho ΔABC có BC = 9 cm, AC = 6 cm, AB = 4 cm.  Gọi h a, h b, h c là chiều cao tương ứng với các cạnh BC, AC, AB. Chứng minh ΔABC đồng dạng với tam giác có ba cạnh bằng h a, h b, h c.   Xem lời giải tại: http://tilado.edu.vn/553/86582 64. Cho ΔABC có ba đường trung tuyến cắt nhau tại O. Gọi P, Q, R, D, H, K theo thứ tự là trung điểm của các đoạn thẳng OA, OB, OC, AB, AC, BC. a.  Chứng minh ΔKHD ∼ ΔPQR, tìm tỉ số đồng dạng. b.  Tính chu vi ΔPQR, ΔABC, biết chu vi ΔKHD bằng 100 cm. Xem lời giải tại: http://tilado.edu.vn/553/86592 65. Cho điểm H nằm trong ΔABC. Gọi K, M, N theo thứ tự là trung điểm của các đoạn thẳng AH, BH, CH. Gọi D, E, F theo thứ tự là trung điểm của các đoạn thẳng KM, KN, MN. a.  Chứng minh ΔFED ∼ ΔABC, tìm tỉ số đồng dạng?
  19. b.  Biết nửa chu vi của ΔABC là 12 cm. Tính chu vi ΔFED. Xem lời giải tại: http://tilado.edu.vn/553/865102 66. Cho ΔABC có AB : BC : AC = 2 : 5 : 4. Biết ΔDEF ∼ ΔABC và chu vi của ΔDEF là 55 cm. Tính các cạnh của ΔDEF.   Xem lời giải tại: http://tilado.edu.vn/553/865112 67. Cho ΔABC có BC = a, AC = b, AB = c và a 2 = bc. Gọi h a, h b, h c là chiều cao tương ứng với các cạnh BC, AC, AB. Chứng minh ΔABC đồng dạng với tam giác có ba cạnh bằng độ dài các đường cao của ΔABC.   Xem lời giải tại: http://tilado.edu.vn/553/865123 ^ AB BC 68. Cho ΔABC, Aˆ = 90  và ΔA B C , A ′ = 90 0. Biết  ′ ′ = ′ ′ = k 0 ′ ′ ′ A B B C AC a.  Tính  A ′C ′ b.  Chứng minh: ΔABC ∼ ΔA ′ B ′ C ′ c.  Tính tỉ số diện tích của ΔABC và ΔA ′ B ′ C ′ . Xem lời giải tại: http://tilado.edu.vn/553/865133 69. Cho ΔABH, H ˆ = 90 0, AB = 20 cm, BH = 12 cm. Trên tia đối của tia HB lấy 5 điểm C sao cho AC = AH. 3 a.  Chứng minh: ΔABH ∼ ΔCAH ^ b.  Tính BAC = ? Xem lời giải tại: http://tilado.edu.vn/553/865143
  20. 70. Cho tứ giác ABCD có:  ^ ^ BAD = 90 , CBD = 90 0, AB = 4 cm, BD = 6 cm, CD = 9 cm. 0 a.  Chứng minh ΔABD ∼ ΔBDC b.  Tứ giác ABCD là hình thang vuông. Xem lời giải tại: http://tilado.edu.vn/553/865153 TRƯỜNG HỢP ĐỒNG DẠNG CẠNH ‐ GÓC ‐ CẠNH 71. Cho ΔABC có AB = 12 cm, AC = 15 cm, BC = 18 cm. Trên cạnh AB lấy điểm M sao cho AM = 10 cm, trên cạnh AC lấy điểm N sao cho AN = 8 cm. Tính độ dài MN.   Xem lời giải tại: http://tilado.edu.vn/554/86611 72. Cho hình thang ABCD (AB / / CD) có AB = 4 cm, CD = 16 cm, BD = 8 cm. ^ ^ 0 a.  Biết BAD = 130 , tính DBC = ? AD b.  Tính tỉ số  = ?. BC Xem lời giải tại: http://tilado.edu.vn/554/86621 73. Cho ΔABCcó AB = 4 cm. Điểm D thuộc cạnh AC sao cho AD = 2 cm, DC = 6 cm.  ^ ^ 0 Biết ACB = 20 , tính ABD?   Xem lời giải tại: http://tilado.edu.vn/554/86631 74. Cho hình thang vuông ABCD (Aˆ = D ˆ = 90 0), AB = 4 cm, BD = 6 cm, CD = 9 cm. Tính độ dài BC.  
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2